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Abstract—In this paper, we propose an analytical framework
to quantify the amount of data samples needed to obtain accurate
state estimation in a power system — a problem known as
sample complexity analysis in computer science. Motivated by
the increasing adoption of distributed energy resources into the
distribution-level grids, it becomes imperative to estimate the
state of distribution grids in order to ensure stable operation.
Traditional power system state estimation techniques mainly
focus on the transmission network which involve solving an
overdetermined system and eliminating bad data. However,
distribution networks are typically underdetermined due to the
large number of connection points and high cost of pervasive
installation of measurement devices. In this paper, we consider the
recently proposed state-estimation method for underdetermined
systems that is based on matrix completion. In particular, a
constrained matrix completion algorithm was proposed, wherein
the standard matrix completion problem is augmented with
additional equality constraints representing the physics (namely
power-flow constraints). We analyze the sample complexity of
this general method by proving an upper bound on the sample
complexity that depends directly on the properties of these con-
straints that can lower number of needed samples as compared
to the unconstrained problem. To demonstrate the improvement
that the constraints add to state estimation, we test the method on
a 141-bus distribution network case study and compare it to the
traditional least squares minimization state estimation method.

I. INTRODUCTION

State estimation is one of the fundamental data analysis
tasks in power systems. In its classical form, it amounts to
estimating voltage phasors at all the buses of the network given
some data gathered from the network [5]. It has a long and
established history in transmission networks, where classical
approaches based on weighted least-squares methods are ap-
plicable due to full observability of the network [6]. The latter
conditions roughly speaking mean that the underlying system
of equations for the estimation problem is overdetermined, i.e.,
it has more observables (and, hence, equations) than unknown
variables [7]. In traditional distribution networks however,
state estimation is typically not used, or used very rarely [8].
Unlike in transmission networks, there is a lack of pervasive
installation of measurement devices such as phasor measure-
ment units (PMUs) [9], [10]. Hence, the estimation problem
is underdetermined and so classical, simple approaches (e.g.
weighted least-squares) cannot be applied since they require
full observability [11].

However, recently, distribution networks have undergone
a radical change due to massive penetration of distributed

energy resources (DERs) at the edge of the network [12],
[13], [14], [15]. This creates both challenges and opportunities.
On the challenges side, DERs (and especially renewable
energy resources such as photovoltaic panels and wind farms)
introduce a lot of uncertainty into the system [16], [17], [18],
[19]. Thus, accurate real-time state estimation is needed to
ensure stable and safe operation of the network [20], [21]. On
the opportunities side, the vast deployment of DERs introduces
both control and measurement points that now allow the
application of modern machine learning and data analytics
methods to deal with problems such as state estimation [22],
[23]. However, observability is still an issue: the corresponding
estimation problem is typically underdetermined.

In this paper, we consider the recently proposed method for
state estimation in underdetermined systems using low-rank
matrix completion [24]. The method is based on augmenting
the standard matrix completion approach [25] with power-
flow constraints which provide an additional link between
parameter values. As shown in [24] numerically with extensive
simulations, this structured (or physics-based) approach per-
forms very well in distribution networks under realistic low-
observability scenarios. In the present paper, we set our goal
to study the sample complexity of this approach.

Roughly speaking, sample complexity is the amount of data
samples needed to obtain accurate estimation of the true state.
Sample complexity in power-system state estimation is largely
unexplored; even in the case of the classical weighted least-
squares methods, the literature is scarce on the topic, whereas
there is active research in computer science and machine
learning community on the topic [26], [27]. However, the
results of the standard matrix completion problem [25], [28]
are somewhat conservative for direct application to distribution
networks because the state of a power system is constrained
by well known physical laws and cannot just be any set of
random values. The main theoretical challenge is on how to
measure the additional information coming from the physical
constraints in terms of the amount of sampled state variables.
The information can then be used to partially replace the need
to make a specific number of measurements.

Therefore, this paper makes the following contributions:

1) We model the distribution network state estimation
problem as a low-rank matrix completion problem and
incorporate its physical constraints (Section II).

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 1. Singular values of matrices that represent the states of four different IEEE radial distribution test cases. All singular values are normalized by their sum.
The bars are the individual values representing the fraction of additional information added by that rank-1 matrix, while the circles are the cumulative values
representing the fraction of information held by it and the previous rank-1 matrices. In all cases, more than 95% of the state information can be recovered by
just 3 rank-1 matrices. From this evidence, it shows that low-rank matrices can be used to accurately approximate the state of distribution networks.

2) We incorporate constraints into the sample complexity
analysis of the standard (unconstrained) matrix comple-
tion to obtain a lower theoretical bound (Section III).

3) We verify the significant reduction in necessary sample
sizes through real-world data based numerical evalua-
tions using a distribution network test case (Section IV).

To the best of our knowledge, these are the first results in
the literature on sample complexity for constrained matrix
completion in general, and for state estimation on power
systems in particular.

II. PROBLEM FORMULATION

Notation: A column vector x is represented by a bold
lowercase letter and a matrix X is represented by bold
uppercase letter, while a scalar x or an entry Xij are not
bold and can be either upper or lower case. For complex
number x, let Re(x), Im(x), and |x| be its real component,
its imaginary component, and its magnitude respectively. The
kth matrix X(k) in a sequence may be labeled by a superscript
in parenthesis. In is the n× n identity matrix. A calligraphic
letter X can be a set, vector space, or operator which will
be distinctly made clear in context. Specifically, PX is the
orthogonal projection onto vector space X . The perpendicular
vector space to X is X⊥. The transpose of matrix X is
Xᵀ. The `2-norm of vector x is ‖x‖. The Euclidean inner
product of matrices A ∈ Rn1×n2 and X ∈ Rn1×n2 is
〈A,X〉 := trace(AᵀX). The Frobenius norm of matrix X

is ‖X‖F :=
√
〈X,X〉 =

√∑
i

∑
j |Xij |2. The nuclear norm

of matrix X is denoted by ‖X‖∗ and is the sum of the its
singular values, while the spectral norm is denoted ‖X‖ and
is the value of its largest singular value.

A. Power System Model

Consider a power network with nb PQ buses in the set
N which are buses that have set real and reactive power
injections, and nl lines in the set L ⊂ N × N . For each
line (s, t) ∈ L, bus s is denoted as the “From” bus and bus t
is denoted as the “To” bus. Typically in a radial distribution
network, the slack or feeder bus is labeled as bus 1 and all
other buses are labeled sequentially outward so that when the
lines are directed away from the feeder, the From bus has a
smaller index.

Complex power is split into its real and reactive components
represented by P and Q respectively. Power flows across lines
are treated as injections into the line from both the From and
To sides so that their sum equals the power loss:

P From
s,t + P To

s,t = P Loss
s,t : ∀(s, t) ∈ L (1a)

QFrom
s,t +QTo

s,t = QLoss
s,t : ∀(s, t) ∈ L. (1b)

Therefore from the conservation of power at each bus, its
power injection into the bus must equal the power injections
into the lines it is connected to:

Ps =
∑

t:(s,t)∈L

P From
s,t +

∑
t:(t,s)∈L

P To
t,s : ∀s ∈ N (2a)

Qs =
∑

t:(s,t)∈L

QFrom
s,t +

∑
t:(t,s)∈L

QTo
t,s : ∀s ∈ N . (2b)

The complex current injection Is at each bus s and the com-
plex current flow Is,t across each line (s, t) follow Kirchhoff’s
Current Law:∑
t:(s,t)∈L

Re (Is,t) = Re (Is) +
∑

t:(t,s)∈L

Re (It,s) : ∀s ∈ N

(3a)∑
t:(s,t)∈L

Im (Is,t) = Im (Is) +
∑

t:(t,s)∈L

Im (It,s) : ∀s ∈ N .

(3b)

Additionally, using the complex voltage Vs at each bus, Ohm’s
Law relates the voltage difference between the two sides of a
line to its current flow:

Re (Is,t) = Gs,t(Re(Vs)− Re(Vt))−Bs,t(Im(Vs)− Im(Vt)),

∀(s, t) ∈ L (4a)
Im (Is,t) = Bs,t(Re(Vs)− Re(Vt)) +Gs,t(Im(Vs)− Im(Vt)),

∀(s, t) ∈ L (4b)

where Gs,t and Bs,t are the conductance and susceptance of
line (s, t). The power injections into each line from either side
are determined from its current flow and voltage on that side:

P From
s,t = Re(Vs)Re(Is,t) + Im(Vs)Im(Is,t) : ∀(s, t) ∈ L

(5a)

QFrom
s,t = Im(Vs)Re(Is,t)− Re(Vs)Im(Is,t) : ∀(s, t) ∈ L

(5b)

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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P To
s,t = −(Re(Vt)Re(Is,t) + Im(Vt)Im(Is,t)) : ∀(s, t) ∈ L

(5c)

QTo
s,t = −(Im(Vt)Re(Is,t)− Re(Vt)Im(Is,t)) : ∀(s, t) ∈ L

(5d)

The power loss across each line are determined from its
magnitude of the current flow |Is,t|:

P Loss
s,t = Rs,t|Is,t|2 : ∀(s, t) ∈ L (6a)

QLoss
s,t = Xs,t|Is,t|2 : ∀(s, t) ∈ L (6b)

where Rs,t and Xs,t are the resistance and reactance of line
(s, t), respectively.

Trivially, we also have the magnitudes of the complex
voltages and currents derived from their real and imaginary
parts:

|Vs| =
√

Re(Vs)2 + Im(Vs)2 ∀s ∈ N (7a)

|Is| =
√

Re(Is)2 + Im(Is)2 ∀s ∈ N (7b)

|Is,t| =
√

Re(Is,t)2 + Im(Is,t)2 ∀(s, t) ∈ L. (7c)

B. State Estimation Problem

We represent the state of the power system in a block matrix
M where one matrix Mb holds the state of the buses and the
other matrix Ml holds the state of the lines

M :=

[
Mb 0
0 Ml

]
.

The state of the buses Mb is in an nb× 8 matrix which holds
the following values in the row associated with bus s ∈ N :

(Ps, Qs,Re(Vs), Im(Vs), |Vs|,Re(Is), Im(Is), |Is|)

while the state of the lines Ml is in an nl × 9 matrix which
holds the following values in the row associated with line
(s, t) ∈ L:(

P From
s,t , QFrom

s,t , P To
s,t, Q

To
s,t, P

Loss
s,t , Q

Loss
s,t ,

Re (Is,t) , Im (Is,t) , |Is,t|
)
.

Classically, the state is represented in a more compact
form of only the complex bus voltages since, given volt-
ages, all other variables can be computed using (1)-(7).
However, complex voltages can only be measured by PMUs
which are expensive and are not available at almost all of
the buses or lines in a distribution network. On the other
hand, measurements of some of the other variables are more
widely available such as (Ps, Qs, |Vs|, |Is|) for a bus and(
P From
s,t , QFrom

s,t , P To
s,t, Q

To
s,t, |Is,t|

)
for a line. Let Ω be the set

of state matrix locations which have available measurements.
Therefore, the goal of this under-determined state estimation

problem is to accurately fill in any unmeasured values in the
state matrix M, especially the complex bus voltages, using
the available measured values from locations Ω and the power
system equations (1)-(7). To that end, it was recently proposed
in [24] to leverage the approximately low-rank structure of the
state matrix (as demonstrated in Figure 1) to find a minimum

rank matrix that satisfies (1)-(7) and matches the measured
state values:

min
X

rank(X)

s.t. Xij = Mij ∀(i, j) ∈ Ω

(1)− (7).

However, there are two issues with the above problem
formulation that make it non-convex, thus computationally
hard to solve: (i) the objective function is non-convex; and
(ii) the equality constraints (5)-(7) are not linear, therefore the
feasible solution space for X is non-convex. To tackle the
first challenge, a standard relaxation using nuclear norm [25]
is used. To tackle the second challenge, constraints (5)-(7)
are replaced with their linear approximation. The relationship
of the voltage magnitude difference across a line and com-
plex power flow

(
P Flow
s,t , QFlow

s,t

)
on that line can be linearly

approximated for a radial distribution network [29]

|Vt| − |Vs| =
1

|V1|
(
Rs,tP

Flow
s,t +Xs,tQ

Flow
s,t

)
∀(s, t) ∈ L

(9)

where V1 is the voltage of the slack bus. It assumes either that
the lines have no losses or that the power flow is so low that
losses are negligible. Since the state M does not make this
assumption and does not encode the power flows directly, we
can approximate the power flow by taking the average power
injection into the line, i.e. P Flow

s,t :=
(
P From
s,t − P To

s,t

)
/2 and

QFlow
s,t :=

(
QFrom
s,t −QTo

s,t

)
/2.

C. Constrained Matrix Completion and Sample Complexity

The under-determined state estimation problem with linear
system equations can be generalized to the following low-rank
matrix completion problem with h linear equality constraints:

min
X

rank(X) (10a)

s.t. Xij = Mij ∀(i, j) ∈ Ω (10b)

〈A(l),X〉 = b(l) ∀l ∈ {1, . . . , h} (10c)

where the matrix inner product is defined as 〈A,X〉 :=
trace(AᵀX). Let m be cardinality of Ω and assume that
the locations of M that make up Ω are sampled uniformly
at random. The question for this general constrained matrix
completion problem becomes how large does m need to be
so that the solution to Problem (10) is guaranteed to exactly
match M? This value of m is is referred to as sample
complexity.

Notice that if a matrix has rank r, then it also means
that it has r nonzero singular values. Therefore, a simple
heuristic of minimizing the sum of its singular values is used
to approximate the minimization its rank [30]. This heuristic
is actually the definition of the nuclear norm which is convex:

‖X‖∗ :=
r∑

k=1

σk(X)

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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where σk(X) is the kth largest singular value. With the
substitution of the nuclear norm in place of the rank operator,
we reformulate the matrix completion problem (10) to be

min
X

‖X‖∗ (11a)

s.t. Xij = Mij ∀(i, j) ∈ Ω (11b)

〈A(l),X〉 = b(l) ∀l ∈ {1, . . . , h} (11c)

with the same question as before on the sample complexity
for Ω under uniform random sampling.

III. MAIN RESULT ON SAMPLE COMPLEXITY

In this section, we formulate a result on sample complexity
that takes advantage of the linear equality constraints in
the problem formulation. The main challenge is on how to
measure the information from the added constraints in terms
of sample size which can be used to partially replace the need
for extra measurements. The intuition behind the usefulness
of the added constraints (10c) is that each constraint may
eliminate a single degree of freedom from the feasible solution
set. Thus, a set of constraints may decrease the search space
for an approximation method so that less samples are needed
to recover the underlying matrix M.

Let M be an n1 × n2 matrix of rank r which satisfies:

M =

r∑
k=1

σkukv
ᵀ
k (12a)

〈A(l),M〉 = b(l) ∀l ∈ {1, . . . , h} (12b)

where (12a) is its Singular Value Decomposition (SVD).
Without loss of generality, we assume that n1 ≥ n2. The
vectors u1, . . . ,ur are unit vectors of size n1 that are or-
thogonal to each other and the vectors v1, . . . ,vr are unit
vectors of size n2 that are orthogonal to each other. The
scalars σ1, . . . , σr which are used to linearly combine the
matrices u1v

ᵀ
1 , . . . ,urv

ᵀ
r to be equal to M are called its

singular values. By convention, the singular values are listed
in decreasing order so that σk refers to the kth largest singular
value in (12a). The number of degrees of freedom of any
n1 × n2 matrix of rank r is r(n1 + n2 − r).

A. High-Probability Exact Completion

Due to the probabilistic nature of the question on sample
complexity, the answer will also be probabilistic. This is
because for any given number of samples taken that is less than
(n1−1)n2, there is some probability that the sampled locations
will miss an entire row and thus have no information that can
be used to recover it. Thus, our goal will be to determine how
large does m, the cardinality of Ω, need to be to ensure a high
probability of exact completion using the optimal solution to
Problem (11). Another way to frame the objective is to find
the conditions on m and M such that M is the unique solution
to (11) with some probability.

A property of the underlying matrix M that must be
understood is how well its information is spread among its
columns and rows. A matrix with its information not well

spread will require many samples. For this reason, [25] defines
a property on the space spanned by either (u1, . . . ,ur) or
(v1, . . . ,vr) which measures the spread of the weight of its
elements compared to the standard basis, called coherence.

Definition 1. For any subspace U in Rn with dimension r, let
the coherence of U be defined as

µ(U) :=
n

r
max

i∈{1,...,n}
‖PUei‖2

where PU is the orthogonal projection matrix onto U and ei
is the i-th standard basis vector with dimension n.

With the following assumption, the lack of spread of infor-
mation within M can be bounded by bounding the coherence
of the spaces defined by the vectors in its SVD (12a).

Assumption 1. The coherence of U := span(u1, . . . ,ur)
and the coherence of V := span(v1, . . . ,vr) are both upper
bounded by some constant µ0 > 0, i.e.

max{µ(U), µ(V)} ≤ µ0

To limit the concentration of information in the subgradient
of the nuclear norm at M for any specific matrix location, an
assumption is placed on the maximum value of sum of the
rank-1 matrices u1v

ᵀ
1 , . . . ,urv

ᵀ
r through the parameter ν0.

Assumption 2. The absolute value of each element in∑r
k=1 ukv

ᵀ
k is upper bounded by ν0

√
r/(n1n2) for some

constant ν0.

One important item needed in proving that M is the unique
solution to (11) is a vector space of matrices T that contains
all n1 × n2 matrices which have a column space in U :=
span(u1, . . . ,ur), i.e. the column space of M, and all n1×n2
matrices which have a row space in V := span(v1, . . . ,vr),
i.e. the row space of M. Specifically, a vector space T of
matrices is built from all the combinations of u1, . . . ,ur
that can span the column space and all the combinations of
v1, . . . ,vr that can span the row space via their outer products
with the vectors {x1, . . . ,xr} ∈ Rn2 and {y1, . . . ,yr} ∈ Rn1 :

T :=

{ r∑
k=1

(ukx
ᵀ
k + ykv

ᵀ
k) : xk ∈ Rn2 ,yk ∈ Rn1

}
This vector space has a dimension of r(n1 + n2 − r) which
is equal to the degrees of freedom in any n1 × n2 matrix of
rank r.

To measure the amount of useful information held in
the linear equalities (12b) that can explain M, we develop
quantities similar to the upper bounds of Assumptions 1 and
2 for the vector space spanned by A(1), . . . ,A(h), denoted by
Q. First, we measure how much of the vector space T remains
uncovered by Q:

µQ⊥ :=

∑n1

i=1

∑n2

j=1

∥∥PT PQ⊥
(
eie

ᵀ
j

)∥∥2
F∑n1

i=1

∑n2

j=1

∥∥PT (eieᵀj )∥∥2F (13a)

This measurement gives an element-wise average of non-
coverage by Q in T which has a maximum value of 1. Second,
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we measure how much of the subgradient of the nuclear norm
at M is not contained in Q:

νQ⊥ :=
1

r
‖PQ⊥ (E)‖2F . (14a)

where E :=
∑r
k=1 ukv

ᵀ
k and it has a maximum value of 1.

Notice that if Q covers the entire space of T (i.e. Q ⊇
T ), then µQ⊥ = νQ⊥ = 0 since E ∈ T . This extreme case
will be important in explaining the significance of our main
result, Theorem 1, in regards to how much fewer samples are
needed for exact completion. However, this does not mean
that no observations are needed because the useful information
described above only refers to the information in the r rank-1
matrices but does not say anything about the singular values
themselves that need to be determined.

Finally, using the above definitions and assumptions, we
can state our theorem on sample complexity with a high-
probability matrix completion guarantee.

Theorem 1. Let M be an n1× n2 matrix with n1 ≥ n2 such
that the following h linear equality constraints are satisfied:
〈A(l),M〉 = b(l) for all l ∈ {1, . . . , h}. Also, let M be of
rank r and have the following singular value decomposition∑r
k=1 σkukv

ᵀ
k that satisfies Assumptions 1 and 2. Suppose

that m entries of M are sampled uniformly at random. Then
there exists a function F (n1, n2, r, µ0, ν0, β, µQ⊥ , νQ⊥) <∞
such that if m ≥ max{F, 2βn1 log n1} for some β ≥ 1, then
the solution to Problem (11) is unique and equal to M with
probability at least 1−6n−β1 . Specifically, if µQ⊥ = νQ⊥ = 0,
then there exists constants (C1, C2, C3) for which

F = max
{
C1ν

2
0 , C2

√
µ0n2, C3µ0

}
βrn1 log n1 − n1n2

(15a)

or if µQ⊥ = νQ⊥ = 1, then

F = max
{
C1ν

2
0 , C2

√
µ0n2, C3µ0

}
βrn1 log n1. (15b)

The proof is given in detail in our extended version [31].

Remark 1. The sample complexity described by (15b) is
within O(max{µ−

1
2

0 n
1
4
2 , µ

− 1
2

0 ν0}) of [25] for the uncon-
strained problem.

This theorem shows us that when µQ⊥ = νQ⊥ = 0, i.e. Q
completely covers T , then the reduction in sample complexity
is on the order of the size of the matrix n1n2, and when
µQ⊥ = νQ⊥ = 1, i.e. Q does not cover any of T , there is
no reduction. Therefore, this is a preliminary indication that
µQ⊥ and νQ⊥ are useful metrics to characterize the sample
complexity reduction from constraints. Precise results for the
intermediate cases are subject of future work.

When connecting this theoretical result back to the state
estimation problem for a distribution network, it shows us that
states which result in a T that lies in the constraint vector
space Q require significantly less samples for estimation than
those that are not.

IV. PERFORMANCE EVALUATION

Using a power system emulator, our goal is to show how
incorporating equality constraints based on the physics of the
system can improve the accuracy for state estimation.

A. Setup
The distribution network data was created using MAT-

POWER [32] on a 141 bus radial distribution network test
case [4]. The underlying matrix M that represents the state
of the power system was formed according to the structure
described in Section II-B. Therefore, the state matrix M has
281 rows and 17 columns. The set of 4(nb + nl) = 1124
linear equality constraints (11c) were formed according to
the following linear power system equations: (1)-(4), labeled
“w/ const” in the figures. An additional set of nl = 140
linear equality constraints were formed according to the linear
approximation equations (9), labeled “w/ const+appx”.

To sample the values of the state matrix M, we set that
Bus 1 and Bus 80 each have a PMU which can measure all
8 bus state values. The remaining 139 buses and 140 lines
were chosen uniformly at random to have standard electrical
measurement equipment (e.g. smart meter) that can only read
a subset of the state values. When a bus was chosen, only the
following 4 values were revealed: the real and reactive power
injections, the magnitude of the voltage, and the magnitude
of the current injection. When a line was chosen, only the
following 5 values were revealed: real and reactive power
injections into the line for both the From and To sides of
the line, and the magnitude of the current flowing through
the line. The uniform sampling was done by taking a random
permutation of all the buses and lines together and using the
first m buses/lines as the observed samples. For each sample
size, 50 different random permutations of the buses and lines
were used to do the uniform sampling.

We also solved the widely standard Least Squares (LS)
[33] problem as a benchmark by replacing the Nuclear Norm
with the Frobenius Norm in Problem (11). To measure the
estimation error, the Root Mean Squared Error (RMSE) was
taken for voltage magnitude and voltage angle for the unmea-
sured values. Because all other state quantities can be derived
from the complex bus voltages and the physical properties of
the power system equipment, our focus in these simulations
is on the accuracy of the estimated complex voltages at the
buses. The estimated voltage angle is calculated by translating
Re(Vs) and Im(Vs) from the estimated state matrix into polar
form. The estimated voltage magnitude |Vs| is taken directly
from the estimated state matrix. The error is calculated by
subtracting the estimation from the true value and are only of
the unobserved matrix elements.

B. Results
To see how the sample size affects the accuracy of the

estimated voltages, we set RMSE thresholds and then counted
the fraction of trials tested for each sample size that had
RMSEs lower than the threshold. Figure 2 shows the results
for error thresholds of 1 × 10−4 pu and 5 × 10−5 degrees
for voltage magnitude and voltage angle, respectively. From
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Fig. 2. Probability of the estimated Voltage (a) Magnitude RMSE being below
a threshold of 1 × 10−4 pu and (b) Angle RMSE being below a threshold
of 5× 10−5 degrees vs. fraction of buses and lines with observed data. For
Voltage Angle (b), neither constraint set using the Least Squares method had
any trials have error below the threshold.

these plots, we can make two strong obesrvations. The first is
that the Nuclear Norm method almost always has a higher
probability of being more accurate than the Least Squares
method for all sample sizes. The second is that the linear
approximation equations (9) greatly improve the accuracy of
the Nuclear Norm Minimization method to the point that
even with only 20% of the buses and lines measured, the
unmeasured voltages have over a 90% probability of having
their average error be below 1×10−4 pu and 5×10−5 degrees.

To see how the value of νQ⊥ affects the state-estimation, we
randomly deleted constraints from the “const+appx” set and
solved Problem (11) while measuring νQ⊥ . Figure 3 shows
the results for the same error thresholds as before with two
different sample sizes of 14.5% and 21.5% of the buses and
lines. As constraints are added, the value of νQ⊥ decreases.
We can observe a threshold value of νQ⊥ at 0.79 before the
added constraints help to increase the probability have having
small error. This gives evidence to the idea that the constraint
set must achieve a small enough νQ⊥ before it can be fully
utilized with a small sample size.

V. RELATED WORK

In traditional state estimation, the focus is mainly on trans-
mission networks that have an abundance of measurement
equipment so that the focus is on how to remove bad data
using weighted least-squares techniques [33]. For distribution
networks that are measurement poor, these techniques cannot
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Fig. 3. Probability of the estimated Voltage (a) Magnitude RMSE being below
a threshold of 1 × 10−4 pu and (b) Angle RMSE being below a threshold
of 5× 10−5 degrees vs. νQ⊥ .

be used since they require full observability. Matrix Comple-
tion has only been recently considered for power system state
estimation with the use of PMUs [34]. The structure of our
problem mainly follows that of [24] to take advantage of power
system physics to add information. While we focus our anal-
ysis on a more theoretical perspective of sample complexity,
[24] uses a detailed simulations to measure estimation errors
under different low-observablility scenarios. The work of [34],
[35], [36], [37] focuses on the time correlation of a single
state variable type by using one of the matrix dimensions to
represent time, as compared to the state variable type in our
problem and [24] to the focus on the correlation between state
variable types at a single moment.

The low-rank matrix completion theoretical framework from
[25] used the Bernoulli sampling model to bound the fail-
ure probability for uniform sampling. While we also used
this sampling model, however their framework wasn’t flex-
ible enough or didn’t have the intended purpose to include
constraints. Linear equality constraints were used to convey
information for matrix completion in [38] instead of sam-
pling. However, compared to our problem, theirs modeled the
constraints themselves as random instead of as a permanent
feature of the matrix being completed.

VI. CONCLUSION
In this paper, we develop a method for distribution network

state estimation which has the characteristic of being underde-
termined as opposed to the traditional overdetermined state es-
timation problem found in transmission networks. Our method
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generalizes standard low-rank matrix completion techniques
so that the physical properties governing a power system can
reduce the number of samples needed to estimate the state,
which was unable to be done the existing methods. The sample
complexity for high-probability exact matrix completion was
proved for the constrained matrix completion problem using
nuclear norm minimization. This shows how the additional
information obtained from linear equality constraints can re-
duce the number of samples needed to exactly recover the
underlying matrix. The method was tested with real-world
data on a 141 bus distribution network test case and shows
that the estimation error for voltage magnitude and angle at
each bus can be significantly reduced. Without the reduction,
we wouldn’t be able to accurately recover the matrix and thus
also wouldn’t be able to carefully control the power system.
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