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High-Frequency, Multiclass Nonintrusive Load 
Monitoring for Grid-Interactive Residential Buildings 

Blake Lundstrom1,2, Govind Saraswat2, and Murti V. Salapaka2 
1National Renewable Energy Laboratory, Golden, CO, USA 

2Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA 
Abstract—Smart buildings with net-load metering and control 

capabilities can provide valuable flexibility to grid operators. 
This article develops a novel approach for high-frequency, 
multiclass nonintrusive load monitoring (NILM) that enables 
effective net-load monitoring capabilities with minimal additional 
equipment and cost. Relative to existing NILM work, the 
proposed solution operates at a faster timescale, providing 
accurate multiclass state predictions for each 60-Hz ac cycle 
without relying on event-detection techniques. The approach is 
validated using a test bed with residential appliances and shown 
to have high accuracy, good generalization properties, and 
sufficient response time to support building grid-interactive 
control at fast timescales relevant to the provision of grid 
frequency support services. 

Keywords—Nonintrusive load monitoring (NILM), multiclass 
classification, feature extraction, smart buildings, grid-interactive. 

I.! INTRODUCTION 
Modernization of the electric grid with increasing 

deployments of renewable and distributed energy resources 
(DERs), decreasing levels of traditional synchronous 
generation, and evolving load types and capabilities is 
presenting new challenges and opportunities. These changes, 
combined with emerging power system operating platforms and 
concepts, are making behind-the-meter net-load (i.e., DERs and 
flexible loads) an increasingly important component of system 
operations. Smart buildings that can manage their net loads to 
provide additional flexibility to grid operators while 
maximizing customer preferences and energy cost savings offer 
a valuable tool for a modernized electric grid. Residential 
buildings use 38.5% of the total electrical energy produced in 
the United States [1]; thus, if residential buildings can be 
converted into smart buildings, significant flexibility to support 
the grid will be unlocked.  

It is crucial to enable circuit-level net-load metering at these 
residential buildings to gain a better understanding of building 
performance and customer usage patterns and preferences 
while enabling the critical monitoring of information needed to 
perform meaningful grid-interactive control. The simplest 
approach for such metering is having a sensor at each load, but 
this is invasive and very costly. Nonintrusive load monitoring 
(NILM) can extend many benefits of smart buildings to homes 
using minimal additional equipment and cost. With this 
method, a single electrical measurement point at the building’s 
point of common coupling (PCC) with the grid is used to derive 
information (e.g., on/off status, electricity consumption) about 
the constituent net-load devices in the home. 

Existing work in NILM can be categorized based on the 
type of measurement inputs used. Generally, NILM approaches 
use one or both of: 1) steady-state measurement quantities, such 
as active and reactive power or root mean square (RMS) 
current, on a macro timescale (generally 1–60 min [2]); and 2) 
transient features derived from micro-timescale data (generally 
> 1 Hz [2]). In the first category,  [2]–[7] used steady-state 
power measurements with a variety of contemporary machine 
learning methods, including multilabel k-nearest neighbor [2], 
[3], multilabel support vector machines [8], binary relevance 
[2], [8], hidden Markov models [2], [7], and recurrent neural 
networks [6]. In the second category, micro-timescale data have 
been used to derive features based on a frequency-domain 
transformation [9], [10], instantaneous wave shape [9], 
switching transients [11], or wavelet transformations [11], [12]. 
References [13], [14] fit into both categories, using micro 
timescale data to detect events and macro-timescale data to 
capture steady-state data throughout the event and build a 
library of events that can be used for later classification.  

Steady-state measurement NILM methods often require a 
large sample (days to months) of training data and suffer a slow 
response time following events. Further, the use of steady-state 
measurements can easily result in misclassification between 
two different combinations of loads that have nearly identical 
steady-state measurements but differing instantaneous 
waveforms. For example, Fig. 1 shows the instantaneous 
current waveform (top plot) and corresponding RMS value 
(bottom plot) associated with two different combinations of 
home loads. 

NILM methods based on steady-state measurements, such 
as the mean RMS current (-rmsMN in Fig. 1) in this example, 
will not be able to differentiate between these two combinations 
successfully; whereas NILM methods using 

 
Fig. 1. Comparison of waveform (top plot) and RMS values (bottom plot) from 
two observations (one 60-Hz ac cycle sampled at 200 kHz) representing two 
different load configurations in a residential building 
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micro features, such as harmonics or wave shape, can be more 
successful. This point is further emphasized in Fig. 2, which 
shows the distribution of RMS current values (a steady-state 
quantity) for the case study presented later in this article, where 
it can be seen that the same steady-state value could exist in 
many different system load configurations. 

 
Fig. 2. All observations (all training and test data) with their RMS current 
feature plotted vs. class for a residential building load classification case study 

In both steady-state and transient NILM approaches, it is 
common to use methods based on event detection; however, 
such approaches often assume that multiple load transients do 
not occur at the same time, might suffer confusion between 
transient events occurring within a single load (e.g., same load 
switching to a higher power level), and cannot make accurate 
state predictions until after an entire transient event has 
occurred. In most existing NILM approaches, system state 
predictions are often made in no faster than 1 s to 15 min. This 
might be sufficiently fast for some functions, such as estimating 
energy usage or customer load usage patterns, but it is too slow 
to enable a smart building to provide grid services (e.g., fast 
frequency response using building net load [15]). 

This work presents a novel NILM approach relevant to fast 
smart building control that provides high-frequency (60-Hz) 
multiload state classification using a combination of frequency 
transformation, wavelet transformation, and wave shape 
features that allows for good generalization. The proposed 
method does not rely on event detection and provides a fast 
(>60-Hz) response to transient events. The approach is 
validated using data from a set of actual residential building 
appliances and is shown to be highly accurate (99%) when 
tested among all possible multiload state combinations. 

II.! HIGH-FREQUENCY, MULTICLASS CLASSIFICATION OF 
RESIDENTIAL APPLIANCE LOADS 

A.! Problem Formulation 
A total of !" loads are connected to the main load center 

panel of a residential building, and each consume an 
instantaneous current  #$(&) = )$(&)#$(&) , where #$  is the load 
signature, )$ = {0,1} is the on/off status (where )$ = 1 denotes 
that the load is on), and #$ is the resulting current consumption 
of the ith load. The total current consumption of the residential 
building is #/0/(&) = ∑ )$(&)#$(&)

23
$45 . With these !" loads, there 

are 223  possible system load on/off states, 7 =
8)5, )9, … , )$ , … , )23;<, for the building. The objective is to train a 
classifier that uses an input vector, =, of features calculated for 
each 60-Hz ac cycle observation of  #/0/(&)  to predict the 
correct class label, 7, representing the building’s complete load 
on/off state. The classifier should provide a state label 
prediction for every 60-Hz ac cycle of #/0/(&) . For the 
application of high-frequency smart building control, the entire 
process of splitting the instantaneous #/0/(&) into single-cycle 
observations, calculating features, and using the classifier to 
predict an output label should occur within > = 10;/;60 =
0.167;C. This response time will ensure state awareness for the 

fastest grid services, such as fast frequency response (generally 
<0.33–0.5 s total response time required). To be of practical 
value, the classifier should be able to generalize well to any 
#/0/(&) observations from the same group of appliances it is 
trained on, regardless of whether a similar magnitude #/0/(&) 
observation is seen during training. 
B.! Approach 

A summary of the high-frequency NILM approach 
implemented is shown in Fig. 3. This approach extends 
previous NILM work by using a wider combination of features 
and by achieving much higher frequency output while 
maintaining exceptional multiclass performance. 

 
Fig. 3. High-frequency NILM approach 

1)! Input Data Processing 
As shown in Fig. 3, high-speed instantaneous voltage and 

current waveforms are the inputs to this approach. During the 
training phase, current measurements from each circuit are 
used. Voltage measurement data are not strictly required, but if 
they are available, they are used to provide more accurate 
detection of zero crossings. The current data are divided at each 
60-Hz ac cycle using zero-crossing detection, and then each 
cycle of the aggregate current measurement becomes an 
observation for which a label and features are derived. 

2)!Labeling (Training Phase) 
Each aggregate current cycle observation is labeled by 

examining the instantaneous current data at each circuit, using 
level detection to derive the on/off state of that circuit, and 
finally building the multiclass label. This multiclass label could 
be a multilabel vector or a single integer label with the class 
encoded using a binary encoding scheme (e.g., for the four-load 
case, Label 11 corresponds to [1,0,1,1]). Both forms of 
multiclass labels are used in this work because both single-label 
and multilabel classifiers were experimented with. 

3)!Feature Engineering 
The individual data points of the instantaneous aggregate 

current cycle observation are not used directly as the input to 
the classifier (this approach does not result in good prediction). 
Instead, the instantaneous data are processed into features to 
reduce the dimensionality of the problem while retaining the 
important characteristics of the waveform. Four key categories 
of features are used: 

a)!Harmonic features: A 1-D discrete Fourier transform 
is used to compute the magnitudes of the Fourier series 
coefficients at the fundamental and 3rd, 5th, 7th, 9th, 11th, and 
13th harmonics of the 60-Hz nominal aggregate current 
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waveform. These coefficients are used in both their unscaled 
and normalized (using the L2 norm) form, giving 14 possible 
features.  

b)!Steady-state RMS feature: A single feature based on 
calculating the RMS of all data points in the single-cycle 
aggregate current observation is used.  

c)!Wavelet features: An 8-level (the maximum 
decomposition level possible for the wavelet and sampling rate 
used) 1-D discrete wavelet transform using the order 7 
Daubechies (db7) wavelet [16] is used to derive discrete 
wavelet transform coefficients at multiple levels of 
decomposition. The db7 wavelet is used because it has been 
shown to have good performance for power system applications 
[17]. The level 8 detail coefficients were studied as potential 
features, and coefficients #12–23 for a total of 12 out of the 25 
total coefficients are selected as the final features. 

d)!Wave shape features: Here, wave shape features refer 
to features derived using individual data points in the raw 
instantaneous current waveform that represent unique 
characteristics of the waveform’s shape. Three such features are 
used. The first is the maximum value in the middle third of the 
waveform’s positive half cycle. The last two are ratios of two 
specific points in the ac waveform that capture local minima 
present in a waveform when particular loads are present. For 
example, in Fig. 1 (top plot), Obs1 and Obs2  contain the same 
three loads, but Obs1 also includes a fourth, relatively low-
magnitude load. Overall, the two observations’ waveforms are 
very similar, making it difficult to differentiate between these 
two classes using traditional features. In the region between the 
plot’s two vertical black dotted lines, however, a difference in 
wave shape can be observed. A feature based on the ratio of the 
waveform’s values at the first and second lines allows for 
reliable separability of these two very similar classes and 
provides a valuable measure of the presence of this additional 
load is present in any class. Two such ratios are used, both 
derived based on local maxima present in two different loads’ 
characteristic waveforms. This approach can be applied 
generally by deriving a ratio feature for any constituent load 
that contains local maxima outside of the normal 60-Hz peak in 
its waveform. 

4)!Classifier 
A random forest classifier (RFC), which comes under so-

called ensemble methods, is used in this work. Ensemble 
methods use multiple uncorrelated base classifiers for better 
predictive performance. Uncorrelated models usually produce 
ensemble predictions that are more accurate than any 
individual predictions [18]. RFCs use decision trees as their 
base classifier. Each tree provides a class prediction, and the 
class with the most votes becomes the RFC’s predicted class. 
Decision trees separate a data set so that the resulting 
subgroups are as different from each other as possible at every 
split and the observations in the same subgroup are as similar 
to each other as possible. Decision trees depend heavily on data 
they are trained on and can be very different if those training 
data change. RFCs consist of multiple decision trees where 
each tree is formed by randomly sampling data from the data 
set (with replacement). Further, each tree in a random forest 
can use only a random subset of the feature set. This leads to 
the individual trees being highly uncorrelated, leading to the 
ensemble’s prediction being more accurate than that of any 
individual tree. Because multiple loads and any number of 
loads can be turned on, multiclass classification is required for 

this problem. Simple binary classifiers trained to detect the 
presence of a single load ignore the inherent correlation of 
different labels and are not suited for NILM. Instead, the “label 
power-set method,” which takes each combination of possible 
load states as one class, is used here. This method takes the 
correlation of different labels into account and is able to 
provide accurate predictions, as shown in Section IV. The 
drawback to this approach is that the total number of classes in 
this method increases exponentially with the number of loads. 
For this reason, a direct multilabel approach, wherein the 
classifier uses the multilabel formulation of the load state label, 
is also considered. The two approaches are found to produce 
nearly identical results for this problem, but for larger problem 
sizes, the direct multilabel approach will scale better. 

III.!EXPERIMENTAL DESIGN 
A.! Experiment Configuration 

A residential-scale demonstration using four household 
appliances in the Energy Systems Integration Facility at the 
National Renewable Energy Laboratory is completed. As 
shown in Fig. 4, this experimental configuration includes four 
residential appliances, including a combination 
refrigerator/freezer (General Electric Profile PSQS6YGY), 
combination oven/range (Maytag MER8674), space heater, and 
a bank of (10) compact fluorescent light bulbs.  

 
Fig. 4. Experimental configuration 

In this four-load configuration, 15 different nontrivial classes 
that a classifier must predict are possible. Five current probes 
and one voltage probe at the locations indicated were used to 
gather instantaneous measurements sampled at 200 kHz over 
each 200-s data set period using a digital oscilloscope. 
B.! Data Sets 

For classifier training purposes, seven independent 200-
second data sets, including V, I1, I2, I3, and I4 (but not ITOT), were 
collected. #/0/was obtained as #/0/ = #5 + #9 + #E + #F. For each 
data set, the appliance loads were put into a different starting 
condition, and then throughout the data set period, loads were 
turned on and off to obtain many instances of the 15 different 
classes. Throughout all data sets, the fridge, oven, and space 
heater were manually perturbed (e.g., fridge door opened, oven 
opened, space heater fan speed changed) to capture the variety 
of operating conditions of the loads. The lights were considered 
to be either on or off and were not manually perturbed. 

For testing purposes, a further six independent 200-s data 
sets, including V, I1, I2, I3, I4, and ITOT, were collected. For 
testing, only ITOT and V are used as input data to the presented 
NILM approach, and I1, I2, I3, and I4 are used to assign the true 
label to each observation. As with training, appliances were 
cycled on and off and manually perturbed to obtain instances of 
all 15 classes as well as significant steady-state load variations 
across their range of operation. An example of one of the testing 
data sets is shown in Fig. 8.  
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C.! Classifier Training and Tuning 
Multiple RFCs using different subsets of the features 

described in Section II.B.3 are considered in the search for a 
classifier that is accurate in differentiating the 15 different 
classes but also that generalizes well to make correct 
predictions on observations not previously seen before in 
training data. To illustrate this point, two classifiers 
(summarized in Table I), both with the same hyperparameters 
(given below) but using different features, are compared. 
Classifier1 is the final classifier for which good accuracy and 
generalization results are presented. Classifier2 has good 
prediction accuracy on the test data set but does not generalize 
as well. 

TABLE I. FEATURES USED FOR EACH CLASSIFIER 
Classifier Features Included 

Harmonic 
Coefficients 

Normalized 
Harm. Coeff. 

Wavelet Wave Shape 

Classifier1 1,3,5,7,9,11,13 5,7 All All 
Classifier2 1,3,5,7,9,11,13 None None All 

Both classifiers are RFC ensembles using bootstrapping and 
including 200 decision tree classifiers, each with a max depth 
of 35 and using entropy (information gain) as the split criterion. 
These optimal hyperparameters were determined using a grid 
search wherein for each hyperparameter combination, seven-
fold cross-validation was performed to obtain the classifier’s 
accuracy as the scoring metric. Seven-fold cross validation was 
implemented such that each combination of using 1/7 training 
data sets for testing and the remaining 6/7 training data sets for 
training were considered. 
D.!Performance Metrics 

Both accuracy and weighted F1-score are used as measures 
of classifier performance. Accuracy provides an intuitive 
evaluation of the ratio of correctly labeled observations to the 
total number of observations. F1-score, a common metric for 
NILM implementations, is the harmonic mean of the precision 
and recall (i.e., G5 =

9
HIJKLIJ

, where R is recall and P is 
precision). Although an effort was made to get a sizeable 
number of instances of each class, the distribution of instances 
across classes is not equal, and hence an F1-score weighted by 
the number of true instances in a class is used to account for 
class imbalance (it is essentially a “macro” F1-score that 
accounts for class imbalance). 

IV.!EXPERIMENTAL RESULTS 
A.! Overall Results 

Table II presents accuracy and F1-score results as averaged 
over 10 repeated (there is a small variation in results from one 
run to another because of the randomization present in the RFC) 
test runs evaluating the trained classifiers using the 6 
independent test data sets.  

TABLE II. OVERALL TEST RESULTS (10-RUN AVERAGE) 
Test Data 

Set # 
Test Accuracy [%] F1-Score (Weighted) 

[%] 
 Clf. 1 Clf. 2 Clf. 1 Clf. 2 

All 99.44 98.97 99.45 98.94 
1 99.02 97.95 99.44 98.95 
2 99.07 99.87 99.06 99.90 
3 99.57 97.15 99.68 97.23 
4 99.99 99.99 99.99 99.99 
5 99.97 99.96 99.97 99.97 
6 98.87 99.06 98.90 99.05 

Fig. 5 compares the classifiers’ accuracy in predicting each 
class in the full test data set (all 6 data sets). These results show 
that both classifiers perform well in terms of accuracy and F1-
score on all data sets and among all classes.  

 
Fig. 5. Test accuracy (full test data set) by class when using all training data. 
Note: outlier on Classifier2 for Class 13 test accuracy is 80.92%. 

B.! Classifier Generalization 
Generalization is important because practical NILM 

implementations should have good multiclass prediction 
performance across a variety of load operating conditions and 
it is not practical to train the classifier with every possible 
condition. To evaluate generalization performance, the training 
data set is first segmented by class, then each segment is sorted 
by cycle observation RMS value, and the middle 95% of that 
class segment’s training data is discarded before proceeding to 
training and testing. An example of this for Class 6 is shown in 
Fig. 6, where the difference between the green triangular and 
red diamond line plots of the training data show that all training 
instances with RMS current values between ~26.5 and ~28.75 
have been removed in the 5% training data set.  

 
Fig. 6. Comparison of classifier performance on Class 6 (Y=[0,1,1,0]) test data 
when the middle (by RMS value) 95% of Class 6 instances in the training data 
set are removed before training 

The blue cross and orange square line plots in Fig. 6 show how 
the range of instances in the test data set, which includes many 
values of RMS current in the range 26.5–28.75 where no similar 
training instances were used, were predicted. Classifier1, which 
has additional normalized harmonics and wavelet features, 
generalizes significantly better (97% accuracy vs. 22% 
accuracy) than Classifier2, which does not have these features. 
As shown in Fig. 7, this trend holds among most classes, further 
emphasizing the importance of these features in obtaining a 
classifier with good generalization performance. 

 
Fig. 7. Test accuracy by class when the middle (by RMS value) 95% of each 
class’ instances in the training data set are removed before training 

C.! Transient Performance 
 Fig. 8 shows that label predictions match the true values 
throughout the entire data set (as expected from the 99.97% test 
accuracy in Table II), even including most transient periods. 
Fig. 9 shows an example of one such transient period (near & =
133;C) where the Load 4 (CFL lights) turn-on event transient 
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lasts nearly 14 ac cycles. During this event, the classifier 
correctly predicts each cycle, despite the cycles having a variety 
of wave shapes and magnitudes. This demonstrates the high-
frequency and high-accuracy performance of the approach and 
its advantage over many existing NILM approaches, which 
would not predict a state change until after the entire 14 ac cycle 
event signature was detected. 

Fig. 8. Entire Test Data Set #5 with predicted versus true labels 

Fig. 9. Zoomed-in view of Test Data Set #5 near t = 133 s 

For this proof-of-concept study, the NILM approach was 
not implemented in real time, but the total processing time—
including zero-crossing detection, feature extraction, and 
classifier prediction—is measured (average over thousands of 
cycles) to be 14.16 ms, which is fast enough to support high-
frequency prediction and certainly well within the desired > =
0.167C response time. This is measured on a laptop with a 2.8-
GHz Intel i7 processor and assuming no data acquisition time, 
but with a response time 10 times faster than the desired 
response time, there is sufficient room for data acquisition and 

decreased performance if implemented on a slower 
computational platform while still meeting the response time 
requirement.  

V.! CONCLUSION 
 This paper developed a novel approach for high-frequency, 
real-time, multiclass nonintrusive load monitoring. This 
method was validated using a test bed with four residential 
appliances and was shown to have high accuracy, good 
generalization properties, and sufficient response time to 
support building grid-interactive control at fast timescales 
relevant to the provision of grid frequency support services. 
With minimal additional equipment and cost, the solution 
developed provides high-speed monitoring capabilities to better 
measure building performance and understand load usage 
patterns while further enabling smart buildings to support a 
modernized grid. 
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