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Highlighting the impact of yaw control by parsing 
atmospheric conditions based on total variation 

Nicholas Hamilton 
National Renewable Energy Laboratory, Golden, Colorado, USA 

E-mail: nicholas.hamilton@nrel.gov 

Abstract. Identification of atmospheric conditions within a multivariate atmospheric dataset 
is a necessary step in the validation of wind plant control strategies. Most often, operating 
conditions are characterized in terms of aggregated observations and assume that the atmosphere 
is ‘quasi-steady’. Aggregation of observations without regard to covariance between time series 
discounts the dynamical nature of the atmosphere and is not su ciently representative of wind 
plant operating conditions. Identification and characterization of continuous time periods with 
atmospheric conditions that have a high value for analysis or simulation sets the stage for more 
advanced model validation and the development of real-time control and operation strategies. 
Controlling observational data for statistical stationarity highlights significant enhancements 
to the power production of waked turbines under wake steering wind plant control. Results 
in the current study emphasize the scope and intended range of wake models used for wind 
plant control and suggest that either models be defined to account for the transient nature of 
the atmosphere, or that their validation and application be geared to stationary atmospheric 
conditions. 

1. Background 
Wind plant control research has gained a great deal of attention in recent years as the potential 
to decrease the levelized cost of electricity through mitigation of wake losses has come into 
focus. In a general sense, wind plant control describes any operational strategy that coordinates 
control actions of individual constituent wind turbines in order to augment the performance of 
the wind plant as a whole. Plant performance in this sense is typically measured in terms of 
power production, but may also be quantified by bankability or expected return on investment, 
as business metrics may also incorporate operations and maintenance activities. One popular 
strategy for wind plant control is wake steering through the intentional introduction of a yaw 
o↵set with respect to the ambient wind direction, thereby increasing annual energy production 
through mitigating wake losses [20, 25]. 

Wake steering as a control strategy has been supported through theoretical development, 
wind tunnel experimentation [6, 14, 19, 22, 23, 24], and high-fidelity simulation [18, 1, 10]. In 
addition to demonstrating the merits of wake steering, experimental and numerical research 
have contributed to the development of computationally economical wake modeling platforms 
that can be used for myriad engineering processes in the wind energy industry [21, 16, 5, 11]. 
Control-oriented analytical wake models are now capable of modeling wake steering strategies 
to in turn support the design and analysis of wind plant controllers and estimate the benefits 
in terms of wind plant performance. Many wake velocity, turbulence, and deflection, models 
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are available for research, control design, and optimization in NREL’s FLow Redirection and 
Inductions in Steady State platform (FLORIS) [21]. 

A utility-scale demonstration of the merits of wake steering for energy production is under 
way, executed by the National Renewable Energy Laboratory (NREL) at a wind plant in 
Colorado. A subset of turbines in a commercial wind farm was designated as a test and 
measurement site and now hosts an array of sensing equipment including a profiling lidar, 
meteorological (met) mast, and two sodars. Wake steering control has been prototyped to limit 
wake interactions that lead to power losses based on the predictions made by the FLORIS. 
The continued development and future validation of predicted energy gains introduced by 
wake steering wind plant control will require delicate consideration and quality control of field 
observations in order to control for the modeled atmospheric conditions. 

Simultaneous observation of multiple thermodynamic and kinematic quantities reported in 
field observations are necessary to more completely characterize the dynamical state of the 
atmosphere. Directly considering multiple disparate data channels simultaneously represents a 
challenge in that each quantity has di↵erent engineering units and that variation within each 
channel may occur over a distinct scale. Atmospheric conditions are frequently characterized by 
considering wind speed, wind direction, and turbulence intensity or thermal stratification, each of 
which have di↵erent units, ranges, and statistical distributions. Additionally, direct comparison 
of statistical quantities (measures of central tendency, variability, or higher statistical moments) 
discount the inherent coupling between quantities of interest that underpin atmospheric physics. 

A mathematically rigorous metric for the total variation of a sample of time series data 
is necessary to identify and characterize specific dynamical events and atmospheric conditions 
while taking into account covariance between atmospheric quantities. The total variation is used 
to identify and remove transient conditions from a set of dynamic atmospheric data in order 
to assess the benefits of yaw control for wake steering for a utility-scale wind plant. Stationary 
atmospheric conditions in particular are of interest in developing and validating engineering 
models that can be used to prototype wind plant control strategies. 

2. Data and Quality Control 
A small cluster of wind turbines from a commercial wind plant were made available for validation 
of wake steering control. The arrangement of turbines shown in Figure 1 is una↵ected by the rest 
of the wind plant given the prevailing wind directions from the northwest during the winter and 
the southeast during the summer. Additionally, the wind plant abuts an escarpment to the south, 
providing additional variability of inflow conditions; northerly winds issue from flat terrain, 
southerly winds reflect complex terrain. Five turbines are included in the wind plant control 
field campaign. Given the prevailing wind directions, conditions in which the central turbine 
(T3) is waked by an upstream turbine (either T2 or T4) are fairly common, making wake losses a 
significant consideration and wake steering an attractive control strategy. To gauge the changes 
introduced to the energy production of the wind plant through wake steering, two machines 
(T1 and T5) are retained as reference turbines. Reference turbines remain uncontrolled and 
unwaked during conditions where control are enabled. Wind directions that lead to full waking 
of T3 (324° from T2 or 134° from T4) are shown in the figure. 

Locations of the field instrumentation are also indicated in Figure 1. Profiles of wind speed 
and direction (denoted as u and ✓ respectively) were collected by a Leosphere Windcube v2 
profiling lidar, estimated every second but averaged to 1-min intervals. The Windcube v2 
samples line-of-sight velocities centered every 20 meters from 40 m up to 180 m in four cardinal 
directions with a fixed elevation angle of 28° from vertical, followed by a fifth beam oriented 
vertically. A time series of turbulence intensity (TI) is derived from a sonic anemometer on the 
top of the met mast. Wind speed and turbulence intensity estimates from the sodars are not 
used in the following analysis. Interested readers are referred to the recent work by Fleming, 
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Figure 1: Subset of wind plant for controls testing. Wake steering implemented on Turbine 2 
(T2) and Turbine 4 (T4) to mitigate wake losses by Turbine 3 (T3). Turbine 1 (T1) and Turbine 
5 (T5) act as reference turbines. Image reproduced from Fleming, et al.[9] 

et al. [9] for additional information on the experimental campaign and the additional data 
collected. 

Figure 2: Distribution of observations by wind direction. The shaded region indicates direction 
sector for which yaw control may be enabled. 

Data considered during the current analysis correspond to times between May 2, 2018 and 
June 4, 2019, only during periods when all instruments and turbines are reporting nominally. 
The full distribution of wind direction observations is shown in Figure 2 in the red histogram. 
The frequencies of observations are divided into wind direction sectors of 10 ° , and show the 
bimodality of the atmospheric conditions. Data reported in the following figures include 
observations made throughout the year and show both winter behavior (flow from the northwest) 
and summer (flows from south). In the results explored here, the data considered is further 
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limited only to conditions in which the wake from T2 may impinge on T3 without intervention. 
The blue band highlights the region of interest, winds coming from between 310 °  ✓  360 ° . 
Throughout the data collection period, the yaw control was toggled on and o↵ every hour in 
order to sample a wide range of atmospheric conditions over which to test the wake steering 
strategy. 

(a) Wind speed distribution (b) Turbulence intensity distribution 

Figure 3: Histograms of wind speed and TI. Data in red indicate the full range of observations, 
data in blue indicate observations from the wind direction sector of interest. 

Wind speed and turbulence intensity are also considered to characterize the atmospheric 
conditions. Figure 3 compares histograms of wind speed and turbulence intensity over the 
full range of observations during the field campaign (red) and from the wind direction section 
for which controls are implemented (310 °  ✓  360 ° , blue). The distribution of wind speed 
indicates that the observations from the control sector have a higher mean value (11.4 m/s) and 
do not conform to a Weibull distribution as closely as the full range of observations. Observations 
in the control sector also delineate lower turbulence intensity as compared to the full range, which 
is expected given that the terrain to the north is much simpler than from the south. Wind speed 
and TI roses are shown in Figure 4, representing the distribution of observations sorting by wind 
direction and either wind speed or turbulence intensity. Wind roses, or other multidimensional 
histograms, hint at the inherent coupling between atmospheric variables for any given site, but 
still discount any dynamic behavior observed in reality. 

(a) Wind rose (b) TI rose 

Figure 4: Wind and TI roses from observational data. 
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(a) Normalized power and atmospheric variables. (b) Prescribed yaw o↵set T2 during control periods. 

Figure 5: Sample power and atmospheric data. Shaded regions in (a) are subject to the yaw 
o↵set in (b). 

To evenly sample atmospheric conditions for which benefits of yaw control could be assessed, 
controls were enabled in alternating hours. In addition to the toggling windows in which controls 
were permitted, the particular atmospheric conditions also had to be parsed to validate that the 
turbines were operating in conditions that would be favorable for control. Figure 5a shows a 
sample from the full data record. All data channels have ben normalized to a default interval of 
[0, 1] for ease of comparison. Shaded regions in the figure indicate times in which the controls 
were enabled and active, that is times when yaw o↵set prescription was permitted and the bulk 
wind direction was favorable for testing wake steering to mitigate wake losses imposed on T3 
by T2. Observations for which the controls are enabled (controlled conditions) were those in 
which T2 was given a yaw o↵set according to Figure 5b; when the control strategy was not 
enabled (baseline conditions), the turbines were operated according to their default behavior. 
The aggregate change in power production for T2 and T3 is estimated using T1 as an unaltered 
reference signal. 

3. Theoretical Development 
Aggregate statistical representation as in histograms shown in Figures 2 and 3 and in the rose 
figures shown in Figure 4 begins to describe the interdependence of the atmospheric variables 
considered in the current analysis, but cannot account for the dynamic nature of the atmosphere. 
A histogram, as a consequence of its composition, only denotes how frequently a given condition 
is observed without regard to what condition may precede or follow. For example, a given 
condition denoted by wind speed, wind direction, and turbulence intensity (u, ✓, and TI) 
may represent the ensemble average of an inherently transient or dynamic event. Atmospheric 
conditions within any given sample may undergo a significant dynamical or transient change, 
but averaged values of the variables of interest can still fall within the stated bounds of a single 
bin within the full condition space. 

Quantifying the variability of a set of data must include the correlation between data channels, 
or risk discounting any information regarding the relationship between variables. Any metric 
that combines the variability of each channel independently without accounting for covariance 
between the channels is incomplete and will not be su cient to fully quantify or characterize 
the state of a given system. Therefore, a method that accounts for not only the variation within 
each channel, but also the variation between channels is necessary to quantify the distribution 
of data across multiple channels into a single metric. 

Below, each data block, D, is a selected time period and corresponds to an array of size 
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of [m, n]. In this case, m is the length of the data block in time (30 min) and n is three, 
corresponding to the number of variables u, ✓, and TI, (wind speed, direction, and turbulence 
intensity). 

D = [u(t), ✓(t), T I(t)] (1) 

TI is estimated by comparing the standard deviation of wind speed to the mean during a moving 
10-minute window centered at each time stamp, t. Mentioned above, each channel represented 
in D has been normalized to an interval of [0, 1]. Normalization of the data makes comparison 
of data characterized by di↵erent ranges and engineering units mathematically meaningful. 

The total variation, V, of a system is a unitless metric to quantify statistical spread of a set 
of interdependent variables that is able to account for autocorrelation within each channel as 
well as covariance between channels. The covariance matrix C of the data block D is calculated 
for a subset taken from the full data, representing a continuous period of a specified duration, 

C = D
T 
D (2) 
2 

2 3 
u u ✓ u TI 

2 = ✓ u ✓ ✓ TI (3) 4 5 
2 

TI u TI ✓ TI 

In Eq. (3), C is a square matrix of size n ⇥ n representing the covariance between any pair 
of data channels. The principal components of the covariance matrix are derived through an 
eigenvalue decomposition, 

Cv = v (4) 

Eigenvectors are denoted as v and the eigenvalues as . By definition, eigenvectors are a set 
of orthonormal vectors that most e ciently span the space of the covariance matrix. Principal 
components are eigenvectors weighted by their respective eigenvalues, P = v. Total variation, 
V, is the vector summation of all principal components. Because the principal components are 
orthogonal, the total variation can be equivalently expressed as the L2-norm of the eigenvalues. 

X 
V = || 

X 
P||  = (5) 

Thus V is a single metric that can measure the spread of a multivariate data block. Any block 
in which the channels exhibit a large transient change or large variance results in a large value of 
V, as does any block wherein multiple channels change in a coordinated manner. In the current 
work, large values of V indicate that the atmospheric conditions, described by time series of 
wind speed, wind direction, and turbulence intensity, change more during a given period. Small 
values of V indicate that the atmospheric conditions within a continuous 30 min block of data 
remain relatively stationary. 

E↵ects of the wake steering implementation on the control and downstream turbine are 
highlighted by comparing to the production of the reference turbine. In energy ratio analysis, 
data are first limited to include only periods in which all turbines of interest were operating 
under normal conditions. All data including the power of T3 are binned by wind direction into 
sectors of 2 ° and split according to whether the wake steering controller was toggled on or o↵. 
For each bin, a ratio of energy is computed comparing the production of the subject turbine to 
that of the reference. When aggregate power production is of interest, production by all of the 
subject turbines is summed and the reference is increased by a factor equal to the number of 
subjects considered. 

⌃N
i=1Pi|test 

⇢ = (6) 
NPref 

where i 2 1...N indexes each turbine in the aggregate energy ratio. 
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The energy ratio defined in Eq. (6) describes the energy produced by wind turbine or group 
of test turbines normalized by the respective reference values. When considering more than a 
single test turbine, a reference value for each test signal should be considered such that nominal 
unwaked power production corresponds to ⇢ = 1.0. 

4. Results 
The total variation, V, is calculated for all continuous sets of observations of 30 minutes when 
the average wind direction issues from the NW (310 °  ✓  360 ° , denoted by the blue range 
in Figure 2). Figure 6 compares V for the observations considered in estimating the value of 
the implemented yaw-o↵set control. The full set of observations is shown in the red histogram 
(left), and split into the baseline and control conditions (center and right, respectively). 

Figure 6: Distributions of V for all observations, periods during which yaw control is 
implemented, and periods in which the control is suppressed. 

Shaded regions of the histograms of total variation during baseline and controlled conditions 
are those where the total value is less than the average of the full set of observations, V < V. This  
threshold is somewhat arbitrary but does serve to separate the observations into observations of 
stationary and transient conditions. Establishing a threshold for V at the mean value reduces 
the number of observations considered in the evaluation of the benefits of the control action, 
which has a potentially negative impact on the statistical convergence of the sampled data. 
However, given that observations with low values of V are those with less variability, reducing 
the sample size does not appreciably increase the standard error of the sample. 

Figure 7a compares the energy ratio for all observations to that calculated for stationary 
conditions. Figure 7a considers only T3 as the test turbine. Considering only T3 focuses the 
energy ratio on the turbine subject to wake losses by itself, without considering the aggregate 
power production of T2, which is itself the subject of the yaw control. Blue lines in the figure 
demonstrate the power production of T3 under baseline conditions, i.e. times when the yaw 
controller is not enabled and active. Purple lines show the complementary performance of T3 
under the influence of the prescribed control action. Figure 7a shows that the minimum power 
produced by T3 occurs when the wind direction is 323 ° , when the wake of T2 impinges directly 
onto the rotor of T3. 

To highlight the benefits of wake steering control, Figure 7b compares the energy ratio 
considering only times where V is below its mean value of 0.15. Quality controlling the sample for 
stationarity in the atmospheric conditions is done identically for the baseline conditions and the 
controlled conditions, i.e. transient events are filtered out of both samples. The most immediate 
e↵ect of filtering based on V is to drive apart trends in the power production by T3 under 
baseline conditions and during yaw control. Changes seen in the energy ratio based on filtering 
out transient data suggests that simply binning atmospheric data based on average values of 
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(a) All valid observations. (b) Observations where V < V. 

(c) Change in energy ratio for T3. 

Figure 7: Comparison of energy ratio for T3 alone considering all observations and only those 
corresponding to stationary conditions. 

kinematic and dynamic qualities smears out distinct physical behaviors. Isolating observations 
during stationary periods highlights the underlying response of the wind turbines to the e↵ects 
of yaw control. 

Di↵erences between the energy ratio considering the full range of valid observations and just 
those for which V remains below its average value are highlighted in Figure 7c, where the trend 
lines now indicate the percent change in energy ratio from one set of baseline conditions to 
the respective controlled conditions. Most notably, filtering observations based on V (purple 
line) shows a peak increase in the energy ratio of about 16%. This results suggests that T3 is 
able to produce 16% more energy under the influence of yaw control than under the baseline 
scenario given a wind direction of 325 ° . In contrast, the greatest change in the energy ratio for 
the full range of valid observations is approximately 10%, and occurs at around 325 ° . Together 
these trends suggest that an additional quality control check on the data to remove transient 
periods reveals an additional 6% change to the energy ratio that is obscured by dynamics in the 
atmospheric data. 

The energy ratio can be similarly calculated for the combined power production of turbines 
T2 and T3, thus reconciling the benefits in power production for T3 against losses incurred by 
T2 by operating at an o↵-nominal set point. Suggested in eq. (6), the formulation for energy 
ratio can accept power production signals from multiple test turbines, but the reference needs 
to be multiplied by a factor equal to the number of test turbines in question. Figures 8a and 8b 
demonstrate the combined energy ratio for T2 and T3 for the full range of valid observations and 
the subset for which V < V. Figure 8a indicates that only a nominal increase in the combined 
power production of T2 and T3 should be expected for 320 °  ✓  330 ° , where wake interaction 
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is expected. Benefits of wake steering are also evident for wind directions 330 °  ✓  350 ° , where  
the current results indicate that the combined power losses are lower during control periods than 
under baseline periods. 

While the energy ratio for T2 and T3 in Figure 8b does show significant improvement where 
direct waking is avoided (320 °  ✓  330 ° ), it also highlights a reduction in power losses for 
330 °  ✓  350 ° . Filtering observations to exclude transient data emphasizes the benefits for 
power production seen by T3, but it also underpins the o↵-nominal operation of the turbine for 
which the yaw o↵set is prescribed. Without controlling for transients in the atmospheric data, 
both of these e↵ects are smeared out in the energy ratio. Comparing the percent change in 
energy ratio between baseline and controlled operation with and without the threshold of total 
variation still shows a significant benefit in terms of aggregate power production. Figure 8c 
shows that an additional 2% change to the energy ratio is illuminated by careful pretreatment 
of the observations. 

(a) All valid observations. (b) Observations where V < V. 

(c) Change in energy ratio for T2 and T3. 

Figure 8: Comparison of energy ratio for T2 and T3 considering all observations and only those 
corresponding to stationary conditions. 

5. Conclusions 
Wind plant control by way of wake steering is a promising method for mitigating wake losses. 
Deflecting wakes by prescribing an o↵set in yaw with respect to the prevailing wind direction 
yields gains in power for downstream devices, at the cost of operating a turbine at an o↵-nominal 
set point. The current work examines changes in aggregate and individual wind turbine power 
production by comparing the energy ratio of selected turbines under baseline and controlled 
conditions. Changes in energy production are further highlighted by controlling the considered 
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samples for transients in the atmospheric data. Isolating periods in which the total variation of 
the atmosphere is less than or equal to the average variability increases the reported production 
of T3 from 10% to 16%. 

Significant changes in the expected energy gains from wind plant control by removing 
transients in the considered data will impact the future design and optimization of wind turbine 
wake and control models. Many of the wake models currently included in FLORIS are assumed to 
take into account the stochastic nature of the atmosphere and are intended to represent average 
behavior given typical variability. However, the variability covered does not account for the types 
of dynamic events seen in observations of the atmosphere, e.g. wind speed ramps or changes 
in bulk flow direction. The current results highlight the need to consider the dynamic nature 
of the atmosphere in the evaluation of wind plant control strategies. Such consideration should 
come through explicit accounting for transient atmospheric events or through the definition of 
wake models. 

The direct detection and classification of events or periods of interest within atmospheric data 
sets is vital to developing our understanding of wind plant response to new control strategies. 
The basis of the total variation method demonstrated here is easily extended to arbitrarily 
many data channels simultaneously and operates over any time scale or resolution within the 
limits of the data. Applying the total variation method with multiple atmospheric measurement 
systems across a wind plant will be an e↵ective practice for identifying and accounting for spatial 
heterogeneity. 

Regularizing a data block before calculation of the covariance matrix or the total variation 
can tune the method to pick out any event type of interest. For example, adding an objective 
function block, f to the consideration is a direct means of regularizing the data against transient 
events, 

f = [fu(t), f✓(t), fTI(t)] (7) 

The di↵erence between objective functions and their respective data is considered to be a 
regularized data block, and is noted with a caret, 

D̂ = D f (8) 

The additional benefit from defining objective functions is that one can tune the analysis to 
show covariance specifically with respect to a desired form about which the data are regularized. 
In the current work, only stationary conditions are considered for quantification of the benefits 
from wake steering. Stationary conditions are those in which minimal simultaneous variation 
occurs in all data channels without additional regularization, i.e. setting the function block to 
f = 0. Wind speed ramps are of particular interest in terms of balancing grid loads and have a 
significant impact on wind plant response to control schema. Identifying wind ramps in blocks of 
atmospheric data can be accomplished by assigning the objective function fu = c0t + c1, where  
c0 then represents the rate of increase in the observed wind speed. The total variation method 
for identifying transient events in atmospheric time series data is demonstrated in forthcoming 
work by Hamilton [12]. 
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[6] M. Bastankhah and F. Porté-Agel. Wind farm power optimization via yaw angle control: A wind tunnel 
study. Journal of Renewable and Sustainable Energy, 11(2):023301, 2019.  

[7] A. Bossavy, R. Girard, and G. Kariniotakis. Forecasting ramps of wind power production with numerical 
weather prediction ensembles. Wind Energy, 16(1):51–63, 2013.  

[8] P. Fleming, P. M. Gebraad, S. Lee, J.-W. van Wingerden, K. Johnson, M. Churchfield, J. Michalakes, 
P. Spalart, and P. Moriarty. Simulation comparison of wake mitigation control strategies for a two-turbine 
case. Wind Energy, 18(12):2135–2143, 2015.  

[9] P. Fleming, J. King, K. Dykes, E. Simley, J. Roadman, A. Scholbrock, P. Murphy, J. K. Lundquist, P. Moriarty, 
K. Fleming, J. van Dam, C. Bay, R. Mudafort, H. Lopez, J. Skopek, M. Scott, B. Ryan, C. Guernsey, and 
D. Brake. Initial results from a field campaign of wake steering applied at a commercial wind farm – part 
1. Wind Energy Science, 4(2):273–285, 2019.  

[10] P. Gebraad, F. Teeuwisse, J. Van Wingerden, P. A. Fleming, S. Ruben, J. Marden, and L. Pao. Wind plant 
power optimization through yaw control using a parametric model for wake e↵ects—a cfd simulation study. 
Wind Energy, 19(1):95–114, 2016.  

[11] P. M. Gebraad, F. Teeuwisse, J.-W. van Wingerden, P. A. Fleming, S. D. Ruben, J. R. Marden, and L. Y. 
Pao. A data-driven model for wind plant power optimization by yaw control. In 2014 American Control 
Conference, pages 3128–3134.  IEEE, 2014.  

[12] N. Hamilton. Total variation of atmospheric data: covariance minimization about objective functions to 
detect conditions of interest. Atmospheric Measurement Techniques, 2019 (under review). 
´ 

and impact on wind turbine loads. Wind Energy Science, 4(2):325–342, 2019.  
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