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Abstract—Both the frequency and intensity of extreme weather
events have been trending higher in recent years, leading to
significant infrastructure damage in the electric grid. The impact
of these extreme weather events is desired to be analyzed and
quantified to help transmission and distribution system operators
prepare for and prevent significant damage and subsequent loss
of power. In this paper, we develop an approach that models
the impact of extreme weather on the grid and identifies the
worst impact zone using Q-learning (a reinforcement learning
approach). The identification results reveal grid vulnerability to
weather events and provide insights for system operators to help
achieve optimal resource allocation and crew dispatch to mini-
mize the adverse impacts of extreme weather. Simulation studies
are conducted on the IEEE 123-node system to demonstrate the
performance of the proposed approach.

Index Terms—Reinforcement learning, impact analysis, inten-
sity, vulnerability, extreme weather, distribution system.

I. INTRODUCTION

The traditional and aging electric power grid is integrated
with intelligent controls, information, and communications
technologies and has been turned into a cyber-physical electric
grid. Even though the power grid is equipped with modern
technology, power outage events cause significant damage. The
U.S. Department of Energy defines a major outage as an event
that impacted at least 50, 000 individuals or caused a load loss
of at least 300 MW [1]. According to EATON Corporation’s
blackout tracker annual report for the United States, the total
number of outage event was 3,526 in 2017. Almost 36.7
million people were affected by these events. The total outage
duration was 2,84,086 seconds, which is almost equivalent
to 197 days [2]. Different reasons for these major power
outages on the grid include equipment failure, supply shortage,
operator error, voltage reduction, fire, and weather (earthquake,
tornado, hurricane, ice storm, lightning, wind/rain, etc.). Dif-
ferent extreme weather events are responsible for damaging the
grid and interrupting the continuous supply of electrical power
to residential and industrial customers. Hurricanes Harvey,
Irma, Maria, and all of which occurred in 2017, caused electric
power losses of more than $200 billion, the most expensive
loss in U.S. history [3].

Numerous research activities have been conducted using
machine learning algorithms to analyze the vulnerability,
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reliability, and resilience of the grid (specifically the bulk
power grid) to extreme weather conditions. In [4]], the authors
presented a framework to analyze the resilience of grid with an
integrated microgrid under extreme conditions by representing
the grid in a mesh view. The authors of [5] researched the
resilience of power systems under extreme weather condi-
tions, including forecasting the impacts of natural disasters,
hardening the system, and exploring resilient optimization
processes. The authors of [|6] identified critical transmission
lines of a skeleton network of the power system under extreme
natural events using the VIKOR method. In addition, other
research works [7]-[9] studied the resilience of the grid to
extreme weather conditions. The authors in [[10] performed
a vulnerability assessment of the grid using the Q-learning
algorithm and game theory considering malicious attacks on
the grid. Few existing work has identified the vulnerable zones
of the distribution system under extreme weather conditions.
Learning-based methods to identify the vulnerable zones of the
grid under extreme weather events will help utility operators
plan restoration strategies or system hardening in advance to
protect the power system components and provide uninter-
rupted power supply to consumers.

Motivated by these weaknesses or limitations in the existing
literature, the contributions of this research paper are as
follows: (a) we model a new metric to calculate the impact
of extreme weather events on a power distribution system; (b)
we model the MATPOWER test case for the IEEE 123-node
test feeder, which is an approximate single-phase equivalent
to a three-phase system; and (c) we model a Q-learning (a
reinforcement learning algorithm) framework to identify the
worst impact zones for grids caused by extreme weather
events.

The rest of this paper is organized as follows. Section
discusses various definitions and the theoretical background
of the Q-learning algorithm. Section describes the calcu-
lation of generation loss and line failures from the outage
model, grid representation of the distribution system, modeling
the impact on the distribution system from extreme weather
events, modeling the MATPOWER test case of the IEEE 123-
node test feeder, and modeling the Q-learning algorithm to
find the worst impact zone of extreme weather events in
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a distribution system. Section presents and analyzes the
simulation results. Finally, Section [V|concludes.

II. THEORETICAL BACKGROUND
A. Definitions

1) Impact: In a study of power system stability, reliability,
and resilience, impact is considered the loss of grid function-
ality. Power system resilience is the ability of the network
to minimize the negative impact caused by high-impact, low-
frequency extreme events (such as hurricanes, storms, floods,
and cyberattacks). The impact can be modeled in terms of loss
of grid capacity in megawatts, number of customers affected,
number of line outages, number of critical loads, and in terms
of economic loss.

Exposure

Figure 1: Impact triangle showing the determinants of a grid affected
by extreme weather conditions.

Measuring the impact of extreme weather events on a grid
is vital to evaluating and enhancing resilience. In [11]], the
authors presented an impact triangle where the determinants
were in the form of multiplication presented as follows: IM =
Igw x E XV, where IM represents the impact of the extreme
weather event on the grid, E represents the exposure of the grid
to the event, and V represents the vulnerabilities of the grid
to the extreme weather event. Inspired by this impact model,
we consider the impact of extreme weather as a function of
intensity, grid vulnerability, and exposure, described as Fig. [1]

2) Intensity: The intensity is represented as Iy, for the
extreme weather condition. The intensity usually expresses
the severity of the extreme weather events. For example, in
a hurricane the intensity can be expressed in terms of wind
speed (m/s), temperature (°C'), translation velocity, radius
of maximum wind, etc. For simplicity, the intensity can be
expressed as a single value that can be a weighted sum of
multiple factors.

3) Exposure: The exposure (F) of the grid to an extreme
weather event usually represents what percentage of the grid
is exposed to the event. The exposure can be in terms of
percentage of customers affected or percentage of lines or
loads affected in the event area.

4) Vulnerability: Vulnerability of the grid during an ex-
treme weather event can be expressed as V. Grid vulnerability
represents the likelihood and severity of grid damage caused
by an extreme weather event.
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B. Q-learning

Q-learning is a reinforcement learning algorithm. The target
of this learning algorithm is to learn a policy that tells the
learning agent what action should be taken under certain
circumstances. Typically, a Q-learning agent interacts with the
environment to learn from it by trial and error.

-

Environment

action state reward

N\

Agent

Figure 2: Typical agent-environment interaction in Q-learning algo-
rithm.

Fig. [2 represents a typical agent-environment interaction in
a Q-learning environment, where the agent takes action, a,
executes it on the environment, and gets a reward, Re, as
feedback at state s. Once an action is taken, the environment
sends an evaluative feedback to the agent, which is termed as
reward, Re. Based on the feedback, the agent learns through
trial and error process. For a finite Markov decision process,
Q-learning converges to an optimal policy that maximizes
the discounted sum of future rewards. The Q-function is
represented as follows:

Q(s,0) = Re(5,0) + 1Qumaa(s’, @) (1)
where @ is the quality of the state, s, and action, a, Re
represents the reward at state s from action a; and s’ and
a’ represent the next state and action at the next state,
respectively. Training the Q-learning agent requires some
hyperparameters, such as discount rate, -y, exploration, and
exploitation probability, e. The value of « ranges from 0 to
1. The higher the value of v, the more the agent focuses on
the long-term reward. A value of «y close to 0 forces the agent
to focus on short-term or more immediate rewards. The value
of € also ranges from 0 to 1. The higher the value of e, the
more the agent explores by taking random actions and the less
the agent exploits by taking optimal actions. With the gradual
reduction of the value of ¢, the exploration probability reduces
and the exploitation probability increases. A value of € close
to 0 means there are very few random actions (exploration).

III. PROPOSED RESEARCH

In this section, we discuss the proposed research methods.

1) Calculation of generation loss and line failures: To
calculate the generation loss and line failures caused by ex-
treme weather events, we adopt the cascading failure simulator
from [[12]], [13] as the outage model. We consider line failure
to calculate the total losses (includes generation loss and
cascading failures).
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Figure 3: Workflow of outage model to calculate generation loss and
total outages caused by extreme weather events.

As depicted in Fig. 3] the outage model initializes with
the application of precontingency power flow. After that, the
model executes the n — k contingencies, where k is the order
of the contingencies. The value of k is determined from the
area/zone of the grid that the extreme weather event impacts.
After the application of n — k contingencies, k transmission
lines are switched from the system, and the system may be
separated into multiple islands. The generators or distributed
energy resources are adjusted by ramping up or down to
match the demand and supply. Py i and Py nq, are the
ramping limits of the generators. After that, the generation
and the demand are compared, which is defined by Z, Z =
(X-gec P — 2_aep Fa), where Z represents the difference
between the generation and the demand; and ) e P, and
> dep Pa represent the total generation and total demand,
respectively. If Z > 0 (generation is higher than demand), then
the generators are tripped one by one until Z = 0. If Z < 0
(generation is less than the demand), then the loads are shed in
the island. After that, a DC power flow checks for overloads. If
there are no overloads, the simulation is terminated. If there are
overloads, then the overloaded branches are tripped according
to the relay settings and the overloads.

2) Grid representation of distribution system: A geographic
information system (GIS) can be integrated with the distribu-
tion system to create a mesh view of the grid with geographic
locations mapped. Fig. [ represents a mesh view of the IEEE
123-node system placed on a mesh grid based on GIS data.
The whole mesh grid is a 10 x 10 box. The colored 3 x 3
box or marked region represents a sample event zone. The
dark colored zone represents the event center, and the light
colored zone/box represents the edge of the event zone. For
ease of simulation, we consider the effect of the extreme event
is uniform throughout the whole 3 x 3 zone. To place the
GIS information of the nodes of a power system on top of
a 10 x 10 mesh grid, the coordinates of the nodes are scaled
down between the range of 0 to 10. In short, the coordinates of
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the nodes (GIS information) are normalized within the range
from 0 to 10.
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Figure 4: Mesh view of IEEE 123-node system. The black circles
are the nodes of the IEEE 123-node test system.

3) Impact modeling: We calculate the impact of any ex-
treme weather event on the grid based on the following
equation:

IM =wy x Igw +ws x E+w3 x V )

where impact, M, is a weighted sum of the three deter-
minants, intensity of the extreme weather (/g ), exposure
(E), and vulnerability (V). wj, wa, and ws represent the
weights of these three determinants of impact, I M. For ease
of simulation, we consider that these three weights equal
w1 = wy = ws and »_ (w1 + wg + w3) = 1. This is a simple
way to model the impact of extreme weather on an electric
distribution system. Future work includes modeling the impact
as a nonlinear function of grid vulnerability, intensity, and
exposure. Fig. ] demonstrates how we calculate the exposure
of the grid. For example, the event region is a 3 X 3 box
including 9 cells. Now, based on the GIS system, there might
be multiple nodes placed on these regions. The exposure is
expressed as follows:

Number of buses exposed to the event

3)

E b=
zposure, Total number of buses in the grid

To calculate vulnerability, we use the following equation:
Total generation loss

Vulnerability, V = w4 X - ;
Total generation capacity

Total line outages

X
Number of total lines in the system

4)

where w4 and ws represent weight factor for the generation
loss and line outages. With these vulnerabilities, the intensity
of the extreme weather and exposure of the grid to the ex-
treme weather event, we calculate the impact, I M, following

equation (2).
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4) Modeling MATPOWER test case for IEEE 123-node
system: To make the IEEE 123-node system compatible with
the outage model, we model the MATPOWER test case. We
convert the three-phase system of the IEEE 123-node test
feeder to an approximately equivalent single-phase system for
MATPOWER. All the line parameters (resistance, reactance,
susceptance, etc.) are converted from three-phase to equivalent
single-phase. The loads are also converted from three-phase
to equivalent single-phase. Then we conduct standard DC and
optimal power flow to validate the model. After preparing the
test case for MATPOWER, we convert the MATPOWER test
case compatible with the outage model described in Section
The process of preparing the test case for the outage
model is shown next:

f ) (" Calculate equivalent )
line impedance and
Start ine Imp | Create generator data
loads from three-phase
L ) | tosingle-phase |
~

s N s

Update PS (fixes any
1rregular1t1es in the
case data

MPC2PS functional block

Conduct necessary
experiments/operation

Terminate

(. J . J

Figure 5: Test case preparation of IEEE 123-node test feeder for
MATPOWER and outage model.

5) Modeling Q-learning algorithm: To design the Q-
learning algorithm, we define the parameters correlating with
the power system environments and the grid. We use the
10x 10 grid as the environment, where the top layer is the node
coordinates of the IEEE 123-node test feeder. We consider the
extreme weather as the agent, and we aim to find the worst
impact zone for the agent. The cells are considered as state
s. The initial state is considered as 0. This means that the
event has not yet landed on the grid. The actions, a, represent
the agent to fall on any location of the 10 x 10 grid. The
calculated impact of the extreme weather is considered as
the immediate reward of the agent. We consider the temporal
effect to find the worst impact zone for the landing of the
extreme weather event. Keeping that in mind, the aim of
the agent is to maximize the cumulative reward; thus, the
agent will have the worst impact zone considering the next
propagation zone.

IV. SIMULATION STUDIES

The simulation is conducted using MATLAB R2019a on
a standard PC with an Intel(R) Core(TM) i7-3720QM CPU
running at 2.60 GHz and with 16.0 GB RAM. We conduct the
simulation for 100 rounds to find different optimal strategies
(worst impact zones of the grid caused by extreme weather
conditions). The initial value of epsilon (¢) is considered as 0.8
(ensures higher initial exploration probability), and the value
of discount rate, -, is considered as 0.9. The total number of
episodes (trials to learn via exploration and exploitation) is
considered as 1, 000.
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Figure 6: Cumulative sum of future rewards for IEEE 123-nodes test

feeder during training to find the worst impact zone for n extreme

weather event.
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Fig. [6] represents the convergence of the cumulative sum of
future rewards.
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Figure 7: Epsilon decay to balance between exploration and exploita-
tion.

Fig. shows the decay of the exploration-exploitation
parameter. The value of epsilon starts with a very high number
(which represents a very high random action selection in the
beginning). Then the value of epsilon decays gradually to
a very small positive number. The small value of epsilon
represents a very low exploration and very high exploitation
action selection policy.
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Figure 8: Convergence of impact during training via trial and error

of a Q-learning agent.
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Fig. [8] shows the convergence of the impact of the worst
impact zones during the learning process via trial and error
through exploration and exploitation. The impact converges to
a value between 0.5 and 0.52 (maximum impact) .
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Figure 9: Frequency of occurrence of the worst impact zones.

47

Fig. O] shows the frequency of the occurrence of the event
zone as the worst impact zone for an extreme weather event.
The event zone index 47 appears most frequently (approxi-
mately 65%) out of 100 rounds. Table [I| shows the associated
impacts of the extreme weather events. As shown in Table
[ the impact associated with event zone index 47 is the
maximum, and the value is 0.5015.

Table I: Worst event zone index and their associated impact

Event zone index  Impact caused by extreme weather

47 0.5015
46 0.4832
37 0.4659
36 0.4622
34 0.4463

Similarly, event zone indices 46, 37, 36, and 34 and their
associated frequencies of occurrence are shown in Fig. 0] and
their associated impacts in Table [I. We can conclude that the
event zone index with higher impact appeared in the worst
event zone index most frequently. Similarly, the event zone
index with lower impact appeared less frequently than the
others.

V. CONCLUSION

Extreme weather impact assessment is highly significant
in the study of grid resilience. In this paper, we identified
the worst impact zone of a distribution system under extreme
weather conditions using the Q-learning algorithm as a one-
shot process. The proposed work can be extended to include
the propagation of the event to the next zone of the grid,
which maximizes the total impact of the extreme event.
Information about the identified worst impact zones will help
utility operators prepare resource allocation, system hardening,
and service restoration in advance, as well as enhance grid
resilience.
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