

Catalytic Upgrading of Biomass Pyrolysis Vapors at Bench Scale with Pt/TiO₂

Richard French, Kristiina Iisa, Kellene Orton, Scott Palmer, Matt Fowler, and Calvin Mukarakate Thermal & Catalytic Sciences Symposium (TCS) 2018 Auburn, Alabama October 8-10, 2018

NREL/PR-5100-74668

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost
 - Reducing catalyst cost
 - Reducing regeneration time
 - Varying upgrading parameters
 - Catalyst lifetime
 - Changing pyrolysis temperature
- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Why Pt/TiO2 catalytic fast pyrolysis and hydrotreating?

- Monday talk (C. Mukarakate, "Performance Comparison of three Biomass Catalytic Fast Pyrolysis Pathways...") and Griffin et al. paper (below)
 - Hydrotreating (HT) of Catalytic fast pyrolysis oils (CFP) is lower cost and more reliable than hydrotreating of raw pyrolysis oil
 - CFP with Pt/TiO₂ and hydrogen gives higher yield (and carbon yield) than ZSM-5 upgrading
 - Some HDO of oxygenates means less carbon lost as CO_x
 - Hydrogenation of coke precursors reduces carbon lost to coke

	Carbon Yield	Oxygen content
¹ Pt/TiO ₂	38%	16%
² HZSM5	24%	22%

- 1. Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c
- 2. Paasikallio et al. Grn. Chem. 2014, 16, 3549

OIL PRODUCTION

- 1.0 bar total
- 400°C

TO FUEL

REGENERATION OF FIXED-BED CATALYST

Experimental System

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost

Reducing catalyst cost

- Reducing regeneration time
- Varying upgrading parameters
- Catalyst lifetime
- Changing pyrolysis temperature
- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Process cost is sensitive to catalyst cost

 Need to decrease platinum while maintaining performance

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

Can a lower Pt (cost) catalyst work? Catalyst properties

- 2% Pt made by incipient wetness
- 0.5% Pt by strong electrostatic adsorption (SEA)
- Higher dispersion of Pt on 0.5% makes properties of two catalysts very similar

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost
 - Reducing catalyst cost

Reducing regeneration time

- Varying upgrading parameters
- Catalyst lifetime
- Changing pyrolysis temperature
- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Process cost is sensitive to regeneration time

 Increasing online : regeneration time reduces number of reactors and catalyst inventory

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

When is regeneration necessary?

Regeneration Protocols

- Remove coke \rightarrow oxidize in O₂/N₂ mixture
 - overnight in 1% $O_2/99\%$ N_2 at 450°C

- Reactivate catalyst \rightarrow treat in H₂
 - 2+ h with 85% $H_2/15\% N_2$
- Overall 17 h

Shorter regenerations achieved

- Catalyst oxidation shown above
- Also, Reduction time reduced to ~1h in 85% H₂
- Online: regeneration 2:3 (0.66)

Overview

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost
 - Reducing catalyst cost
 - Reducing regeneration time
 - Varying upgrading parameters
 - Catalyst lifetime
 - Changing pyrolysis temperature
- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Varying hydrogen partial pressure and catalyst temp.

- Temperature effects are not significant
- Increasing hydrogen partial pressure
 - Decreases oil oxygen content
 - Increases gas yield
 - Enhances hydrodeoxygenation

Impact of H₂ Partial Pressure on Gas Yields

Increasing H₂ partial pressure

- Increases CH₄ and light alkane and alkene formation (increased cracking)
- Increases aqueous mass yield

Consistent with increased hydrodeoxygenation (HDO)

 As H₂ decreases, more methoxyphenols, less alkylphenol/phenol

Overview

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost
 - Reducing catalyst cost
 - Reducing regeneration time
 - Varying upgrading parameters

Catalyst lifetime

- Changing pyrolysis temperature
- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Catalyst stable past 150 hours

- Highlighted points are Pine/500C/400C/0.8 bar H₂/ B:C = 3
- Each cycle is 2 h
- Stable after initial break-in

Only slight variations in composition with catalyst aging

• Slight decrease in phenols, increase in methoxyphenols and naphthols

Overview

- Status of and motivations for upgrading biomass pyrolysis vapors to fuel intermediates with Pt/TiO₂ and H₂
- Progress in reducing process cost
 - Reducing catalyst cost
 - Reducing regeneration time
 - Varying upgrading parameters
 - Catalyst lifetime

Changing pyrolysis temperature

- Constraints
 - Not increase oxygen in oil
 - Not increase hydrotreating requirements
 - Not decrease yield

Higher pyrolysis temperature gives higher B:C at low O

Potential for even higher biomass: catalyst than shown

Higher pyrolysis temperature delays breakthrough

- Delayed onset of unreacted oxygenates
- Gives onstream: regeneration time of 0.75-1.1 by giving longer onstream time

Summary: How much progress have we made?

Have improved cost substantially

Adapted from Griffin et al. E&ES, 2018, DOI: 10.1039/c8ee01872c

Conclusions

- Lower-Pt catalyst performs comparably to higher-Pt catalyst
- Regeneration shortening improves projected cycle time
- Increasing hydrogen pressure decreases oxygen and methoxyphenols, increases phenols
- Increasing pyrolysis temperature 500-550°C delays catalyst deactivation while giving comparable yield and oxygen, increasing time-on-stream

• Future:

- Decrease catalyst cost
- Higher B:C through higher pyrolysis temperature
- Identify bad actors in pyrolysis oil
- Lower-cost feedstock

Acknowledgements

PI	Analysis	
Ioshua Schaidle	Anarysis	
Joshua Schalare	Steve Deutch	
	Anne Starace	
Fixed-bed ex situ		
Kellene Orton	Catalvst	
Scott Palmer	Michael Griffin	
Matt Fowler		
Richard French	ΤΕΔ	
Kristiina lisa		
Calvin Mukarakate	Aphijit Dutta	

Hydrotreating Huamin Wang

Energy Efficiency & Renewable Energy

Bioenergy Technologies Office

Questions?

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Thank you!

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.