Outcomes

Project Impacts

Collection of NREL-sited and commercially deployed bifacial systems provide confidence to owners and validate performance models.

Improved bifacial models assess system performance impact from rear irradiance mismatch and rack shading.

Project Summary

Bifacial demonstration plant with 10 rows of single-axis trackers. Each row is independently monitored and grid tied.

This project continues our work* on bifacial photovoltaic modeling, field evaluation and standards development.

Outcomes

With high DC-AC ratio clipping being a concern, a lot of the bifacial energy benefits accrue during times when the system is not putting out max power. However, most of the energy generation happens at high irradiance. Performance agreement between measured and modeled data (considering measured irradiance and temperature†), is about the same for both technologies within about a 2% offset error. This suggests that going to a bifacial technology doesn't significantly increase the model error.

Project Impacts

Collection of NREL-sited and commercially deployed bifacial systems provide confidence to owners and validate performance models.

Improved bifacial models assess system performance impact from rear irradiance mismatch and rack shading.

*Bifacial Energy Gain, $B_G = \frac{B_{\text{bifacial}}}{B_{\text{monofacial}}} - 1$

Three sensitivity cases were selected to model bifacial energy gain in SAM for our site.

<table>
<thead>
<tr>
<th>Sensitivity Case</th>
<th>Albedo</th>
<th>PERC Base</th>
<th>Bifi Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>High case</td>
<td>0.30</td>
<td>0.75</td>
<td>0.95</td>
</tr>
<tr>
<td>Average case</td>
<td>0.20</td>
<td>0.70</td>
<td>0.90</td>
</tr>
<tr>
<td>Low case</td>
<td>0.15</td>
<td>0.65</td>
<td>0.85</td>
</tr>
</tbody>
</table>

The average case is our best estimate for our site, and it coincides with field measured bifacial gains of 6% for the PERC bifacial system, and 9% for the higher ϕ_{Bifi} silicon heterojunction string.

B_G is sensitive to albedo and module bifaciality. The range of typical B_G values for other conditions are between 4 and 8% for PERC and 6.5 and 11% for the heterojunction system. Site-measured albedo is 0.19 – 0.21 during this period, matching ‘Average case’ assumptions.

References

Marion, 2019, “Albedo Data to Facilitate Bifacial PV System Planning”, 2019 PV Systems Symposium, Albuquerque, NM.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE). Funding provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 30286, 34910, and Award Number DE-EE0008564. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.