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1 Introduction 
Concentrating solar power (CSP) is considered an attractive technology in many parts of the 
world because it can be equipped with low-cost thermal energy storage to provide dispatchable 
renewable energy and offer flexibility to a national grid. It can also produce significant amounts 
of varying-temperature heat for industrial processes, and it can be used for water desalination in 
arid countries with abundant solar resources. Currently, a total of 5.43 GW of CSP is deployed 
worldwide, with 2.30 GW (42.48%) deployed in Spain and 1.88 GW (34.65%) in the United 
States (Figure 1). The International Energy Agency estimates that by 2050, with appropriate 
support, CSP could provide 11.3% of global electricity (IEA 2010). China had a later start on 
CSP development, but the growing demand for dispatchable renewable energy is driving the 
interest in developing CSP there. In its 13th Five Year Plan, China sets a goal of deploying 
5 GW of CSP by 2020 (NEA 2016). According to a study from China Renewable Energy 
Institute, CSP deployment in China is projected to reach 30 GW by 2030 and 180 GW by 2050, 
compared with total installed capacity of 251.65 MW as of September 2019 (CRES 2013). 

 
 Figure 1. Cumulative installed CSP capacity by country/region 

MENA = Middle East and North Africa 
Sources: SolarPACES and CSPPLAZA.  

As CSP is an emerging technology in China, its cost and value are not very well understood. 
This study provides the context of CSP development in China, as well as the basic data and 
methods for analyzing CSP in the power system. Since China does not have established power 
markets in the region we analyzed, our value analysis focuses on the impact to system operation 
cost, even though CSP offers a range of values, including capacity, energy, and ancillary 
services. The report is divided into five parts. Following the introduction, we provide an 
overview of CSP technologies and potentials in China, and the policy and regulatory 
environment for CSP development (Section 2). Then we conduct a literature review of levelized 
cost of energy (LCOE) estimations for CSP and use the System Advisor Model to analyze the 
LCOEs for CSPs in China with different configurations of solar multiples and hours of storage, 
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where the solar multiple is the ratio of the thermal power produced by the solar field to that 
required by the power block at design point (Section 3). We use an economic dispatch model to 
analyze the hourly system operations with different configurations of CSP (Section 4). Finally, 
we conclude the report with areas for further research (Section 5). 

2 CSP Development in China 
2.1 Overview of CSP Technologies 
CSP uses high specular reflectors (typically mirrors) to concentrate solar radiation to produce 
high-temperature heat and generate electricity through a thermodynamic cycle. One example 
is a CSP solar field that heats the thermal oil, generates steam through a heat exchanger, and 
produces electricity by using steam to drive a steam turbine electricity generator. Two main 
types of CSP technologies are currently deployed: (1) line-focusing systems such as parabolic 
trough and linear Fresnel technology and (2) point-focusing systems such as power tower and 
dish Stirling-engine technology. 

Point-focusing collectors can have a higher concentration ratio than line-focus collectors. 
Parabolic trough technology is dominating the current commercial CSP market and power tower 
technology is treated as the next-generation emerging technology. Power tower technology can 
enable higher-temperature heat generation with a compact receiver component and thus result in 
a lower-cost energy storage system and higher-efficiency thermodynamic cycle. Generally, 
parabolic trough technology has a higher annual optical efficiency than power tower technology 
(Kincaid et al. 2018). Currently, the U.S. CSP research is focused on power towers, mainly 
because of their higher possible operating temperatures and projected lower LCOE. Linear 
Fresnel technology typically has a lower optical efficiency and potentially lower cost, and it may 
be competitive combined with molten salt technologies and used in lower-temperature process 
heat applications (Qiu et al. 2015; Gabbrielli et al. 2014). Dish Stirling-engine technology has 
the highest optical efficiency of all CSP technologies, but it suffers from higher system costs and 
difficulties in integrating with large-scale energy storage systems. Figure 2 shows the amount of 
installed and planned CSP projects in China by technology. As illustrated in the figure, the 
development of CSP was slow in China before 2018, but exponential growth is expected in 2019 
and 2020. Most of the deployed and planned systems are power tower and parabolic trough 
technologies, which are the focus of this report. 



3 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 2. Installed and planned CSP capacity in China 

Dashed bars indicate planned capacities and the year they are expected to be online. 

2.2 CSP Potential in China 
Several factors, including solar resource, land resource, water resource, and power grid access 
influence the potential for CSP development. A typical CSP plant requires a minimum direct 
normal irradiance (DNI) of 5 kWh/m2 per day (J. Wang et al. 2017) and up to 20,000 m2 of land 
per thermal megawatt at the design point due to the size of its solar field (Hou et al. 2009). 
Several studies on CSP potential have been conducted for China, but at a relatively coarse 
resolution. Research from the Chinese Academy of Sciences (2009) based on NREL’s 40-km by 
40-km DNI data estimates there is a total of 16,000 GW of CSP capacity potential in China, 
1,400 GW of which are in places with DNI equal to or greater than 7 kWh/m2 per day. The 
total generation potential from CSP technologies in China is estimated to be 42,000 terawatt-
hours/year (ibid). This is generally consistent with a study (Ummel 2010) based on the European 
Space Agency’s GlobCover product, which puts potential CSP outputs in China at 51,133 
terawatt-hours/year.  

In terms of resource pockets, southeastern Tibet, southern Xinjiang, eastern Qinghai, central 
Gansu, and Inner Mongolia have the best solar radiation resources (Chen, Li, and Wu 2010). 
Excluding densely populated areas (i.e., those with more than 150 persons per square kilometer), 
farming areas, protected nature preserves, sensitive ecosystems, as well as certain 
geomorphological features (e.g., sand dunes, rock outcrops, salt flats, glaciers, and slopes greater 
than 3%), Li et al. (2014) find that locations suitable for CSP development are mainly in northern 
and northwestern China, as illustrated in Figure 3. However, these areas typically have limited 
water availability and grid access. 
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Figure 3. Potential locations for CSP in China (Li et al. 2014) 

Green indicates potential CSP resource areas with land exclusions. Red triangles 
indicate most feasible locations as narrowed down by water and grid availability. 

2.3 Policy Framework and Financial Incentives for CSP Development 
and Innovation in China 

China has a policy framework for the development of CSP but very limited financial incentives. 
As mentioned, CSP is part of China’s 13th Five Year Plan for energy. And CSP is included in 
China’s Guidance Catalogue for Industrial Structure Adjustment: 2011–2015, which the State 
Council released in 2012. CSP is also a part of China Manufacturing 2025: Energy Equipment 
Implementation Plan, which highlights the importance of completing field demonstrations 
of core CSP technologies. Multiple CSP components and technologies have been included as 
“strategic new industrial products and services” in a category released by China’s National 
Development and Reform Commission (NDRC 2017) that is used to direct investments into 
specific industrial sectors and to enable more detailed accounting of the strategic sectors. In 
addition, CSP is included in China’s new national Renewable Obligation Mechanism launched in 
May 2019, which requires each province to meet certain percentage of generation with non-
hydro renewable sources. 

China uses three major instruments to stimulate the development and innovation of CSP, 
including the auction scheme; feed-in tariffs; and research, development, and demonstration 
support. In very limited circumstances, CSP can receive preferential loans.  

The auction scheme is the dominant instrument used to support CSP deployment internationally, 
and it is implemented in many countries, including Australia, Chile, China, Morocco, South 
Africa, and United Arab Emirates. Auctions are effective in driving down costs but could risk the 
financial viability of the winning entity. Since the first tender in October 2010 for a 50-megawatt 
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(MW) CSP plant in Inner Mongolia, China has announced several CSP tenders. The early 
winners are dominantly state-owned enterprises, but as the industry grows, more private 
companies have entered the CSP business in China. 

The second policy instrument for stimulating CSP development in China is the feed-in tariff. It is 
recognized as an effective, albeit costly, measure to boost renewable technology deployment. For 
example, the Spanish feed-in tariff, started in 2008, triggered almost 50 CSP plants. It hardly led 
to the optimal use of thermal storage however, because storage was not part of the Spanish feed-
in tariff (Lilliestam et al. 2018). China’s National Energy Administration established a 
benchmark feet-in tariff of $0.172/kWh1 for CSP in 2017. Due to the slow progress of CSP 
development in China, the feed-in tariff, which was originally eligible for projects put into 
operation before the end of 2018, may be extended to projects built before the end of 2020 at a 
reduced amount.  

In terms of research, development, and demonstration support, the Ministry of Science and 
Technology and the National Energy Administration have established a series of CSP research 
and demonstration projects. Participants in these projects include research institutes (e.g., the 
Institute of Electrical Engineering at the Chinese Academy of Sciences, China Electric Power 
Planning and Engineering Institute, China Renewable Energy Engineering Institute, Peking 
University, and Shanghai Jiaotong University), organizations such as China National Solar 
Thermal Energy Alliance, and state-owned as well as private companies. The first 20 CSP 
demonstration projects were approved in September 2016, but since then, many of them have 
experienced delays and four of them have been cancelled. By August 2019, three CSP plants 
were in operation in China. The 50-MW China General Nuclear Power Group project at 
Delingha, which began operating on October 10, 2018, was the first among the 20 demonstration 
CSP projects in China. 

CSP receives few financial incentives beyond the three main drivers. Preferential loans are 
available only to a very limited number of CSP projects. The 50-MW Delingha project, for 
instance, received 47% of the necessary capital as a preferential loan from the Asian 
Development Bank at the interest rate of 3%. In comparison, the interest rate on a commercial 
loan is 6.345% as of 2017 (Zhao, Chen, and Thomson 2017).  

Despite the policy support, the development of CSP in China has been slow – and is attributed to 
the high cost of CSP systems and the lack of assessment of the value CSP provides to the power 
system (CSP Plaza 2019). Therefore, this report aims to provide a better understanding of the 
cost and value of CSP in China. 

3 Levelized Cost of Energy Analysis of CSP Systems 
in China 

3.1 CSP Levelized Cost of Energy Overview 
The most frequently used metric for analyzing the cost of a given power generation technology 
is the levelized cost of electricity (LCOE). It is generally calculated as the amortized capital and 

 
1 1.15 RMB at an exchange rate on September 1, 2016 of $1 = RMB 6.679 
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operating costs divided by the electricity produced over the lifetime of the plant. However, 
different LCOE calculation methods may include or exclude certain factors such as insurance, 
taxes, interest during construction, decommissioning costs, and financial incentives, which could 
influence the calculated value. As a result, an LCOE comparison can help shed light on the 
general range of costs for a certain technology; it is not to be used as a precise prediction of cost. 

We reviewed a range of CSP LCOE calculations in the literature since 2000. The LCOEs of 
existing or simulated CSP projects by technology are shown in Figure 4, and projections for 
future CSP LCOE trends are shown in Figure 5. Parabolic trough and power tower systems are 
the most examined CSP technologies in the literature. As seen from Figure 4, parabolic trough 
technology has a slightly lower LCOE (between $144.4 per megawatt-hours (MWh) and 
$296.2/MWh for the middle 50th percentile) than power tower technology (between 
$176.6/MWh and $306.7/MWh for the middle 50th percentile) for existing units. The width of 
the bars in the figures indicates the uncertainty in costs in the simulated studies. For projections 
of future LCOEs, the estimates for parabolic trough technology are higher than the estimates for 
power tower technology (Figure 5); this is because in the long term, the higher operating 
temperature of the power tower gives it an efficiency and cost advantage over parabolic troughs 
(Turchi et al. 2010). Most studies expect the LCOEs of both technologies to drop to around 
$100/MWh by 2020 (e.g., (Sargent & Lundy 2003; Z. Wang 2010)). Though this is still higher 
than solar PV, CSP can offer much higher capacity factors and the thermal energy storage can 
provide system services that are becoming increasingly crucial and valuable with high-
penetration renewables.
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Figure 4. LCOEs of current existing or simulated CSP projects in the reviewed literature 

Technology and country are indicated on the Y-axis, where D = dish Stirling, 
L = linear Fresnel, P = parabolic trough, and T = power tower. 

 
A full list of references used in this figure is in Appendix A.



8 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 5. Projections for future CSP LCOEs 

Technology and country are indicated on the Y-axis, where D = dish Stirling, P = parabolic trough, and T = power 
tower. 

The year listed is the projection year. A full list of references used in this figure is in Appendix B. 

3.2 Methodology for LCOE Analysis 
This study uses the System Advisor Model (SAM), which was developed by the National 
Renewable Energy Laboratory (NREL), to analyze the LCOEs of different configurations of 
parabolic trough and power tower CSP systems in China. SAM is a system analysis model for 
assessing the performance and costs of grid-connected power projects based on user-defined 
installation and operating costs and system design parameters (Blair et al. 2018). It has been used 
in several studies reviewed above (Turchi et al. 2010, Pierce et al. 2013, Parrado et al. 2016). 

This section focuses on the cost of parabolic trough and power tower technologies, because as 
shown in Figure 2, they are the two dominant CSP technologies in China. Only dry cooled CSP 
is examined for this study, because the National Energy Administration has required all CSP 
demonstration projects to be dry-cooling due to water constraints in northwestern China. 

Our SAM simulation is based on a site in Delingha, Qinghai province (latitude: 37.29, longitude: 
96.751). The typical meteorological year data (2007–2016) are obtained from European 
Commission’s Photovoltaic Geographical Information System. A total of 200 simulations are 
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run, including a set of 100 simulations for a parabolic trough plant and another set of 100 
simulations for a molten salt power tower plant. Each set contains different configurations of 
solar multiple (SM) and hours of storage. Solar multiples range from 1.0 to 2.8, and hours of 
storage range from 1 hour to 16 hours. We keep the thermal rating of the power block fixed for 
the sensitivity analysis, and we vary the size of the heliostat field for each simulation. We 
calculate the unsubsidized LCOE (i.e., not including the current feed-in tariff) for better 
comparison with international results.  

Cost input is critical to our LCOE analysis. Real cost data for CSP projects in China are difficult 
to obtain because of concerns about business confidentiality, so the data are mainly obtained 
through the literature and vetted by the authors’ best judgment and reviewers’ input. CSP 
projects in China are subject to a substantial list of taxes and fees that could be different case by 
case. Table 1 lists some of the taxes and fees tow which a CSP project in China may be subject. 

Table 1. Taxes and Potential Fees for CSP Projects in Chinaa 

Type Rate Note 
Income tax 25%[1]  For government investment 

authority verified project, could get 
tax exemption for years 1–3 and 
50% reduction for years 4–6 [2,3]  

Value-added tax (VAT) 16%[4]  Was 17% before April 30, 2018[5] 
VAT surcharge 7% of VAT for city construction 

3% of VAT for education 
2% of VAT for local education[6] 
No VAT surcharges for foreign 
enterprises in China 

Categories and amount of 
surcharge can vary by province 
and location 

Land use tax Farmland occupancy tax: 5–30 
RMB/m2 (0.74–4.44 $/m2) in 
Qinghai Province[7] 

Vary by province and location 

Land acquisition fee 3–40 RMB/m2 (0.44–5.92 $/m2) in 
Delingha, Qinghai Province[8] 

Vary by province and location 

Pension insurance fee 1.36 RMB/m2 ($0.20/m2) or 50% 
of land acquisition fee[9,10] 

Vary by province and location 

Grassland restoration fee 5.54 RMB/m2 ($0.82/m2) [9] Vary by province and location; this 
fee is currently suspended for 
solar PV projects in Qinghai 
Province[11] 

Water and soil conservation 
and restoration fee 

1.5 RMB/ m2 (0.22 $/m2) [12] Vary by province and location 

a Sources for all figures in the table are listed in Appendix C.  

In the LCOE assessment, the taxes and fees are simplified and added to the corresponding land 
cost or variable costs. The main cost inputs for CSP simulations are summarized in Table 2. 
One caveat is that very limited data on the costs of CSP projects in China are publicly available, 
so our cost input assumptions are collected from a few different studies and are therefore not 
always consistent with each other. We use our judgment to choose data that seem reasonable for 
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our simulation analysis to show the cost trends for different technical configurations, but these 
data do not represent the real cost of any specific CSP projects in China. 

From the data we have collected, CSP plants in China generally have lower capital costs for 
conventional components (e.g., heliostat field mirrors, piping and insulation, steam turbine 
generators, the cooling system, and the condensate system) and lower labor costs for plant 
operation and maintenance. But China has higher project and land management costs, which may 
reflect some local administration burdens on project developers. 

Table 2. Cost Inputs Used for SAM Simulation, Compared with the SAM Reference Case Parabolic 
Trough Planta 

Category Units Default SAM 
Value for 
Parabolic 
Trough 
(100-MW) 

Simulated 
Chinese 
Parabolic 
Trough 
(100-MW) 

Default SAM 
Value for 
Power Tower 
(100-MW) 

Simulated 
Chinese Molten 
Salt Power 
Tower 
(100-MW) 

Direct Costs     

Site improvements $/m2 30[1]  12.59[2]  16[3] 12.59[2] 

Heliostat field cost $/m2 — — 145[3] 92.78[2] 

Heliostat field 
cost, fixed 

$ — — — 1,385,271.13[2] 

Tower cost, fixed $ — — 25,319,024[12] 12,467,440.21[2] 

Receiver $ — — 85,192,128[3] 8,311,626.81[2] 

Solar field $/m2 170[1] 124.20[5] — — 

Heat transfer 
fluid system 

$/m2 70[1] 28.88[5] — — 

Thermal energy 
storage 

$/kWht 75[1] 22.08[5] 24[3] 36.18[2] 

Fossil backup $/kWe 0[6] 0 0[4] 0 

Power plant $/kWe 1,150[1] 287.91[7] 1,100[3] 306.88[2] 

Balance-of-plant 
cost 

$/kWe 120[1] 132.87[7] 340[3] 81.84[2] 

Indirect Costs 

Contingency % of direct 
cost 

7[1] 7[12] 7[1] 7[12] 

Engineering, 
procurement, and 
construction 

% of direct 
cost 

11[1] 11[1] 13[3] 13[3] 

Project and land 
management 

 3.5%[6] 4,873,490.40 
$[7] 

10,000 
$/acre[4] 

88,042.92 
$/acre[2] 

Fixed annual cost $/yr 0[6] 0%[2] 0[4] 0%[2] 

Fixed cost by 
capacity 

$/kW-yr 66[1] 43.35[8] 66 [3] 55.49[2] 
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Category Units Default SAM 
Value for 
Parabolic 
Trough 
(100-MW) 

Simulated 
Chinese 
Parabolic 
Trough 
(100-MW) 

Default SAM 
Value for 
Power Tower 
(100-MW) 

Simulated 
Chinese Molten 
Salt Power 
Tower 
(100-MW) 

Variable cost by 
generation 

$/MWh 3[6] 2.29[7] 3.5[3] 3.54[2] 

Internal rate of 
return target 

% 15[6] 8[7] 11[12] 8[7] 

Internal rate of 
return target year 

yr 20 13[7] 20[12] 13[7] 

Analysis period yr 30[10] 30[7] 30[10] 30[2] 

Inflation rate %/yr 2.5[10] 1.6[11] 2.5[10] 1.6[11] 

Real discount rate %/yr 8[10] 9 2 8[10] 9  

Debt percent percent of 
total capital 
cost 

54[10] 80[7] 54[10] 80[7] 

Tenor yr NA 13[7] 18[12] 13[7] 

Annual interest 
rate 

% NA 6.345[5] 7[12] 6.345[5] 

Net salvage value percent of 
installed 
cost 

0[12] 5[7] 0[12] 5[7] 

Depreciation yr Modified 
Accelerated 
Cost 
Recovery 
System 
(MACRS) [10] 

15[7] MACRS[10] 15[7] 

a Sources for all figures in the table are listed in Appendix D. 
kWht = kilowatt-hour-thermal; kWe = kilowatt-electric 

 
2 A real discount rate of 9% is used to reflect the barrier to CSP investment in China, which is in the range of 
assumed discount rates used by several studies, including (International Renewable Energy Agency (IRENA) 2012; 
Hinkley et al. 2011; IEA 2010). All costs converted from the publication year currency to 2017 US dollars. 
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3.3 LCOE Analysis Results 
The general trends observed in the LCOE results of the simulated Chinese CSP plants are 
consistent with those in the non-Chinese literature (Madaeni, Sioshansi, and Denholm 2013; 
Jorgenson et al. 2013), but offer several new insights. The results (Figure 6 and 7) confirm that 
adding to the solar multiplier can increase the utilization of the power block and thereby raise 
the capacity factor of the CSP plant, but only to a limited degree if the storage capacity is 
constrained. Because increasing both the solar multiplier and storage increases the overall capital 
cost of the plant, simulations are needed to identify the configuration with the lowest LCOE. 
The lowest LCOEs for a 100-MW CSP plant in the selected Delingha location are achieved 
through 2 SM with 4 hours of storage to 2.4 SM with 8 hours of storage for a trough plant and 
1.8 SM with 6 hours of storage to 2.2 SM with 8 hours of storage for a tower plant. 

Figure 6. Capacity factors of simulated parabolic trough plant (left) and LCOEs of simulated 
parabolic trough plant (right) 
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Figure 7. Capacity factors of simulated molten salt power tower plant (left) and LCOEs of 
simulated molten salt power tower plant (right) 

Because the obtained data show lower solar resource in the selected Chinese region than typical 
CSP sites in the United States, the capacity factors of the simulated CSP plants in China are 
significantly lower than those in U.S. locations. The annual average DNI in the selected 
Delingha location is 6.0kWh/m2/day. In comparison, a southwestern U.S. location such as 
Daggett, California, has an average DNI of 7.7kWh/m2/day. Granted, better resources may be 
found in other locations in the Qinghai region, but we are limited by data availability. 
Nevertheless, with the data available, we can observe the capacity factor trends for different 
technologies. The tower plant has a higher capacity factor than the trough plant, and it is more 
significantly augmented by the increase in storage hours. With 6 hours of storage and SM of 2, 
the parabolic trough plant only has a capacity factor of 30.62% whereas the tower plant can 
reach a capacity factor of 43.44%. 

The cost and financial data for the Chinese tower plants results in a lower solar multiple for the 
lowest LCOE compared with similar study of a simulated U.S. CSP plant (Jorgenson et al. 
2013). Results show the LCOE of a parabolic trough plant in China can reach around 15.2 
cents/kWh with SM of 2.4 and 8 hours of storage. The LCOE of a tower plant can reach around 
15.6 cents/kWh with SM of 1.8 and 6 hours of storage. The exact numbers are less important 
than the trends we show through the simulation exercise. The Chinese LCOEs for parabolic 
trough plants and for tower plants are similar, where in other contexts, as we have seen in 
Section 3.1, tower plants have lower prices. This may partially explain why in China similar 
megawatt-amounts of parabolic trough plants and tower plants are in the pipeline. 

Another difference between the CSP costs in China and in U.S. is that the lowest LCOE for a 
U.S. CSP tower plant is typically achieved with a SM of more than 2.5 and 12 hours of storage 
(Jorgenson et al. 2013). But for the simulated Chinese tower plant, there is very limited LCOE 
reduction after SM has reached 1.6–1.8 with 4–6 hours of storage. This result might be impacted 
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by the input where the thermal energy storage costs for towers are higher than those for trough 
plants in China, and it is worth investigating with more-robust cost information.  

4 Analysis of System Operation Value of CSP 
in China 

To assess the value of CSP in reducing overall power system operation cost, we built a 
production cost model with coal, wind, solar PV, and CSP generators, and without transmission 
constraints. The methods for valuing CSP with thermal energy storage using production cost 
modeling is documented in Denholm et al. 2015. We built on the previous study by evaluating 
the CSP value within the operational context of the Chinese power system. This section 
describes the production cost model we built for the analysis, provides the basic setup of the test 
system, and analyzes the results. 

4.1 Production Cost Model 
We propose a two-stage unit-commitment strategy that resembles the Chinese power system 
operation: a weekly unit commitment (referred to as long-term unit commitment) and a daily 
economic dispatch. In the long-term unit commitment, the generators are scheduled for a period 
of seven days, which is the optimization horizon. The CSP plant is not considered in the long-
term unit commitment, but wind and solar PV plants are included. The wind and solar PV 
forecast information used in the long-term unit commitment is based on the historical capacity 
factors of wind power and solar PV. Limited as it is, using historical wind generation as the 
forecast over this weekly step can give us a rough unit starts and shutdown schedule for large 
coal-fired generators that take a long time to start. After the model determines the generator 
schedules based on weekly unit commitment, it performs daily economic dispatch of all 
generators including the CSP plant. The daily economic dispatch updates the long-term unit 
commitment schedules using the updated wind, solar PV, and CSP output profiles on a daily 
basis. The main differences between the long-term unit commitment and the daily economic 
dispatch model are the optimization horizon and the commitment status of conventional 
generators.  

The objective function of the model is to minimize the total cost of generation and the cost of 
unserved load. It could be expressed as: 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = �𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑡𝑡∈𝑇𝑇

+ �𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑡𝑡)
𝑡𝑡∈𝑇𝑇

+ �𝐶𝐶𝐿𝐿𝐶𝐶(𝑡𝑡)
𝑡𝑡∈𝑇𝑇

 

where 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) is the generation cost of all other generators except CSP at time period t,  𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑡𝑡) 
is the cost of CSP generation cost at t, 𝐶𝐶𝐿𝐿𝐶𝐶(𝑡𝑡) is the cost of unserved load at t, and 𝑇𝑇 is the total 
optimization period for the unit commit and economic dispatch problem, e.g., the 8,760 hours of 
a simulation year. 

𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) includes unit startup cost, fixed operation cost, and variable operation and maintenance 
cost. Fuel cost and CO2 emission cost are included in the operation and maintenance cost. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑡𝑡) mainly includes the startup cost of the CSP generator and could be expressed as: 



15 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑡𝑡) = � (𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐) ∙ 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡))
𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐∈𝑈𝑈𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐

 

where 𝑈𝑈𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐 is the type of the CSP generator in the simulation, 𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐 is a CSP unit, 𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐) 
is the startup cost of a CSP unit, and 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡) is the number of unit starts. We omit the 

variable operation and maintenance costs of CSP in the dispatch model. 

The cost of unserved energy 𝐶𝐶𝐿𝐿𝐶𝐶(𝑡𝑡) is the system cost incurred by insufficient generation in the 
power system. Because transmission is not considered in the model, no unserved energy can be 
caused by transmission congestion. The cost of unserved energy can be expressed as: 

𝐶𝐶𝐿𝐿𝐶𝐶(𝑡𝑡) = 𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣 ∙ 𝑉𝑉𝑣𝑣𝑜𝑜𝑠𝑠𝑙𝑙𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) 

where 𝑐𝑐𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣 is the value of lost load, 𝑉𝑉𝑣𝑣𝑜𝑜𝑠𝑠𝑙𝑙𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) is the amount of unserved energy or 
load curtailed. 

The model considers four common power system operation constraints, such as unit start and 
ramping constraints. The primary constraint is the power balance constraint, expressed as: 

� 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁 , 𝑡𝑡) + � 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡�
𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐∈𝑈𝑈𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑢𝑢𝑁𝑁∈𝑈𝑈𝑁𝑁

+ 𝑃𝑃𝑣𝑣𝑠𝑠𝐺𝐺(𝑡𝑡) − 𝑉𝑉𝑣𝑣𝑠𝑠𝐺𝐺𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) + 𝑉𝑉𝑣𝑣𝑜𝑜𝑠𝑠𝑙𝑙𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) =  𝑃𝑃𝑙𝑙𝐺𝐺𝑑𝑑(𝑡𝑡),∀𝑡𝑡 

where 𝑈𝑈𝑁𝑁 is the conventional generation type, 𝑢𝑢𝑁𝑁 is the unit, 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡) is the generation output 
of the conventional unit, 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺

𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡� is the power output of CSP generation module at time 

period t, 𝑃𝑃𝑣𝑣𝑠𝑠𝐺𝐺(𝑡𝑡) is the wind and solar PV generation at t, 𝑉𝑉𝑣𝑣𝑠𝑠𝐺𝐺𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) is the variable renewable 
energy curtailment, including wind, solar PV, and CSP at t, 𝑉𝑉𝑣𝑣𝑜𝑜𝑠𝑠𝑙𝑙𝑐𝑐𝑢𝑢𝑠𝑠𝑡𝑡(𝑡𝑡) is the load curtailment 
or unserved energy at t, and 𝑃𝑃𝑙𝑙𝐺𝐺𝑑𝑑(𝑡𝑡) is the load at t. 

The second constraint establishes the linkage between the CSP generation module and the CSP 
storage module. This constraint could be expressed as: 

� 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝑜𝑜𝑢𝑢𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐

𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐∈𝑈𝑈𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐

�𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡� − � 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁, 𝑡𝑡) ∙ 𝑆𝑆𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 �𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡� − � 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡�
𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐∈𝑈𝑈𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐∈𝑈𝑈𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐

= 0,∀𝑡𝑡 

where 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝑜𝑜𝑢𝑢𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡) is the output power of the storage module, 𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡) is the 
number of starts of the CSP unit, 𝑆𝑆𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡) is the power needed to start the CSP 

generation, and 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐(𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡) is the power output of the CSP generation module. We do 
not include any part-load efficiency loss for the CSP generator in this model. 

The third constraint is the CSP generation and storage constraint, which can be expressed as: 

𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑔𝑔𝑒𝑒
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓1

𝑐𝑐𝑠𝑠𝑐𝑐 ∙ 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑔𝑔𝑒𝑒
𝑐𝑐𝑠𝑠𝑐𝑐 (0) + 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝑖𝑖𝐺𝐺

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) −  𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓2
𝑐𝑐𝑠𝑠𝑐𝑐 ∙ 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝑜𝑜𝑢𝑢𝑡𝑡

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡), 𝑡𝑡 = 1 

𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑔𝑔𝑒𝑒
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓1

𝑐𝑐𝑠𝑠𝑐𝑐 ∙ 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡 − 1) + 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑖𝑖𝑒𝑒

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) −  𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓2
𝑐𝑐𝑠𝑠𝑐𝑐 ∙ 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡), 𝑡𝑡 > 1 



16 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

where 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) is the stored energy of the CSP storage module at time period t, 

𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓1
𝑐𝑐𝑠𝑠𝑐𝑐 is the coefficient of efficiency loss from the CSP storage, 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐𝑠𝑠𝑐𝑐 (0) is the initial 
energy of the CSP storage module, 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺𝑖𝑖𝑒𝑒

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑡𝑡) is the power input from the solar field into the 
CSP storage module as produced by SAM through the previous simulation, 𝑉𝑉𝑠𝑠𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠𝑔𝑔𝐺𝐺_𝑜𝑜𝑢𝑢𝑡𝑡

𝑐𝑐𝑠𝑠𝑐𝑐 (𝑢𝑢𝑁𝑁
𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡) is 

the power output from the CSP storage module into the generation module, 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓2
𝑐𝑐𝑠𝑠𝑐𝑐 is the 

coefficient of the efficiency loss from the CSP generation. 

The fourth constraint is the maximum and minimum generation level constraint. This constraint 
establishes the operation boundaries of coal and CSP generators. The coal generators’ constraint 
could be expressed as: 

� �𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡)� ≤ 𝑃𝑃𝑑𝑑𝑠𝑠𝑚𝑚(𝑈𝑈𝑁𝑁) ∙ 𝑁𝑁(𝑈𝑈𝑁𝑁),∀𝑡𝑡
𝑢𝑢𝑁𝑁∈𝑈𝑈𝑁𝑁

 

� �𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡)� ≥ 𝑃𝑃𝑑𝑑𝑖𝑖𝐺𝐺(𝑈𝑈𝑁𝑁) ∙ 𝑁𝑁(𝑈𝑈𝑁𝑁),∀𝑡𝑡
𝑢𝑢𝑁𝑁∈𝑈𝑈𝑁𝑁

 

𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡) ≥ 𝑉𝑉𝑜𝑜𝐺𝐺𝑣𝑣𝑖𝑖𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡) ∙ 𝑃𝑃𝑑𝑑𝑖𝑖𝐺𝐺(𝑢𝑢𝑁𝑁),∀𝑡𝑡,𝑢𝑢𝑁𝑁 

𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡) ≤ 𝑉𝑉𝑜𝑜𝐺𝐺𝑣𝑣𝑖𝑖𝐺𝐺𝐺𝐺(𝑢𝑢𝑁𝑁, 𝑡𝑡) ∙ 𝑃𝑃𝑑𝑑𝑠𝑠𝑚𝑚(𝑢𝑢𝑁𝑁),∀𝑡𝑡,𝑢𝑢𝑁𝑁 

where 𝑈𝑈𝑁𝑁 is the conventional generation type, 𝑢𝑢𝑁𝑁 is the unit,  𝑁𝑁(𝑈𝑈𝑁𝑁) is the number of units for 
each generation type, 𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺 is the generation output, 𝑉𝑉𝑜𝑜𝐺𝐺𝑣𝑣𝑖𝑖𝐺𝐺𝐺𝐺 is the number of units operating at the 
given time, and 𝑃𝑃𝑑𝑑𝑠𝑠𝑚𝑚(𝑢𝑢𝑁𝑁)、𝑃𝑃𝑑𝑑𝑖𝑖𝐺𝐺(𝑢𝑢𝑁𝑁) is the maximum and minimum generation level of 𝑢𝑢𝑁𝑁. 
Because all coal units in each coal generation type are identical, this simplified constraint 
achieves the overall minimum generation and maximum generation boundaries without 
constraining every individual unit. The constraint for CSP generators is as follows: 

𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡� ≥ 𝑉𝑉𝑜𝑜𝐺𝐺𝑣𝑣𝑖𝑖𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐 �𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, t� ∙ 𝑃𝑃𝑑𝑑𝑖𝑖𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐�,∀𝑡𝑡,𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐 

𝑉𝑉𝑔𝑔𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, 𝑡𝑡� ≤ 𝑉𝑉𝑜𝑜𝐺𝐺𝑣𝑣𝑖𝑖𝐺𝐺𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐 �𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐, t� ∙ 𝑃𝑃𝑑𝑑𝑠𝑠𝑚𝑚
𝑐𝑐𝑠𝑠𝑐𝑐 �𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐�,∀𝑡𝑡,𝑢𝑢𝑁𝑁
𝑐𝑐𝑠𝑠𝑐𝑐 

where 𝑃𝑃𝑑𝑑𝑖𝑖𝐺𝐺
𝑐𝑐𝑠𝑠𝑐𝑐�𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐� is the technical minimum output level of the CSP generation module, and 
𝑃𝑃𝑑𝑑𝑠𝑠𝑚𝑚
𝑐𝑐𝑠𝑠𝑐𝑐 �𝑢𝑢𝑁𝑁

𝑐𝑐𝑠𝑠𝑐𝑐� is the technical maximum output level of the CSP generation module. 
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4.2 Test System 
We built a one-node test system with a mix of coal, wind, solar PV, and CSP generation capacity 
(Figure 8). The purpose of our production cost modeling is to estimate the impact on system 
operation cost by different configurations of CSP, not to provide a specific dollar value for the 
CSP in a given system because that is depedent upon many regulatory and market factors. The 
generation composition of the test system is similar to that of the Northwest Grid, but without 
any hydro generation. Because the operation of hydro is often constrained by regulatory, 
agricultural, environmental and other non-power system factors, and is not the focus of our 
study, we omitted hydro for simplification. In the test system, wind accounts for 27.03% of 
installed capacity, compared with 18.85% in China’s Northwest Grid in 2018; solar accounts for 
13.51% of the test system capacity, compared with 16.47% in the Northwest Grid; and coal 
accounts for 58.11% of the test system capacity, compared with 56.35% in the Northwest Grid. 
We use more wind capacity than solar because of the projected faster growth of wind in the 
Northwest region under China’s 13th Five Year Plan. 

 
Figure 8. Installed capacity in the test system 

The parameters we used to represent the coal generation units are summarized in Table 3. 
They represent typical coal plants in China’s Northwest region. 
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Table 3. Conventional (Coal) Generators in the Test System 

Nameplate Capacity (MW) 1,000 600 300 

Units 1 3 5 

Fixed fuel consumption (kg/hour) 143,507 88,421 47,657.8 

Variable fuel consumption Band 1 (kg/MWh) 246.4 263.2 281.5 

Variable fuel consumption Band 2 (kg/MWh) 252.8 265.0 286.0 

Variable fuel consumption Band 3 (kg/MWh) 259.3 266.9 290.5 

Minimum stable level (%) 50.0 50.0 50.0 

Ramp rate (%/hour) 2 2 2 

Start time (hour) 10 8 6 

Startup cost ($3) 148,000 88,800 44,400 

Minimum downtime (hour) 5 4 4 

Minimum uptime (hour) 10 6 6 

We used a scaled-down version of a typical load profile of the Northwest China as the load for 
the test system, and we used typical wind and solar profiles of that region as the renewable 
output profiles. We added a 100-MW tower CSP to the test system with five different 
configurations (Table 4) that are estimated to be relatively cost-efficient from our previous 
LCOE analysis. The CSP unit is configured according to the properties in Table 5. We did not 
consider the effects of part loading or multiple starts on plant efficiency. 

Table 4. CSP Generator Configurations in the Test System 

Case Solar Multiple (SM) Hours of Storage (H) 

Reference Case (Case 1) 1.6 4 

Case 2 1.6 6 

Case 3 1.6 8 

Case 4 1.8 6 

Case 5 1.8 8 

 
3 All costs in the model were converted to U.S. dollars (USD) using the average currency exchange rate in 
2017 ($1 = RMB 6.7568). 
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Table 5. CSP Generator Properties in the Test System 

Rated Capacity (MW) 100 

Units 1 

Startup power consumption (% of Rated Capacity) 20 

Minimum stable level (%) 25 

Ramp rate (%) 2 

Start-up time (hour) 1 

Start-up cost (USD) 14,800 

4.3 Case Study Results 
The production cost modeling results show that in the Reference Case, wind accounts for 15.5% 
of the total generation, solar PV accounts for 8.4%, and CSP accounts for 1% (Figure 9, left 
panel). As the solar multiple expand from 1.6 to 1.8, we observe a significant increase of CSP 
generation and replacement of coal power generation, up to 68.6 gigawatt-hours (GWh) 
of CSP generation and 64.3 GWh of coal generation reduction (Figure 9, right panel). 

 

Figure 9. Generation stack of Reference Case (SM=1.6, H=4, left) and Cases 2–5, generation 
difference from the Reference Case (right) 

We analyzed the hourly operation of the CSP unit by focusing on the intra-day patterns of system 
operation. The highest renewable penetration occurs on May 2 for the test system (Figure 10). 
The instant wind and solar PV penetration reaches 63.5% on that day and causes 5,950–6,434 
MWh of total curtailment (including wind, solar PV, and CSP), depending on the CSP 
configuration. Most of the curtailment occurs during midday and late at night. During the high 
renewable penetration periods, the coal generators back down to their minimum generation 
levels during the day and ramp up to serve the evening ramp after 7:00 p.m.. Figure 11 shows 
that the large coal plant drops to its minimum generation level of 50% in the hourly economic 
dispatch (solid line), compared to the long-term unit commitment (dotted line). The thermal 



20 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

storage of the CSP unit starts charging at 9:00 a.m., which helps reduce the midday curtailment, 
and it starts to discharge at 6:00 p.m. to contribute to the evening ramp, when solar PV 
production drops (Figure 12). The CSP unit is configured so that the power from the solar field 
passes through the thermal storage to the turbine generator, so there is concurrent charging and 
discharging. 

 
Figure 10. Dispatch for May 2 under Case 5 (SM=1.8, H=8) 

 
Figure 11. Coal long-term (LT) unit commitment and short-term economic dispatch under Case 3 

(SM=1.6, H=8) 
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Figure 12. CSP thermal storage operation on May 2 under Case 5 (SM=1.8, H=8) 

Increasing the CSP storage size reduces total renewable energy curtailment from wind, solar PV, 
and CSP. We calculated renewable energy curtailment as the available renewable output minus 
generation; however, in the real world, the allocation of curtailment may be different among 
these technologies. As Figure 13 shows, renewable energy curtailment in the test system is 
concentrated in the noon-to-afternoon period and after midnight. The thermal storage of CSP can 
shift generation from the noon-to-afternoon period to the evening (as shown in Figure 12), but it 
is not long enough to shift it to the ramping period of the next morning—that would require more 
than 12 hours of storage. As a result, longer storage hours (4–8 hours) lead to reduced 
curtailment in the afternoon, but larger solar multiples and longer storage hours lead to a slight 
increase of curtailment at nighttime (Figure 14). 
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Figure 13. Annual curtailment averaged to the hour of the day for the Reference Case 

 
Figure 14. Difference in total curtailment from the Reference Case 

Overall, even just 100 MW of CSP can bring moderate savings on total system operation cost 
and reduced curtailment of renewables. As summarized in Table 6, changing from 4-hour storage 
to 8-hour storage for the CSP unit with a solar multiple of 1.6 can result in $1.26 million (0.39%) 
in annual cost savings. Larger storage reduces the CSP curtailment by 40.14%, but it increases 
the wind and solar PV curtailment by 1.70%, leading to a total reduction in overall renewable 
energy curtailment of 9.41%. Greater solar multiples and storage duration (a SM of 1.8 and 
storage length of 8 hours) lead to higher cost savings of up to $2.19 million (0.69%) because of 
the replacement of coal generation, and an 8.40% reduction in total renewable energy 
curtailment. 
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Table 6. Impact on Total System Operation Cost and Renewable Energy Curtailment 

SM Storage 
Hours 

System 
Operation Cost 
(million USD) 

Cost Difference 
from Reference 
Case 

CSP 
Curtailment 
(MWh) 

CSP Curtailment 
Difference from 
Reference Case 

Wind and Solar 
PV Curtailment 
(MWh) 

Wind and Solar PV 
Curtailment Difference 
from Reference Case 

1.6 4 318.21 — 63,136.88 — 174,496.45 — 

1.6 6 317.11 -0.34% 42,863.43 -32.11% 176,887.16 1.37% 

1.6 8 316.95 -0.39% 37,794.43 -40.14% 177,468.84 1.70% 

1.8 6 316.33 -0.59% 44,494.61 -29.53% 178,610.83 2.36% 

1.8 8 316.02 -0.69% 39,225.38 -37.87% 178,446.14 2.26% 
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5 Discussion and Conclusions 
With China’s growing interest in CSP, understanding the Chinese policy context of CSP 
development and the cost and the value of CSP in the power system is increasingly important. A 
deep analysis of the cost and value of CSP in China would require building a nodal model of the 
Northwest Region with more accurate representations of the generation and transmission 
constraints in the region. Due to data limitations, we used a simplified version of the Northwest 
regional system for the analysis. Note that each of the provincial power systems of the Northwest 
provinces - Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang - is very different from one another, 
so the value of CSP can be different in each province within the region. In Qinghai province, the 
balancing area where many CSP facilities are or are proposed to be built, a ±800 kV DC 
transmission line is being built between Qinghai and He’nan to transport renewable energy 
generation from Qinghai province to Central China. Such transmission development will likely 
drive a change in CSP values in the system, so future research may build upon our work by using 
more accurate data and more detailed power system representation.  

Our study provided the initial data and methodology that can be used to analyze the cost and 
value of CSP in China. We showed that the LCOEs of both parabolic troughs and tower plants 
are around 15.0–15.8 U.S. cents/kWh in China under current conditions. This is slightly lower 
than China’s CSP feed-in tariff in 2018 of 17.2 U.S. cents/kWh. We extended the previous 
research (Denholm et al. 2015) on CSP value estimation by making a production cost model that 
represents the Chinese power system operation context and applying it for the analysis of CSP. 
We demonstrated the impacts of CSP on various aspects of system operation. We showed that 
larger solar multiples and longer storage hours can contribute to savings in system operation 
costs and reductions of renewable energy curtailment. 
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Appendix A. Literature Surveyed for LCOEs of Current 
and Simulated CSP Projects 
This appendix lists our surveyed literature for LCOEs of current and simulated CSP projects. 
Before each reference, in bold text, we indicate the: 

• Technology: 
o D = dish Stirling 
o L = linear Fresnel 
o P = parabolic trough 
o T = power tower. 

• Country 
• Reference number 

D-China(1): Li, Yuqiang, Shengming Liao, Zhenghua Rao, and Gang Liu. 2014. “A Dynamic 
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Appendix D. Sources for Cost Inputs Used for SAM 
Simulation 
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