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Executive Summary 
Resilience is a topic receiving much attention in relation to energy systems, with particular 
attention being paid to the supply of electricity. Within the context of the electricity system, 
definitions of resilience encompass holistic concepts that emphasize preparing for, absorbing, 
adapting to, and recovering from interruptions in electricity supply (White House 2013; DHS 
2013; Hotchkiss and Dane 2019; Watson et al. 2014; Stankovic and Tomsovic 2018). Recent 
research has focused on understanding the resilience of the electricity sector to a core set of 
disruptions, which reflects (1) the economy’s increased dependence on electricity, (2) 
multiple emerging threats to the system (e.g., severe weather, aging infrastructure, 
cyberattacks, and physical attacks), and (3) the rapid evolution of the electricity system in 
recent decades (National Academies of Sciences, Engineering, and Medicine 2017). 
However, disruptions that test the resilience of a system or community can result in large-
scale consequences, as opposed to being constrained to a single sector or service type. 

As a result of the growing interest in electricity sector resilience, research communities have 
proposed a plethora of candidate resilience indicators and metrics, most of which remain 
immature at different scales and segments within the energy system. Given the complexity 
of resilience analyses and mitigation strategies, there is limited value in attempting to identify 
a single resilience metric, as no one metric can quantify resilience or its associated value for 
all stakeholders. Instead, a necessary focus of the research community should lie in 
implementing, testing, and validating resilience metrics and analysis approaches in energy 
sector models, which will be invaluable for informing resilience planning and investment 
decisions.  

Recognizing these challenges that need to be addressed, we explored how to effectively 
integrate resilience considerations into energy sector models and tools. The overarching 
goal of the effort was to evaluate the data needs, methodologies, and outcomes—including 
consequences and/or changes in investment or operational decisions due to avoided 
consequences—for resilience analysis in a range of existing tools. In particular, we selected 
five models—originally built at NREL to explore non-resilience energy research 
questions—in which to implement and exercise resilience metrics and analysis approaches.  

To demonstrate the importance of perspective, we selected models that represent different 
segments of the energy sector, geographic scales, and modeling approaches. The ultimate 
set of models selected spans simulations of building stocks and campus-level backup power 
systems, to the bulk power system across the contiguous United States. In addition, to 
explore different approaches for implementing a chosen resilience metric, we chose tools 
with very different modeling approaches, including (1) optimization for both long-term 
planning and electricity dispatch and (2) detailed simulations of energy system performance 
under adverse conditions.  

A second important aspect of our effort was the development of generalized power 
interruption scenarios. These scenarios were intended to help establish a framework for 
simulating the effects of real-world threats in terms of their impacts on system components 
and, in turn, power interruption. In this case, the term “threat” refers to something that could 
negatively impact a part of the energy system, and threats were defined based on variations 
across two dimensions: (1) whether system operators have time to prepare and (2) the 
duration of the associated power interruption.  
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Based on their chosen resilience metric and power interruption scenario, each modeling team 
performed a preliminary resilience analysis. Similar resilience analyses could be replicated in 
future research that seeks to explore questions related to these preliminary results and 
findings, which are summarized here: 

1. The ResStock tool simulates energy use in housing stocks at national, regional, or 
local scales. Based on research completed under this study, ResStock can now 
simulate a power interruption, and it can evaluate the thermal resilience of the 
residential building stock during a power interruption that is coincident with adverse 
weather conditions. Initial results showed that more-efficient buildings tend to be 
more-resilient because they can maintain livable indoor temperatures longer during 
interruptions in the supply of electricity or natural gas.  

2. The Probabilistic Resource Adequacy Suite (PRAS) simulates outage events on 
the bulk power system to quantify the risk of unserved load events resulting from 
shortfalls in the supply or deliverability of capacity. Under this study, PRAS was used 
to evaluate how the deployment of energy storage on a regional grid could impact the 
resilience of the system during a multiday disruption of fuel supply for natural gas 
generators. Initial results showed that adding energy storage devices could reduce the 
depth of shortfall, as quantified by the expected unserved energy metric applied to a 
58-hour fuel supply disruption scenario. 

3. The Scalable Integrated Infrastructure Planning Power Systems Toolkit 
(SIIP::Power) provides a flexible framework for defining and solving power systems 
analysis problems, including a variety standard unit commitment and economic 
dispatch formulations. As a result of research completed under this study, SIIP::Power 
can now model a value of lost load that varies (a) over the duration of a power 
interruption and (b) by node. SIIP::Power uses this information to select which buses 
to serve at each time-step when there is not enough energy to serve all loads in order 
to minimize total system cost (including both outage and generation costs). Exercising 
the production cost modeling framework in SIIP::Power with this duration-dependent 
value of lost load results in operational differences, such that the total level of lost 
load (in megawatt-hours) is similar, but the overall system costs and the maximum 
hours of outage experienced by any bus on the network are reduced.  

4. The Regional Energy Deployment System (ReEDS) model is a bottom-up electric 
sector capacity expansion model for the contiguous United States that finds the least-
cost construction and operation of generation, storage, and transmission assets 
through 2050. Under this study, ReEDS was modified to represent forced outage rates 
on the transmission system. Together with existing model capabilities, this 
preliminary resilience analysis involved five model constructs that were used to 
analyze ways to plan for resilience, based on the attribute-based metric of redundancy. 
Across the full suite of scenarios explored, initial results indicate that resiliency 
concerns can influence the optimal investment portfolio in different ways, depending 
on whether you are concerned about operating reserves, resource adequacy at peak 
loads, more-frequent generator outages, or more transmission outages. 

5. The Renewable Energy Optimization (REopt) is a techno-economic decision 
support model used to optimize energy systems for buildings, campuses, 
communities, and microgrids. Based on research completed under this study, the tool 
can now incorporate the avoided cost of a power interruption into the lifecycle cost 
calculation for backup power systems. Initial results indicate that accounting for the 
benefits associated with surviving all or part of a grid outage could change the optimal 
design of a backup power system. In particular, for scenarios that incorporate a “value 
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of resilience,” the cost-optimal backup power system has increased PV capacity, 
energy storage duration, and net present value. 

Beyond these initially observed outcomes based on preliminary analysis efforts, each 
modeling team also identified how future research could improve the ability to explore 
energy resilience in more detail. Moreover, common findings from across our preliminary 
resilience analyses include: 

1. There is no one-size-fits-all metric, nor should one metric be deemed appropriate for 
implementation in all systems modeling. A multilayered metric system will be needed 
for resilience work and would be helpful for industry discussion and analysis at 
many scales. 

2. Our current understanding of what customers are willing to pay to avoid long-
duration power interruptions is highly limited, and it could benefit from an improved 
understanding of (a) the duration-dependence of customer damages, (b) the influence 
of sectoral interdependencies, and (c) the relationship between impacts and 
consequences (e.g., degraded health, safety, and economic activity). There is 
significant uncertainty about whether these factors can be rigorously quantified.  

3. Accurately quantifying how a given resilience investment could lead to performance 
improvements (and, in turn, value) requires a more fundamental understanding of the 
relationship among a threat, its impacts, and the resulting consequences. An important 
area for future research is the development of methodologies for endogenously 
representing probabilities and a time-dependence for response and recovery activities 
in energy models. 

4. An alternative approach to modifying existing tools to enable them to effectively 
quantify and estimate the value of potential resilience investments would be to 
develop a new model specifically for energy sector resilience analysis. However, 
there are many challenges with such an approach. 

In summary, the research presented in this report was motivated by a growing need among 
energy industry stakeholders to evaluate the resilience of their systems to a variety of threats. 
In general, previous frameworks have outlined the steps needed to evaluate resilience, which 
can be summarized through linkages among a variety of research components. A perfect 
resilience analysis would involve detailed approaches for each individual component of the 
analysis. However, in an effort to avoid letting “great being the enemy of good,” it is often 
valuable to make simplifying assumptions for certain components of resilience analysis, 
while approaching others with a higher level of fidelity and granularity.  

Within the research community and energy industry, discussions often center on the need for 
detailed approaches to resilience metrics. However, such requests may only get at part of the 
ultimate need, as the utility of a metric depends strongly on the ability to evaluate it in a 
sophisticated and rigorous manner. In this study, we chose to approach resilience analysis by 
implementing simplified power interruption scenarios and resilience metrics in highly 
sophisticated simulation and optimization tools. To do so, we modified model inputs, 
constraints, and/or objective functions to capture the benefits associated with improved 
resilience, from a variety of stakeholder perspectives. Additionally, across the full suite of 
models, we quantified resilience in energy models designed to represent generation, 
transmission, capacity expansion, distributed energy resources, and energy end use. This 
research demonstrates the value associated with tradeoffs, which help ensure resilience 
analyses remain tractable for a diverse set of stakeholders.
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1 Introduction 
Within the context of energy systems, definitions of resilience encompass holistic concepts 
that emphasize preparing for, absorbing, adapting to, and recovering from interruptions in 
energy supply (White House 2013; DHS 2013; Hotchkiss and Dane 2019; Watson et al. 
2014; Stankovic and Tomsovic 2018), which are often characterized by likelihood and 
impact.1 In this study, we refrain from suggesting our own definition for the term resilience; 
instead, we focus on the characteristics of resilience-testing events that are most important for 
informing resilience planning and investment decisions. For example, disruptions that test the 
resilience of a system or community often result in large-scale consequences, which extend 
over multiple sectors, service types, and timescales. 

Recent research has focused on understanding the resilience of the electricity sector to a core 
set of disruptions, which reflects (1) the economy’s increased dependence on electricity, (2) 
multiple emerging threats to the system (e.g., severe weather, aging infrastructure, 
cyberattacks, and physical attacks), and (3) the rapid evolution of the electricity system in 
recent decades (National Academies of Sciences, Engineering, and Medicine 2017). The 
electricity sector is arguably more advanced in its consideration and assessment of resilience 
than other critical infrastructure sectors (e.g., water, oil and gas, or telecommunications; 
Willis and Loa 2015), but it is also more complex, exposed, and vulnerable to disruptions 
than many of those sectors. Moreover, there are interdependencies between infrastructure 
sectors to consider (DHS and DOE 2015; Judson 2013; EIS Council 2016), such as the 
reliance of water treatment and pumps on electricity supplied from the grid and the 
dependence of hydropower and thermal generators on available water supply. 

Power system modelers and operators have been challenged by resilience, including by how 
to measure the concept and how to apply metrics (Rickerson, Gillis, and Bulkeley 2019). A 
specific challenge is that while many metrics have been proposed, the implementation, 
testing, and validation of those metrics has been limited. In part, resilience metrics (in 
general) have only been validated to a limited extent because of the complexities associated 
with resilience-testing events, whose consequences depend on the timing, nature, magnitude, 
impacts, and extent of the realized threat. Moreover, individual metrics are only exercised 
sporadically because resilience analyses target only the most appropriate metric, which 
depends on a given stakeholder’s goals and perspectives. Beyond the validation of resilience 
metrics themselves, another prominent challenge lies in how resilience can be quantified, 
valued, and monetized, as well as how the value of resilience can be integrated into 
investment or operational decisions.  

In general, a resilience metric is a measurable quantity that can inform an entity’s broader 
risk management strategy through the quantification of a system or asset’s resilience under a 
range of natural hazards, intentional threats, and mitigation strategies. While many resilience 
metrics have been developed (Willis and Loa 2015; GMLC 2017)—primarily from the 
perspective of the electric utility—most proposed metrics are immature (Willis and Loa 
2015), and none is widely agreed upon (National Academies of Sciences, Engineering, and 
Medicine 2017; Keogh and Cody 2013; Willis and Loa 2015; Vugrin, Castillo, and Silva-
Monroy; DOE 2016; Kintner-Meyer et al. 2016). 

 
1 Select examples of power interruption characteristics include low- or high-probability; low- or high-
consequence; small- or large-scale; and short- or long-duration events.  
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1.1 Distinguishing Resilience from Reliability 
Within the resilience metrics literature, there is agreement on the need for distinct metrics 
(or characteristics) that go beyond those established for the related concept of electricity 
system reliability (Table 1). Reliability is defined as the ability to “maintain power delivery 
to customers in the face of routine uncertainty in operating conditions” (Kintner-Meyer et al. 
2016), and it therefore reflects the inherent uncertainty associated with fluctuating load and 
generation, fuel availability, and outages of assets from different causes. Specific data, 
metrics, and valuation methods for electricity reliability are mature and widely adopted 
(GMLC 2017), and they all help inform the mandatory and enforceable reliability standards 
that are (a) developed by the North American Electricity Reliability Council and (b) reviewed 
and approved by the Federal Energy Regulatory Commission. Reliability is often considered 
in integrated resource and transmission planning processes and by regulators and markets 
(Kintner-Meyer et al. 2016). 

Table 1. Qualitative Comparison of the Attributes of Reliability and Resilience-Testing Events 

Attribute Resilience Reliability 

Event 
Characteristics  

Low-probability, high-consequence, 
events that represent black-sky 
operating conditions and apply stress 
to a system over a large-scale 

Uncertainty associated with 
fluctuating load and generation, fuel 
availability, and outage of assets 
under normal operating conditions 

Outage Duration Days to months Seconds to hours 

Spatial Extent Large geographic region (e.g., states, 
regions, or islands) 

Concentrated area (e.g., one facility, 
campus, or neighborhood) 

Economic Losses Losses arising from both lost load and 
cascading impacts to the economya 

Losses largely limited to unserved 
load for a subset of customersb 

Assets Impacted N–k c N–1, N–1–1  

State of Metrics Many immature metrics proposed; 
none universally adopted  

Mature, well-defined, reported 
metrics for the bulk power system 
(e.g., loss of load expectation, 
expected unserved energy) and 
electricity distribution system (e.g., 
SAIDI, SAIFI, and CAIDI)d 

Example Entities 
Responsible for 
Standards 

None North American Electricity Reliability 
Council, Federal Energy Regulatory 
Commission, Public Utility 
Commissions, Institute of Electrical 
and Electronics Engineers  

Relevant Data Forward-looking modeling and 
simulations, with some insights from 
infrequent historical events 

Aggregation of historical records for 
small-scale events over a given 
period (e.g., one year) 

a Select examples of cascading impacts include business losses, community economic failures, and 
degraded water or natural gas delivery to customers as a result of a power. 
b Losses associated with dropped load reflect interruptions in services or operations for a limited time 
c An N–k contingency involves the near-simultaneous failure of a set of k critical components. Beyond 
resulting in a maximized power interruption, a key challenge in analyzing N–k contingencies lies in 
identifying which of the possible combinations of component failures are both likely and impactful. 
d For acronym definitions, see Table 2 (page 5). 
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The distinction between reliability and resilience is particularly important for system 
planning, cost recovery, and utility regulation. Utilities seeking to identify and invest in 
resilience solutions must be able to identify measures that either are unique to resilience or 
provide both resilience and reliability benefits. To recover capital costs for these types of 
investments, regulated utilities must be able to justify the additional costs within the context 
of system benefits (i.e., resilience improvements) for all customers. Reliability metrics and 
assessment methodologies can provide some helpful insights, but they likely undervalue the 
benefits associated with resilience improvements (Stockton 2014). Moreover, a significant 
fraction of utilities exclude outages caused by major events2 when calculating their 
performance on reliability metrics (Eto et al. 2012; Keogh and Cody 2013; National 
Academies of Sciences, Engineering, and Medicine 2017), because the nature of costs from 
major events are different from those from minor events.3 Because major events are most 
relevant for informing resilience investments, reliability metrics and assessments are likely 
insufficient for resilience cost-benefit analyses. In addition, the benefits of power sector 
resilience may expand within given timescales. 

Despite their important differences, reliability and resilience often overlap as concepts. 
Customers value both, and there are likely synergies between their mitigation approaches. 
In some cases, a measure can improve both the reliability and the resilience of a system 
(e.g., the relocation of critical equipment to higher elevations or less flood-prone locations). 
Therefore, considering them separately would likely result in suboptimal solutions, and 
regulators must be careful to avoid approving cost recovery for separate reliability and 
resilience investments that provide the same benefits. Co-consideration of reliability and 
resilience measures will help identify potential tradeoffs between reliability and resilience 
measures. For example, reinforced concrete poles could improve reliability through 
resistance to forest fires and wind damage, but they could reduce resilience (in terms of 
recovery type options after an event), as damaged concrete poles often take longer to 
replace (Watson et al. 2014; National Academies of Sciences, Engineering, and Medicine 
2017; Keogh and Cody 2013). 

1.2 Quantifying Resilience and its Value 
The literature is focused on quantifying resilience, which requires determining both (1) the 
quantity (or magnitude) of resilience needed and (2) its value to end users, communities, 
and/or governments. Universally agreed upon metrics and values for resilience are currently 
lacking, primarily because each quantity depends strongly on circumstances, goals, and 
perspectives. While electricity customers will experience similar impacts (i.e., loss of service) 
during multiple types of disruptive events, the specific impacts on the electricity system itself 
will vary based on the scale and duration of the power interruption; for example, hurricanes, 
cyberattacks, and long-term drought have different characteristics, consequences, associated 
scales, and repair and recovery costs and times.  

 
2 According to the analysis that revealed this statistic, major events are “extraordinary power interruptions and 
are defined by a variety of criteria to differentiate them from routine power interruptions. There are several 
different definitions for major events. (See Eto and LaCommare 2008, Endnote Error! Bookmark not 
defined.). IEEE Standard 1366-2003 is a voluntary industry standard that articulates a consistent set of 
definitions and procedures for measuring and reporting distribution reliability information, including a 
heuristically-derived and statistically- based definition of major events.” (Eto et al. 2012)  
3 Estimates in the corresponding references range from 25% to 50% of regulated utilities and up to two-thirds of 
public power utilities, based on responses to surveys regarding the reporting of reliability metrics. 
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Resilience metrics must reflect the underlying resilience goals, the diverse array of which 
depends on perspective and encompasses the broad definition of resilience. The primary 
resilience goal of an electric utility may focus on rapid recovery of the system as a whole 
after an extreme event. However, community leaders may focus on providing essential 
services, as well as the unforeseen consequences of a large-scale, long-duration event, such as 
the interdependencies of electricity service with other essential services (e.g., water, natural 
gas, and telecommunications). In turn, the corresponding metrics associated with these goals 
are related but inherently different (Table 2).  

Several approaches have been developed in which metrics are developed and evaluated in 
order to quantify resilience, including the Resilience Analysis Process (Vugrin, Castillo, 
and Silva-Monroy 2017) and a matrix format for quantifying energy resilience (Roege et al. 
2014). Resilience metrics can be categorized as “attribute-based” or “performance-based.” 
Attribute-based resilience are “based on system characteristics and typically include 
categories of system properties that are generally accepted as being beneficial to resilience” 
(Watson et al. 2014); as a result, they tend to be implemented through qualitative 
measurements and processes that include systematic review. By contrast, performance-based 
resilience metrics “measure how well the system delivers on its intended purpose during and 
after the threat” (Watson et al. 2014); they tend to be data-driven, and they have been 
implemented for both postmortem and prescriptive analyses.  

For quantitative analysis, it is preferable to use performance-based metrics that consider both 
likelihood and consequence of a given event and its corresponding consequences, as well as 
temporal evolution of an event. The performance of the system is crucial to electric 
resilience, so the metrics highlighted in Table 2 are those that can be quantitatively evaluated 
through infrastructure performance (e.g., using energy sector models) (Vugrin, Castillo, 
and Silva-Monroy 2017).  

Quantitative, performance-based metrics and modeling are inherently forward-looking4 and 
are particularly important for informing planning and investment efforts related to resilience 
solutions, as well as potential response and recovery activities (National Academies of 
Sciences, Engineering, and Medicine 2017). However, detailed quantitative resilience 
analysis is not always possible, because of data or analytical resource limitations. As a result, 
“attribute-based” metrics have been developed to reflect more-qualitative characteristics that 
describe what makes a system resilient (e.g., robust, adaptive, and flexible) (GMLC 2017).  

The most mature performance-based metrics have largely been developed for use at the 
utility or system levels (GMLC 2017). The sheer volume of individual resilience metrics that 
have been proposed (on the order of many tens of metrics) makes it difficult to summarize 
them, but categorizing resilience metrics helps simplify the discussion. The Grid 
Modernization Laboratory Consortium (GMLC 2017) summarized performance-based 
resilience metrics as falling into the following direct consequence categories: electrical 
service, critical electrical service, restoration, and monetary (Table 2). The distinction 
between the first two categories lies in the customers considered (i.e., all customers versus 
critical customers, such as those that provide emergency services), while the final two 
categories focus more on the timing and cost of recovery, largely from the utility perspective.  

 
4 Given the infrequent nature of long-duration outages, forward-looking (or leading) metrics are likely more 
relevant than lagging metrics. However, it is worth noting that both lagging and leading metrics are typically 
used for reliability events, given that historical data for reliability events are widely collected and available. 
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Table 2. Performance-Based, System-Level Metrics for Reliability and Resilience, Classified by 
Perspective and Type of Consequence 

R
es

to
ra

tio
n 

an
d 

M
on

et
ar

y System average restoration 
index (SARI) [min] 

Time to recovery [hrs.] Utility, Insurance 

Loss of utility revenue [$] Utility, Insurance 

Cost of grid damages [$] Utility, Insurance 

Cost of recovery [$] Utility, Insurance 

Avoided outage cost [$] Utility, Insurance 

Loss of assets and perishables [$] Insurance 

Business interruption costs [$] Insurance 

Thin vertical lines separate related metrics for reliability and resilience, and thick lines indicate 
separate metrics that fall under the same consequence category (far left column). Resilience 
metrics tend to be leading (i.e., forward-looking) in nature and can be focused on critical 
customers; reliability metrics can also be forward-looking, but they are often based on historical 
data that represent averages across multiple events and a given system. The table provides a 
qualitative comparison of select metrics for resilience and reliability events, but it is not meant 
to be comprehensive. 

 

For all categories, it is important to consider the dimensions across which the metric is 
evaluated and reported. For example, each of the electrical service resilience metrics in 
Table 2 could be evaluated as a final integrated value that summarizes system performance 
throughout the event (i.e., during the disturbance), in the wake of the disturbance, and 
throughout the restoration process. However, depending on your perspective and goals, the 
time-dependence of a given metric over the course of an event could be of interest (Panteli 
et al. 2017). For example, a utility might want to know the sequence of events, such as how 
rapidly the service level to all customers (or critical customers) was reduced, the minimum 
level of electrical service that was provided (and the duration over which that minimum level 

 
Reliability Metric [Units] Resilience Metric [Units] 

Perspective 
(Example of 
Organization Type) 

El
ec

tr
ic

al
 S

er
vi

ce
 (A

ll 
an

d 
C

rit
ic

al
) 

Customer minutes interrupted 
(CMI) [mins.] 

Customer-hours of outages [hrs.] or 
load not served [kilowatt-hours, or kWh] 

Utility 

Customers interrupted [number 
of customers] 

Average number (or percentage) of 
customers experiencing an outage 

Utility 

System average interruption 
frequency index (SAIFI) 

Critical customer-hours of outages [hrs.] 
or load not served [kWh] 

Community leaders, 
Utility 

System average interruption 
duration index (SAIDI) 
[mins./customer] 

Average number (or %) of critical 
customers experiencing an outage 

Community leaders, 
Utility 

Customer average interruption 
duration index (CAIDI) 
[hrs./customer] 

Critical services (e.g., hospitals, fire 
stations, and police stations) without 
power  

Community leaders 

Customers experiencing 
multiple interruptions (CEMI) 

Critical services without power for more 
than N hours (e.g., N > hours of backup 
fuel requirement) 

Community leaders 
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occurred), how quickly service was restored, or the time evolution of lost revenue. Or, a city 
might be interested to know the time evolution over which critical services lost power, which 
would provide insights as to whether the loss of critical services was due to backup generator 
failures or an event duration that exceeded the ability for backup power to maintain power.  

A final and challenging step is translating impacts to consequences regarding societal 
welfare. For example, a long-duration power interruption would likely have direct effects on 
the health and safety of a community, due to the loss of critical community services (e.g., 
hospitals, fire stations, or police stations). However, many factors inform this relationship. 
Accurately assessing the impacts of the outage itself also requires comparison against the 
relevant “baseline” health and safety of a community, which depends on highly localized 
demographic and intangible factors. A long-duration power interruption could also indirectly 
effect (or threaten) the health and safety of a community, such as through degraded national 
security (e.g., due to the loss of critical infrastructures or long-duration outages at military 
bases). Finally, a very important step lies in translating the consequences of a long-duration 
power interruption to the loss of human life, the “value” of which is highly controversial 
(Viscusi and Aldy 2003).  

1.3 Considering Resilience in Energy Planning 
Some insights into the costs of potential resilience measures have been reported by utilities 
engaged in resilience planning in the wake (or anticipation) of emerging threats. For example, 
following Hurricane Sandy in 2012, the Edison Electric Institute released a report 
summarizing “best practices with regards to hardening the distribution infrastructure and 
creating a more resilient system” (EEI 2014). The report serves as a useful resource for 
utilities by providing a menu of options for hardening and resilience measures at the 
distribution level, as well as their relative cost impacts, cost recovery mechanisms, and 
relevant state programs. Common mitigation measures include “undergrounding” of power 
lines, vegetation management, higher design and construction standards, and smart grid, 
microgrid, and advanced technologies, as well as planning and operational measures that 
improve recovery times (e.g., an increased labor force, standby equipment, and restoration 
materials). A similar summary that covered a wider array of threats and solutions provides 
a comparable list of common mitigation measures, but it placed greater emphasis on the 
growing importance of advanced meters, smart-grid technologies, cybersecurity measures, 
and probabilistic risk models (Finster, Phillips, Wallace 2016).  

For regulated utilities, investments are subject to the approval of the regulators who are 
responsible for evaluating the economics of such measures. Interviews with public utility 
commission staff found that requests for cost recovery or investments in resilience are 
typically included in general rate case proceedings, although little or no distinction is made 
between reliability and resilience. Moreover, while the cost of a given resilience measure is 
well understood (e.g., the costs of labor and materials to “underground” specific power lines), 
the resulting benefits are more difficult to assess, particularly because of a lack of supporting 
data (LaCommare, Larsen, and Eto 2017).5 The types of data that would support the benefits 
associated with resilience measures are difficult to collect because of the time and types of 
events needed to demonstrate the value of resilience investments (e.g., 1,000-year flood 
events happen so infrequently that the benefits of mitigation measures associated with those 
events are difficult to quantify in a realistic time frame). In addition, demonstrating that a 

 
5 Two primary reasons for this are the infrequent nature of this type of event (some of which have never 
occurred before) and the lack of a universal methodology for quantifying the cost of a given interruption 
(e.g., to residential or government customers). 
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local investment will provide benefits to the broader customer base is often challenging 
(Rickerson, Gillis, and Bulkeley 2019). These findings represent an important challenge for 
resilience investments, as the use of reliability metrics alone may be insufficient for guiding 
investments in mitigation strategies for more costly and higher-impact disruptive events 
(National Academies of Sciences, Engineering, and Medicine 2017; Keogh and Cody 2013).    
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2 Resilience Analysis in Energy Sector Models 
Recognizing that implementing, testing, and validating resilience metrics are challenges that 
need to be addressed, we dedicated staff and time to researching how to effectively integrate 
resilience considerations into energy sector models and tools. The overarching goal of this 
effort was to evaluate the data needs, methodologies, and outcomes—including consequences 
and/or changes in investment or operational decisions due to avoided consequences—based 
on resilience analysis in a range of existing tools. This section provides a brief overview of 
the underlying approach to achieving this goal, which includes defining generalized power 
interruption scenarios, identifying an appropriate range of tools, and performing and 
interpreting results from preliminary resilience scenario analyses.  

2.1 Power Interruption Scenarios 
The first step in our research effort was the development of power interruption scenarios, 
which were intended to help establish a framework for simulating real-world grid outages 
and their impacts on system components. In this case, the term “threat” refers to something 
that could negatively impact some part of the energy system, which we define them based 
on variations across two dimensions: (1) whether system operators have time to prepare and 
(2) the duration of the associated power interruption. These two dimensions were chosen to 
capture both the variation in the types of threats on a given system, as well as variation in 
the severity of events types.  

The resulting suite of power interruption scenarios were defined by the: 

• Forecast availability, in terms of preparation time before an event occurs: 0, less 
than 12, and greater than 12 hours 

• Duration of the power interruption: less than 12 or greater than 12 hours. 
These thresholds were chosen primarily based on existing model parameterizations, which 
include both day-ahead scheduling and real-time operations. In addition, they were developed 
with potential bulk power system performance impacts in mind, which can be classified as 
one of the following: 

• The bulk power system can serve all load but may need re-dispatch, commitment, 
or configuration. 

• Bulk power system generation capacity is sufficient, but the transmission network 
is compromised. 

• Both generation and transmission are compromised at the bulk power system level. 
While we did not define the power interruption scenarios based on a specific event type, 
Table 3 offers additional intuition by providing examples of causes that could lead to power 
interruptions with similar levels of advanced notice (i.e., time for preparation) and duration. 
As outlined in the Federal Emergency Management Agency’s Critical Infrastructure 
Protection Program (DHS 2018),6 the three widely acknowledged categories for disruptive 
events to infrastructure performance are: 

• Human-caused disruptions could be related to a lack of maintenance, insufficient 
vegetation management programs, or adversarial acts, for example. 

 
6 “Lesson Summary—Lesson 4: Managing Risk, FEMA, 
https://emilms.fema.gov/IS0921a/CIPP0104summary.htm. 

https://emilms.fema.gov/IS0921a/CIPP0104summary.htm


9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

• Natural hazards typically include weather related events (e.g., tornadoes, hurricanes, 
floods, storm surge, flooding, and ice storms) and earthquakes, among other hazards. 

• Technological failures could include equipment failures, or system malfunction that 
are due to poor design or overloaded lines, for example.   

These three categories are reflected in the examples provided in Table 3 (page 10). It is 
important to note that a power interruption’s duration cannot be generalized across all 
instances of a given event type. For example, one cannot know a priori whether the duration 
of a power interruption associated with a hurricane would be longer or shorter than that of a 
tornado; in each case, the duration will depend on the strength of the event, as well as on the 
magnitude and extent of its impacts (e.g., damage to critical grid assets). Similarly, a simple 
relationship does not currently exist between an event type and the recovery time associated 
with it, since this will depend on characteristics of the event itself, as well as on impacts on 
other critical infrastructure sectors (e.g., the inundation of roads that are needed for recovery 
effort). Instead, a power interruption’s duration is primarily a function of how a system 
performs against, and how quickly it can recover from an event. 

By contrast, the degree of advanced notice depends on the forecasting characteristics of a 
given threat type. Human-caused and technological threats typically occur with little or no 
warning, while natural threats inherently have different forecast availabilities, which inform 
both when the event will occur and when crews might be able to commence recovery 
activities. For example, earthquakes typically occur with little or no warning, whereas 
advanced notice before a wildfire, tsunami, regional storm, or tornado could range from 
minutes to hours (depending on proximity to the origination of the event). Other natural 
events, such as hurricanes or volcanic activity, can be reasonably forecasted many hours or 
days before the event.7  

The general scenario definitions and examples provided in Table 3 are for the types of 
scenarios that energy models could consider and the dimensions that could be important 
to represent endogenously; however, additional research is needed to enable such 
representations. For example, data limitations inhibit the endogenous representation of 
response and recovery activities, which are a necessary component for informing the duration 
of a given power interruption. Recovery timelines may be a function of advanced notice, 
type, and timing of the threat of interest; available resources; and dependency (or 
interdependency) with other critical infrastructures. This limitation primarily represents 
a need for data to inform such a relationship, as the improved understanding could be 
translated into energy decision models in a variety of ways.  

Another important research area lies in the improved forecasting of extreme events, 
particularly for renewable energy resources. In general, increased advanced notice can 
improve the bulk power system operators’ ability to cost-effectively plan and prepare for 
a major event, thus reducing overall recovery times. In addition, considering spatial 
temperature forecasts and prior precipitation data can improve predictions for the availability 
of renewable generation resources during extreme events, thus removing surprise failures on 
the system. 

 
7 More-chronic natural stressors on the energy system (e.g., drought) can have forecast availabilities of weeks 
to months or years; however, these stressors are often treated separately, as they do not represent acute threats 
to the energy system.  
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Table 3. Example Past Events for Representative Power Interruption Scenarios, Defined by Preparation Time and Power Interruption Duration 

  Power Interruption Duration 

 
 

<12 Hours >12 Hours 

A
dv

an
ce

d 
N

ot
ic

e 

None In December 2015, three electric grid control centers in eastern 
Ukraine were the subject of a cyberattack. Though the event was 
initially facilitated by spear-phishing tactics that were employed 
months in advance, the attackers ultimately shut down the grid 
without any warning. While the duration of the power interruption 
was relatively short (on the order of hours), the attack had severe 
implications for the long-term operational levels of the system.  

On July 27, 2017 a construction crew working on a replacement 
bridge in the Outer Banks of North Carolina severed a power cable; 
this caused an eight-day blackout during peak tourist season on the 
Outer Banks, affecting more than 7,000 people. 

<12 
Hours 

On June 7, 2018 a tornado was reported 8 miles outside Laramie, 
Wyoming, and it stayed on the ground for 45 minutes. The storm 
disrupted sections of the electric grid and nearby towns were 
without power for 4 hours due to reports phoned in and system 
operators being able to route power and de-energize lines. 

In January 1998, a severe ice storm occurred over Eastern Canada 
and New England. “At its peak, more than 5.2 million customers in 
the interconnected areas of Eastern Canada, New York, and New 
England were without power. Three weeks after the storm, hundreds 
of thousands of customers still had no power, with some customers 
not getting power restored until more than 1 month later (RMS, 
2008).” (NAS 2017) 

>12 
Hours 

In 2019, Hurricane Dorian neared the Florida coastline after 
devastating the Bahamas. Though the hurricane remained off the 
coast of Florida, it caused power outages in the state by blowing 
downed trees, vegetation, and debris into power lines. Given the 
significant advanced notice afforded to Florida utilities, power was 
restored quickly, with Florida Power and Light reporting that the 
average customer’s power was restored in approximately one 
hour. The utility cited their previous smart grid technology and 
system hardening investments as key to avoiding outages and 
reducing restoration times for the 160,000 customers that did 
experience outages as a result of the storm (FPL 2019).  

In 2017, two Category 5 hurricanes, Irma and Maria, damaged Saint 
Croix, Saint John, and Saint Thomas in the U.S. Virgin Islands, as 
well as Puerto Rico and other smaller islands. Hurricane Irma hit the 
U.S. Virgin Islands on September 6, with the eye passing over St. 
Thomas and St. John. On September 20, the eye of Hurricane Maria 
swept near St. Croix with maximum winds of 175 mph. The 
destruction the storms left on the islands — about 90% of customers 
lacked power in September — was at times overshadowed by the 
catastrophic devastation on neighboring Puerto Rico. About half of 
Puerto Rico’s more than three million people did not have electricity 
100 days after Maria cut across the territory. 
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2.2 Energy Sector Models 
For this preliminary resilience analysis effort, we selected a range of models that represent 
different segments of the energy sector, geographic scales, and modeling approaches. The 
models we selected (Table 4) span simulations of regional building stocks and campus-level 
backup power systems, to the bulk power system across the contiguous United States. In 
addition, we chose tools with very different modeling approaches; in general, the selected 
models can be categorized as either (1) optimization models for both long-term planning and 
electricity dispatch (ReEDS, REopt, and SIIP::Power) or (2) detailed simulation models of 
resource adequacy for electricity supply (PRAS) and building stock performance (ResStock).  

The range of metrics that were implemented across the suite of models demonstrates the 
importance of stakeholder perspectives and model architectures when identifying the most 
appropriate resilience metric (Table 4). For example, the chosen metric in ResStock—which 
simulates energy use and thermal performance in the U.S. residential building stock—is 
intuitively based on the perspective of a building resident. Moreover, PRAS takes the 
perspective of an energy supplier, who is concerned with the possibility of unserved energy 
due to resource inadequacy. As a result, the resilience metric that was implemented in PRAS 
is the expected unserved energy. While this metric is typically used in reliability analysis, we 
found its application here to be appropriate because it was applied to a power interruption 
scenario that corresponds to a resilience-testing event (see Section 3.2).  

The selection of metrics based on stakeholders’ resilience goals may be informed by their 
available data and/or analytical capabilities. Therefore, another important consideration in 
selecting resilience metrics lies in the architecture(s) of available energy sector models, 
which is captured by the range of models included in our preliminary resilience analysis 
efforts. In particular, in contrast to the models discussed in the previous paragraph, the least-
cost optimization models are formulated to minimize system costs, based on a variety of 
input assumptions and subject to multiple constraints. As a result, the chosen metrics in least-
cost optimization more often take the form of a resilience “value,” or a measure of the 
damages incurred as a result of an interruption in electricity supply. The one exception is the 
chosen metric in ReEDS (Table 4), which is a long-term capacity expansion model. In this 
case, the modeling team chose to implement and evaluate an attribute-based metric (Section 
1.1.2), because of the model’s inability to represent localized short-term interruptions on the 
bulk power system. 

2.3 Scenario Analysis 
The remainder of this report presents results from our preliminary resilience analyses in 
existing NREL models. Each modeling team considered the proposed suite of power 
interruption scenarios and identified which ones could be adequately represented within their 
modeling framework. Among the candidate power interruption scenarios, each modeling 
team chose one to explore by attempting to understand the necessary methodologies, data, 
and resulting outcomes that could be evaluated (Table 4).  
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Table 4. NREL Tools in Which Preliminary Resilience Analyses Were Performed 

Features of the Underlying Models Description of Preliminary Resilience Analyses 

Name Description Analysis Approach Power Interruption 
Scenario  

Resilience Metric  

ResStock Physics-based simulation of 
the energy use and thermal 
performance of the U.S. 
residential building stock 

Development of methods for 
(1) representing a power outage and 
(2) measuring thermal resilience, 
defined as the ability of a building to 
maintain livable indoor temperatures 
during loss of electricity or gas supply  

Both Short and 
Long-Duration 
Power Interruptions 
with No Preparation 
Time 

Social consequence measured 
via (a) time to unsafe indoor 
conditions during adverse 
outdoor conditions or (b) 
minimum/maximum indoor 
temperature 

Probabilistic 
Resource 
Adequacy Suite 
(PRAS) 

Probabilistic simulation of 
simplified power system 
operations and load shortfalls 
under random and/or 
exogenously-forced 
generation outages on the 
bulk power system 

Development of a sequential 
simulation mode for tracking storage 
device state-of-charge, to facilitate 
evaluation of a multi-day fuel supply 
disruption under differing options for 
local energy storage ride-through 

Long-Duration 
Power Interruption 
with No Preparation 
Time 

System performance measured 
via expected unserved energy 

Scalable Integrated 
Infrastructure 
Planning Power 
Systems Toolkit 
(SIIP::Power) 

Least-cost optimization of 
day-ahead and real-time bulk 
power system scheduling 
problems, adapted for 
resiliency representation 

Development of a methodology for 
co-optimizing the dispatch of 
generation with the avoided power 
interruption cost  

Long-Duration 
Power Interruption 
with No Preparation 
Time 

Economic consequence 
measured via location- and 
duration-dependent value of lost 
load 

Regional Energy 
Deployment 
System (ReEDS) 

Least-cost optimization for the 
development and operation of 
generation, storage, and 
transmission assets on the 
bulk power system across the 
contiguous United States 

Increasing service requirements, 
outage rates for electricity generation 
assets, and outage rates for 
transmission assets, the latter of 
which is a new capability in the 
model 

N/A Attribute-based metric of 
redundancy 

Renewable Energy 
Optimization 
(REopt) 

Least-cost optimization for the 
development and operation of 
distributed energy resources 
at a facility or campus scale 

Development of a methodology for 
considering avoided power 
interruption costs in investment 
decisions related to backup power 
systems 

Short-Duration 
Power Interruption 
with No Preparation 
Time 

Avoided economic consequence 
measured via a static “value of 
resilience,” or the value 
associated with mitigating a 
power interruption for the end 
user 
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In the case of the detailed simulation models, the methodology for enabling resilience 
analysis primarily involved modifications to the scenario definitions, although structural 
changes were also made in ResStock (see Section 3.1). For the least-cost optimization 
models, the chosen methodology took the form of modifications to the models’ input 
assumptions, as opposed to fundamental changes to the model architectures. However, 
an interesting distinction can be made between preliminary resilience analyses that involved 
(1) modifications to the model constraints (ReEDS) and (2) modifications to the models’ 
objective functions (SIIP::Power and REopt).  

The following results represent preliminary efforts, which demonstrate a helpful approach 
and mindset for incorporating resilience into existing tools and models. Though this research 
effort was motivated by the need to facilitate resilience analysis, some of these examples 
may be better classified as evaluating reliability events (e.g., due to their shorter duration; 
Table 1). This limitation reflects the time and resources dedicated to these preliminary 
efforts—and not inherent limitations of the models themselves. To expand on this, each 
subsection in Section 3 and Section 4 includes future development and/or research that would 
improve our ability to perform resilience analysis, by better representing the impacts of 
advanced notice, longer-duration power interruptions, and/or response activities.  
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3 Adapting Simulation Models for Resilience 
Analysis 

This section summarizes the preliminary resilience analysis we performed in ResStock and 
PRAS. The formulations of these models enable the simulation of system response, given 
a deterministic threat. For this study, each model was used to explore a single power 
interruption scenario from Table 3 and evaluate its impact on a resilience metric that 
corresponds to a native (or slightly modified) output of the model. In other words, resilience 
did not inform or modify the model’s calculation itself; instead, it took the form of providing 
context for the model results.  

3.1 ResStock 
ResStock is a tool for simulating energy use in housing stocks at national, regional, or local 
scales.8 It combines a database of the energy related characteristics of the housing stock, 
statistical sampling of the database, and sub-hourly building energy simulations using 
OpenStudio9 and EnergyPlus.10 ResStock has been used to evaluate the national potential 
energy savings from various efficiency upgrades, develop state fact sheets on the most cost-
effective upgrades, and evaluate upgrades for low income households (Wilson et al. 2017, 
2019). To analyze the resilience of residential single-family detached buildings in the 
contiguous United States, we added to ResStock the ability to simulate power outages and 
track metrics related to thermal resilience—the ability of a building to maintain livable 
indoor temperatures during loss of electricity or gas supply. 

To capture thermal resilience in ResStock, we added the ability to simulate a power outage 
and report metrics related to thermal resilience. In particular, we created two OpenStudio 
measures, which are scripts that make programmatic changes to OpenStudio models. The first 
of these measures simulated an outage by turning off all electric equipment in the home 
during the period specified as an outage, as well as fuel-fired heating equipment that requires 
electricity (e.g., gas furnaces and boilers with circulation pumps). Occupancy related 
schedules were assumed to be unchanged during an outage period—which is a simplifying 
assumption that might not hold for long-duration interruptions due to extreme weather 
events—and residential backup power systems were not represented. The second measure 
adds outputs for the thermal resilience metrics for the home. The metrics used here for an 
outage period were primarily concerned with the potential health impacts in terms of the risk 
of exposure to extreme heat or cold, but such metrics could also be used to evaluate potential 
damage to building infrastructure, such as freezing pipes. 

Reported Thermal Resilience Metrics 
For cold weather scenarios, dry bulb temperature is the main thermal stress factor. For hot 
weather scenarios, sweating is the primary means of rejecting body heat, which means 
humidity is a key variable. More than 50 different heat stress indices have been proposed as 
thermal resilience metrics, but wet-bulb globe temperature (WBGT) is used as the heat stress 
index for workplace exposure limits by the Occupational Safety and Health Administration 
(OSHA), the Center for Disease Control and Prevention (CDC), and the International 
Organization for Standardization (ISO).  

 
8 https://resstock.nrel.gov 
9 https://www.openstudio.net  
10 https://energyplus.net 

https://www.openstudio.net/
https://www.openstudio.net/
https://energyplus.net/
https://resstock.nrel.gov/
https://www.openstudio.net/
https://energyplus.net/
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The Leadership in Energy and Environmental Design (LEED) green building rating system 
includes a pilot credit program designed to evaluate and credit the thermal resilience of a 
building during a power interruption (Pearson 2015). The pilot credit suggests threshold 
values below 54°F dry bulb during a cold wave and 86°F dry bulb with 50% relative 
humidity (which is equivalent to 76°F WBGT) during a heat wave as thresholds for the 
“livable” temperature during a power interruption. OSHA suggests a higher workplace 
exposure limit of 86°F for the WBGT.  

For this preliminary resilience analysis, we used ResStock to predict indoor conditions and 
estimate (1) how long it would take the indoor air temperature to go outside the range of 
livable temperatures and (2) the minimum indoor dry bulb (during a cold wave) and 
maximum WBGT (during a heat wave) during a power interruption. 

Power Interruption Scenarios 
To demonstrate the new capabilities of ResStock, simulations were done for the single-family 
housing stock for two power interruption scenarios:  

1. Heat wave: 8,000 simulations representing the single-family housing stock in and 
around Chicago, Illinois, in the summer of 2012 (July 6–10)  

2. Cold wave: 1,500 simulations representing the single-family housing stock in and 
around Buffalo, New York, in the winter of 2014 (January 3–7)  

These particular scenarios were chosen, as they were part of large heat and cold waves that 
affected a significant part of the contiguous United States. Moreover, they represent some of 
the worst-case scenarios for a power interruption from a thermal comfort perspective.  

Two different power interruption durations were simulated for each location: a shorter eight-
hour outage and a longer four-day outage. In Buffalo, the power interruption starts at 9 p.m. 
due to a hypothetical ice storm, while in Chicago the power interruption starts at noon due to 
hypothetical distribution system failures caused by the high outdoor air temperatures. The 
power interruption scenarios used here captured part (but not all) of the heat and cold wave 
events in each location. These scenarios can be thought of as having no preparation time, as 
they do not reflect any preheating or precooling that could occur if a customer expected an 
outage could happen soon. 

Scenario Results 
Figure 1 (page 16) presents the results of the preliminary resilience analysis based on a 
hypothetical ice storm in Buffalo, New York, where the black line indicates the assumed 
threshold for livable temperatures. The two graphs illustrate the results from the Buffalo ice 
storm scenario, as modeled in ResStock. The first graph shows the temperature trajectories 
over the first twelve hours of the power interruption, whereas the second graph represents the 
distribution of maximum indoor temperatures. The colors show the decade in which the 
buildings were constructed. 

During the cold wave (during which outdoor temperatures go as low as -20°F), all the homes 
drop outside the range of livable temperatures within the eight-hour period of the shorter 
power interruption, with minimum indoor air temperatures significantly below the livable 
threshold. However, newer homes tend to go longer before falling outside the livable range 
and have higher minimum indoor air temperatures. Newer homes tend to be more efficient, 
having more insulation and lower infiltration rates, so vintage serves as a useful proxy for 
efficiency in this preliminary analysis effort. 

https://stg.usgbc.org/credits/new-construction-core-and-shell-schools-new-construction-retail-new-construction-healthca-85
https://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf
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Figure 1. Internal temperature trajectories (left) and distribution of minimum indoor 

temperatures (right) for buildings in Buffalo, New York, during a power interruption resulting 
from a hypothetical 12-hour ice storm, as modeled in ResStock 

Newer homes, presented in green, typically maintained a livable internal temperature for longer during the 
hypothetical ice storm, and they maintained higher temperatures overall over the course of the outage.  

In the case of the simulated power interruption during a heat wave (Figure 2, page 17), some 
of the newer, more efficient homes stayed within the livable range, even during the longer 
four-day outage.11 During the heat wave, the outdoor WBGT actually dropped below most 
of the indoor WBGT values, as the power interruption was modeled (1) as having occurred 
at the peak of the heat wave, when the grid was likely to be most stressed, and (2) without 
consideration of potential changes in occupant behavior, which can be difficult to predict. 
For example, occupants could open windows to facilitate equilibrating with the lower outdoor 
WBGT (Figure 2); however, such actions (or inaction) could ultimately depend more on 
external factors (e.g., fear of crime) than on personal comfort. Given this uncertainty and 
insufficient supporting data, potential mitigating actions (unrelated to the use of electric 
equipment) were not considered in our preliminary resilience analysis effort. 

 
11 Results from this preliminary resilience analysis distinguish between two distinct groups of homes: those with 
air conditioners and those without (Figure 2). As the outage progressed, the two groups gradually merged. 
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Figure 2. Internal temperature trajectories for buildings in Chicago, Illinois, during a power 

interruption resulting from a heat wave, as modeled in ResStock 
During the heat wave, two distinct groups of homes were apparent: those with air conditioning and those 
without. When the power interruption occurred at noon on July 6, the two clusters began to merge. Of the 
homes with air conditioning, those that were more airtight tended to maintain more comfortable indoor air 
temperatures. 

Summary and Future Work 
Based on research completed under this study, ResStock can now simulate a power outage, 
and it can evaluate the thermal resilience of the residential building stock during a power 
outage that is coincident with adverse weather conditions. The results described are intended 
as a demonstration of the newly added capabilities, which could be used to simulate power 
interruptions at different times and in additional locations. However, these initial results 
showed that more-efficient buildings tended to be more resilient as well. An important next 
step in this type of analysis is translating the performance of buildings into economic value, 
which could take various forms (e.g., the value associated with improved personal comfort 
and avoided private insurance or public emergency response expenditures for relocating 
affected residents). 

The literature validates the use of the EnergyPlus simulation engine for indoor occupant 
heat stress analysis (Holmes 2016), but additional work is needed to validate ResStock 
assumptions about the distribution of thermal capacitance across the housing stock. The 
thermal capacitance of construction materials is well understood, but the range in the quantity 
of furniture, books, and other contents of homes contributing to thermal capacitance is more 
uncertain. Another opportunity for improvement is in modeling how different occupants 
respond to outages during extreme events, which may include opening windows or closing 
window blinds during a heat wave, and boiling water or running the water heater during a 
cold wave (if natural gas were available for cooking or water heating). Accounting for these 
potential changes to occupant behavior during an outage would require efforts in model 
development as well as the collection and implementation of supporting data. 

3.2 Probabilistic Resource Adequacy Suite (PRAS) 
The Probabilistic Resource Adequacy Suite (PRAS)12 simulates different combinations of 
transmission and generation outage events on the bulk power system to quantify the risk 
of unserved load events resulting from shortfalls in the supply or deliverability of capacity. 
These risks can be expressed in terms of the loss-of-load expectation (LOLE), which is the 

 
12 https://nrel.github.io/PRAS/  

No AC 
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Air 
leakage 
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count of the average number of time-steps (e.g., hours) during which a shortfall event is 
expected to occur during the study period, and expected unserved energy (EUE), which is the 
average total magnitude of shortfall expected over the study period. 

This analysis studied the resiliency impacts of adding energy storage devices to a regional 
grid in order to ride through a multiday fuel supply disruption for natural gas-fired generation 
units. The analysis used EUE as the primary resilience metric in order to quantify reductions 
in the depth of shortfall under different storage installations (e.g., no storage, a single 100-
megawatt four-hour storage unit, and six 100-megawatt, four-hour storage units). In the 
scenario considered, a natural gas supply disruption in a region of the Reliability Test System 
– Grid Modernization Lab Consortium (RTS-GMLC) (Barrows et al. 2019)13 forced all gas 
combustion turbine and combined cycle units in that region offline for 58 hours before 
allowing them to randomly return to service (based on their probabilistic mean-time-to-repair 
parameters). Other generators in the system experienced normal outage conditions 
(probabilistic outages and repairs were based on unit-level mean-time-to-fail and mean-time-
to-repair properties). 

Under normal operating conditions (no fuel supply disruption; dark purple line), no unserved 
energy was experienced across any of the simulations (Figure 3). However, more than 
100,000 separate simulations of the previously described disruption scenario, the system 
experienced 111 megawatt-hours (MWh) of unserved energy with no storage installed (red 
line in Figure 3), 57 MWh with the single device installed (blue line), and 3 MWh with six 
devices installed (green line), on average. The apparent under-performance of the simulated 
battery systems—e.g., the 100 MW/400 MWh battery reduces EUE by 54 MWh—was the 
result of averaging across all simulations, as the EUE was zero in many of the simulations, 
even under the disruption scenario.  

As PRAS uses “greedy” rule-based dispatch heuristics to inform storage charge and discharge 
profiles (not intertemporal optimization), it cannot distinguish between scenarios with long, 
short, or no preparation time before an event. However, the nature of these dispatch rules 
(charge storage whenever possible, and only discharge as a last resort to avoid dropped load) 
and the accompanying assumption that other possible (unmodeled) operating modes do not 
reduce the resource’s ability to provide energy when called on to avoid a shortfall could be 
interpreted as consistent with a scenario in which an operator either has some degree of 
advance knowledge of a resiliency event or at least holds energy reserves in anticipation 
of a possible need (such as with Tesla’s Powerwall Storm Watch mode). 

In keeping with current standard practice in probabilistic resource adequacy assessment, 
PRAS considers random generator and line outages (which may contribute to dropped load) 
as occurring completely independently of other potential failures on the system. This is 
clearly a poor assumption in the context of resilience events such as extreme weather or 
infrastructure attacks. A more realistic representation would allow outage or repair 
probabilities to vary across time as a function of environmental conditions (e.g., temperature 
and wind speed), contemporaneous outage events, or other common factors that may affect 
multiple grid assets and lead to correlated outages or repair delays. Future work could build 
on recent efforts in deriving conditional asset failure probabilities given specific 
environmental conditions (Murphy et al. 2019) to better characterize the conditional (given 
some extreme weather resilience event) resource adequacy of a power system, moving 
beyond standard reliability studies which focus only on typical operating conditions. 

 
13 “Reliability Test System – Grid Modernization Lab Consortium,” https://github.com/gridmod/rts-gmlc. 

https://github.com/gridmod/rts-gmlc
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Transmission constraints between the three regions of the test system were also not enforced 
in this analysis, and they would likely increase expected unserved energy if considered in 
future analyses. 

 
Figure 3. Expected unserved energy across natural gas disruption scenarios with varying 

levels of energy storage capacity, as modeled in PRAS 
The four lines demonstrate the expected shortfall (in megawatts) that could occur under scenarios with 
varying assumptions about natural gas supply interruption and installations of four-hour battery storage 
systems. Obtaining the total lost load (in megawatt-hours) requires multiplying the expected magnitude 
and duration of the shortfall. 

Finally, though this preliminary resilience analysis employed an energy-based system 
performance metric, an estimate of the economic consequences associated with EUE could 
be derived by multiplying the magnitude of the expected energy shortfall by some 
predetermined value of lost load (VoLL), expressed in terms of currency per unit energy 
(e.g., $/MWh). The expected (average) value provided by an investment designed to improve 
system resilience could then be expressed as the product of the system’s VoLL and the 
decrease in EUE achieved by the upgrade. The true opportunity cost of an energy shortfall 
varies widely by consumer and end use, with system-level average estimates in the United 
States typically ranging from $2,000/MWh to $20,000/MWh. However, a static VoLL is 
likely not appropriate for use in resilience analyses, because the time-dependence of the 
VoLL becomes increasingly important in extended-duration power interruptions. This topic 
is discussed in detail in the following sections.  
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4 Adapting Least-Cost Optimization Models for 
Resilience Analysis 

In contrast to the efforts presented in Section 3, the implementation of resilience metrics in 
SIIP::Power, ReEDS, and REopt involved modifying the constraints or objective functions 
that define the solutions in these least-cost optimization models. Moreover, these models are 
currently formulated to consider only deterministic threats (reflected by exogenous scenario 
definitions) and outcomes (based on constraints within the models’ objective functions). 
Therefore, the results presented in this section describe how accounting for a given resilience-
testing event—and its consequences—influenced the least-cost energy investment and 
operational decisions made in the models, without considering uncertainties about event 
forecasts or recovery times.  

In the case of the SIIP::Power analysis, which simulates unit commitment and dispatch, we 
expect to observe changes in the operations of the bulk power system, which would influence 
both (1) the timing and duration of power interruptions experienced by customers that are 
served by a given node and (2) the overall system costs associated with a long-duration 
outage. The former outcome could be thought of as a scheme to serve critical loads during an 
event, given the higher customer (and potentially broader societal) damages associated with 
an extended period of lost load for a critical service type (e.g., hospitals, fire stations, or 
police stations). In the case of the long-term planning models (ReEDS and REopt), the 
expected outcome is a change in the optimal energy investment, which follows from changes 
in the cost-benefit analysis for various investment options when accounting for the value of 
improved resilience (either directly or indirectly). 

4.1 Scalable Integrated Infrastructure Planning: Power Systems 
Toolkit (SIIP::Power) 

The Scalable Integrated Infrastructure Planning: Power Systems Toolkit (SIIP::Power) 
provides a flexible framework for defining and solving a variety of power systems analysis 
problems. The toolkit enables a variety of standard unit commitment and economic dispatch 
formulations, including (1) linear and non-linear power flow and (2) utilities to enable 
simulations of sequential and nested interdependent problems. SIIP::Power is currently 
focused at transmission level power system data. The framework leverages parametric 
dispatch to enable flexible mathematical formulations and simulation assemblies, and it 
supports optimization and simulation model solutions with modularity between data, problem 
compilation, and solution techniques. The overarching SIIP framework has been applied to 
power systems and municipal water systems, and there are plans to enable simulations of 
other infrastructure systems (e.g., natural gas and transportation). 

For this preliminary resilience analysis, we used the features of SIIP::Power that represent an 
adapted production cost modeling framework. This demonstration involved hourly resolution 
and detailed load, transmission, and generator fleet data for the RTS-GMLC (Barrows et al. 
2019), which consists of three regions with 74 buses and 155 generators. In particular, we 
exercised the production cost modeling framework in SIIP::Power to determine the least-cost 
generation commitment and dispatch schedule to meet system demand. Beyond the standard 
physical and regulatory requirements of system operations, the least-cost solution 
in SIIP::Power was also informed by our chosen resilience metric, which is based on a 
duration-dependent value of lost load (VoLL). The formulation for duration-dependent VoLL 
is represented by a series of sets, which are presented in the appendix. 
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Most production cost models can represent generator and line outages, but they treat the 
VoLL as a constant value that does not vary over the duration of a power interruption; 
therefore, lost load is the decision variable. In this case study, we model a VoLL that varies 
as a function of the time since service was interrupted. This duration-dependent VoLL is 
determined from a flexible framework that defines how the VoLL evolves over the course of 
a long-duration power interruption for an individual customer type, accounting for the type 
and timing of the underlying cause of the outage (Ericson and Lisell 2018).  

In this preliminary resilience analysis, the duration-dependent VoLL varied (1) over the 
duration of the power interruption and (2) by node, based on the load served by that node. 
This information was used by the model to select which buses to serve at each time-step 
when there was insufficient energy to serve all loads. The mathematical formulation is similar 
to a classic unit commitment and economic dispatch formulation, but in addition to deciding 
the commitment of power plants, our decision variable is whether to serve power to a bus. 
The objective function is to minimize the total system cost—including the fixed outage cost, 
duration-dependent outage cost, and generation costs.  

In terms of the power interruption scenario represented, we explored an event with no 
forecast availability, in which 1,600 MW (or 15%) of generation capacity were lost for 12 
hours; this degradation was such that the system could serve all of the scheduled load. The 
modeling approach to simulate system dispatch during the event was very similar to solving 
sequential decision problems, such as in an economic dispatch problem; in particular, the 
commitment decision was assumed to be fixed,14 as units may have already been online, and 
those that were not could take too long to come online. The model solved one time period 
(hour) with an initial condition and four hours of look-ahead (in this analysis), which 
informed how the duration-dependent outage cost would rise at each bus if its load was not 
served. Given this, the model selected which buses to serve, allowing users to explore the 
extent to which system schedules could be adjusted to reduce the consequences of a long-
duration event, based on a detailed understanding of the costs incurred by customers at a 
given bus.  

To isolate the effects of considering our VoLL-based metric, we exercised the production 
cost modeling framework in SIIP::Power with either (1) a constant VoLL across all buses or 
(2) a duration-dependent VoLL, which also varies by bus. Across both implementations of 
VoLL, we found a similar level of total lost load (in MWh); however, operational differences 
were observed as the model was exposed to different customer costs. In particular, providing 
the grid operator with information about how customer costs vary as a function of outage 
duration and location (bus) resulted in reductions in both overall system costs (by 22%) and 
the maximum number of hours of outage experienced by any bus on the network (from 15 
hours to 6 hours). However, the number of buses that experienced an outage increased when 
considering the duration-dependent VoLL, as the operator was encouraged to restore power 
and move the outage to a different bus after a few hours, when the cost of not serving a bus 
increased. Therefore, the duration-dependent VoLL drove the model to behave like a rolling 
brownout, affecting (1) more customers but (2) each customer for fewer hours.  

Figure 4 shows an example of the difference in operations when considering a duration-
dependent (top row) versus static (bottom row) VoLL in Region 1 of the RTS-GMLC. As 
generation assets in all three regions were affected by the simulated outage, the duration-

 
14 The assumption that unit commitment is fixed during an event may be valid during events where 
(1) the forecast window is short and (2) the event duration is not very long. 
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dependent VoLL model chose to start the outage in Region 1 for the first few hours, and then 
moved the outage to Region 2 (not shown). When the net load in the system started to rise in 
the evening, the outages were moved to Region 1 for a few periods and then split among all 
the regions on the buses that were unaffected earlier. However, it is important to note that 
such a response could be more challenging (or even impossible) if the event involved more-
extensive failures along the transmission network.  

 

 
Figure 4. Under degraded conditions, considering a duration-dependent value of lost load 
resulted in a modified system dispatch, which reduced outage duration at each bus and 

overall system costs, as modeled in the production cost model framework in SIIP::Power. 
Results shown here represent system dispatch in Region 1 of the RTS-GMLC under a power interruption 
scenario that resulted in a 15% loss in available generation capacity for 12 hours. The top row shows the 
dispatch pattern that resulted from consideration of a duration-dependent VoLL, whereas the bottom row 
considers only a static VoLL.  

A different dispatch was observed when using a static VoLL, in which case outages were 
primarily clustered around the buses with low demand. The outages sometimes moved as bus 
demand changed, such that the model minimized system cost by serving as much load as it 
could with the available generation assets while being forced to make a binary decision on 
whether to serve a bus. This led to some end users suffering longer outages than they did in 
the duration-dependent VoLL scenario (15 hours versus 6 hours). Finally, the number of 
locations affected was lower in the static VoLL scenario, but the cost of the outage increased. 

While results will vary by event and customer type, this case study showed that knowledge of 
the duration-dependent (as opposed to a static) VoLL at each node could resulted in different 
dispatch decisions and a lower total outage cost. Future research could confirm this finding, 
especially through additional model development and case studies. For example, in this 
preliminary resilience analysis, we assumed the generator unit commitment schedule (i.e., the 
on/off status of generators) was predetermined and not subject to re-optimization during the 
event. This assumption was made for modeling simplicity and computational tractability, but 
in future work, the approach could be extended to reoptimize unit commitment decisions to 
further optimize operations during resilience events. Such a capability would be especially 
valuable in evaluating the impacts of forecast availability, in terms of how unit commitment 
and dispatch ahead of an event could influence available energy and system costs.  
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A second future research direction could involve exploring how dispatch patterns and 
system costs might be altered when it is possible to avoid outages to the customer types 
with the highest VoLLs (e.g., critical services such as hospitals, fire stations, and police 
stations, or customers with high economic impact within the region). The production cost 
modeling framework in SIIP::Power allows multiple VoLL curves to be defined at an 
individual node, so that different customer types can be represented. Future work could 
leverage this capability and allow for partial-load on a node to be served, in order to 
evaluate whether there are diminishing returns (in the form of system-cost savings) with 
increasing levels of resolution for customer cost information.  

4.2 Regional Energy Deployment System (ReEDS) 
The Regional Energy Deployment System (ReEDS) is a bottom-up electric sector capacity 
expansion model for the contiguous United States that finds the least-cost construction and 
operation of generation, storage, and transmission assets between 2010 and 2050 (Cohen et 
al. 2019). The 2018 version of ReEDS (v2018) was used in this study (Cole et al. 2018), and 
that version of the model simulates the bulk power system sequentially in two-year time-
steps, by minimizing the 20-year present value of investment and operation under current-
year conditions. ReEDS is resolved into 134 supply-demand balancing areas and includes a 
reduced-form dispatch in 17 intra-annual time-slices: four per season with a peak time-slice 
to better capture reserve requirements. Balancing areas are connected by an aggregated ~300-
line transmission system that can expand to meet system needs. The model includes a suite of 
commercial or near-commercial generation and storage technologies, with particular detail in 
renewable energy resource quality, cost, and variability. Capacity and generation of most 
technologies are aggregated to the balancing area level, with no explicit representation of 
individual units or plants.15 

The level of aggregation in v2018 ReEDS prohibits the model from representing unit- or line-
specific outages and localized short-term interruptions on the bulk power system.16 By 
construction, the model also has no clear way to represent “no preparation” scenarios; it 
can only be manipulated to “plan for resilience” by changing aggregate long-term system 
expectations in ways that incentivize responses that could improve resilience through the 
adjustment of generation or transmission expansion and operation. As a result—and in 
contrast to the SIIP::Power and REopt analyses—this preliminary implementation of 
resilience metrics in v2018 ReEDS represents modifications to the constraints within the 
model, as opposed to modifications to its objective function. 

Five model constructs were used to analyze ways to plan for resilience in v2018 ReEDS 
(Table 5); these constructs reveal differences in the capacity mix, generation mix, and 
transmission expansion under a variety of approaches for resilience planning. Results from 
this ReEDS analysis thus provide insights into how systems might plan for greater resilience. 
The cost impacts of these responses were assessed using changes in national average 
electricity price and changes in 2017–2050 present value of total system costs, both relative 
to a reference case.  

 
15 Exceptions to this statement include the limited instances where a modeled balancing area includes only one 
plant of a given generator type.  
16 Note that recent developments in the ReEDS model have enabled a flexible representation of generation 
units, which can be represented as either individual units or as aggregated representative plants (Cohen et al. 
2019; Cole et al. 2019). Replicating this analysis in more recent version of ReEDS could allow for representation 
of short-term outages of individual generating units or blocks of capacity.  



24 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table 5. Model Constructs Used to Analyze Resilience Planning in v2018 ReEDS 

Modification  
(Scenario Abbreviation) 

Intent Model Constraints and  
Parameter Range 

Increased operating reserve 
requirement 

Greater flexibility responding 
to short-term outages 

3%–15% of load required as 
spinning reserves 

Increased planning reserve 
requirement 

Improve resource adequacy 
under outages at peak 

Regional planning reserve 
requirement increased by 40%a 

Higher generator outage rates Plan for more frequent 
generator outages 

Generator forced outage rate 
increased by 50%a 

Higher transmission 
outage rate  

Plan for more frequent 
transmission outages 

Transmission forced outage 
rate increased up to 50%a  

Higher transmission outage 
rate plus option to purchase 
“resilience capacity” 

Allow construction of resilient 
transmission capacity, e.g., 
undergrounding 

Transmission forced outage 
rate increased up to 50%a 

a Parameter increases or reductions reflect percent changes relative to default assumptions in the 
2018 version of the ReEDS model. 

Capacity expansion results across all scenarios showed that the strategy for resilience 
planning depends on the problem being addressed. A higher expectation of short-term 
outages required keeping more capacity on standby to provide operating reserves, while 
building some additional capacity to meet the planning reserve requirement (i.e., to ensure 
resource adequacy). Under the reference technology and other assumptions in ReEDS v2018, 
combined-cycle natural gas capacity is utilized to provide these additional operating reserves. 
Moreover, concerns about resource adequacy at peak loads warrants construction of more 
simple-cycle gas turbines and additional solar photovoltaics (PV) or combined-cycle natural 
gas technology, depending on the capacity credit of local PV capacity. Expecting more 
frequent generator outages had little impact when implemented as an average change, but this 
result could differ from analysis of specific large-scale outage events. Expecting more 
transmission outages warrants some additional redundancy in the transmission system, but 
expensive “hardening” measures were not competitive when based purely on least-cost 
electricity system operation. 

For the range of scenarios examined, impacts on average electricity price were relatively 
small. The increase was $1.3/MWh or less for all except the increased operating reserve 
requirement scenarios, which increased prices by as much as $6.3/MWh but typically by 
$3/MWh or less. Incremental 2017–2050 system costs were up to $32 billion, which is about 
a 1% increase from the nominal value of $3,173 billion. However, this analysis did not 
consider outage or lost-load costs outside the construction and operation of the electricity 
system, so it does not fully assess the cost of outages and the value of reducing them. In 
addition, the ReEDS model does not include an explicit representation of the natural gas 
system, so the strategies and costs identified in this analysis do not consider interdependency 
factors between the natural gas and bulk electric systems. Finally, all changes were applied 
across all regions and time periods in this analysis, but future work could be more targeted. 
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4.3 Renewable Energy Optimization (REopt) 
REopt is a techno-economic decision support model used to optimize energy systems for 
buildings, campuses, communities, and microgrids (Cutler et al. 2017). The primary 
application of the model is to optimize the integration and operation of behind-the-meter 
energy assets, including renewable energy, generators, energy storage, and dispatchable 
loads. Formulated as a mixed-integer linear program, REopt solves a deterministic 
optimization problem to identify the optimal selection, sizing, and dispatch strategy of 
technologies chosen from a candidate pool, such that electrical and thermal loads are met at 
every time-step at the minimum life cycle cost. The model considers capital costs, operating 
expenses, operating revenues, incentives, and tax benefits in the life cycle cost calculation.  

REopt has previously been adapted for resilience analyses which were designed to identify 
optimal backup power systems, taking into account the uncertainty in outage start time and 
duration and/or the value of lost load (Anderson et al 2017, 2020; Laws et al. 2018, 
forthcoming). In the present research effort, we demonstrated the latter consideration by 
incorporating an avoided cost of power interruption17 into the lifecycle cost calculation for a 
PV and battery energy storage system design. Then, a solar and energy storage system was 
designed to maximize economic benefit during an assumed system lifetime of 20 years.  

The lifetime economic benefit is measured in terms of the net present value (NPV) of the 
system, or the net difference between the benefits and the costs of the project, in current 
values in U.S. dollars. The project benefits include the energy bill savings delivered by the 
PV and battery storage systems during normal grid connected operation, as well as the 
additional benefit of surviving all or part of a grid outage. The project costs include the 
capital costs of installing PV and storage, system operating and maintenance expenses, and 
the cost of any outage period not survived. A project with a negative NPV indicates the cost 
to install and maintain the system would be greater than the savings realized over time. A 
system with a positive NPV indicates it would be less expensive to build and operate the 
system than to continue normal operations without it. 

Within this overarching framework, two scenarios were evaluated: one that placed no value 
on resilience, and one that incorporated a static value of resilience (in terms of dollars lost per 
hour of power interruption).18 As previously noted, the use of a static VoLL would likely be 
inappropriate for long-duration outages, in which estimates associated with the mature form 
of the metric break down. Under such conditions, costs become increasingly complex and 
uncertain (e.g., due to cascading effects into other critical sectors), and it is generally believed 
that economic damages vary non-linearly with the duration of power interruption. 

For scenarios in which resilience was not valued, the cost associated with the power 
interruption was assumed to be zero; in other words, these scenarios ignored any costs 
associated with asset damage or business interruption. When resilience is assigned a value, 
the cost of the simulated power interruption can be reduced by the ability of a resilient 
backup power system to survive some, or all, of anticipated grid outages. The results of the 
REopt analysis are shown in the two graphs of Figure 5, where resilience is not valued (left) 
and where it is valued (right) (Laws et al. 2018). 

 
17 The simulated grid outage events were based on the customer average interruption duration index metric, 
which is equal to 2.09 hours per year at the analyzed location.  
18 The assumed value of resilience in this analysis was $2,386 per hour, which can be divided by the load at 
this site to arrive at a dollar-per-megawatt hour value of resilience.  
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Figure 5. Accounting for the value obtained by mitigating the power interruption experienced 

by a facility or campus resulted in a cost-optimal backup power system that is larger and 
incorporates longer-duration storage, as modeled in REopt. 

CapEx = capital expenditures, O&M = operation and maintenance 

The results shown in Figure 5 indicate that valuing resilience may change the cost-optimal 
design of a backup power system. For example, the size of the PV system increased from 
113 kW to 134 kW when accounting for a value of resilience, and battery system size 
increased from 5 kW/6 kWh to 32 kW/79 kWh. Furthermore, the NPV of the investment 
increased from $29,000 to $58,000, which primarily reflects that the larger system can sustain 
the critical load for longer and can therefore avoid more of the outage cost. 

The example presented here includes a static value of resilience that did not vary over time. 
Future work could examine how a duration-dependent value of resilience impacts system 
design decisions and economics, which could be particularly important for longer-duration 
resilience events. We also plan to explore the impact of modeling outage distributions where 
the frequency and length of outages varies over the course of the year. This could become 
increasingly important as the probability of extreme events increases. Finally, this analysis 
assumed all load in a given hour of outage must be sustained to avoid the outage cost. Future 
work we do will examine the value that could be provided by systems that meet only a 
fraction of the load at a given time. This may be important for understanding how systems 
should be sized and dispatched for maximum economic benefit. 
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5 Discussion 
The research presented in this report was motivated by a growing need among energy 
industry stakeholders to evaluate the resilience of their systems to a variety of threats. In 
general, previous frameworks have outlined the steps necessary to evaluate resilience, which 
can be summarized through linkages among various research components (Figure 6). 

 

Figure 6. Components of a comprehensive resilience analysis 

A perfect resilience analysis would involve detailed approaches for each individual 
component in Figure 6. However, this level of detail is prohibitively “expensive,” in terms 
of the corresponding data and computational requirements associated with each individual 
component and the linkages across them. In an effort to avoid “great being the enemy of 
good,” researchers typically make simplifying assumptions for certain components in the 
process diagram and approach others with a higher level of fidelity and granularity. Such 
tradeoffs are needed to ensure resilience analyses remain tractable, even for organizations 
with the most robust computational resources. 

Within the research community and energy industry, discussions often center on the need for 
detailed approaches to resilience metrics. However, such requests may only address part of 
the ultimate need, as the effectiveness of a metric depends strongly on the ability to evaluate 
it in a sophisticated and rigorous manner. For example, EUE is a mature reliability metric 
that has been well-vetted and implemented in both postmortem and prescriptive analyses. 
However, the value associated with the EUE metric is primarily rooted in the ability to 
translate how various grid operations and investment decisions would impact EUE, through 
the utilization of sophisticated data analysis and simulations tools. Similarly, even a 
seemingly perfect resilience metric would be of little use without simulation and optimization 
models that can accurately evaluate how populating that metric would lead to different 
investment and/or operational decisions. 

The present study was rooted in a similar premise, which is that newly developed resilience 
metrics may not be the most appropriate answer to the growing needs regarding energy sector 
resilience analysis. Instead, we chose to approach resilience analysis by implementing 
simplified power interruption scenarios and resilience metrics in highly sophisticated 
simulation and optimization tools. To do so, we modified model inputs, constraints, and/or 
objective functions to capture the benefits associated with improved resilience, from a variety 
of stakeholder perspectives. Across the full suite of models, we quantified resilience in 
energy models designed to represent generation, transmission, capacity expansion, distributed 
energy resources, and energy end use. Each model yielded different results and insights, 
which are summarized in Table 6. 

  

Scenario Simulation Resilience Metric Optimization Decisions 
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Table 6. Summary of Preliminary Resilience Analyses in Existing NREL Tools 

Model Name Power Interruption 
Scenario Name 

Resilience Metric  Analysis Findings 

ResStock Both Short and 
Long-Duration 
Power Interruptions 
with No Preparation 
Time 

Social consequence 
measured via (a) time to 
unsafe indoor conditions 
during adverse outdoor 
conditions or (b) 
minimum/maximum 
indoor temperature 

More efficient buildings tend to 
be more resilient because they 
can maintain livable indoor 
temperatures longer during 
interruptions in the supply of 
electricity or natural gas  

PRAS Long-Duration 
Power Interruption 
with No Preparation 
Time 

System performance 
measured via expected 
unserved energy 

Adding energy storage devices 
could reduce the depth of 
shortfall associated with a long-
duration fuel supply disruption 

SIIP::Power Long-Duration 
Power Interruption 
with No Preparation 
Time 

Economic consequence 
measured via location- 
and duration-dependent 
value of lost load 

Overall system costs and the 
maximum hours of outage 
experienced by a bus on a 
network could be reduced 
through operational changes 
that are driven by a more 
detailed understanding of the 
duration-dependence of the 
value of lost load 

ReEDS N/A Attribute-based metric of 
redundancy 

Resiliency concerns can 
influence the optimal 
investment portfolio in different 
ways, depending on whether 
you are concerned about 
operating reserves, resource 
adequacy at peak loads, more 
frequent generator outages, or 
more transmission outages 

REopt Short-Duration 
Power Interruption 
with No Preparation 
Time 

Avoided economic 
consequence measured 
via a static “value of 
resilience,” or the value 
associated with mitigating 
power interruptions for 
the end user 

Accounting for the benefits 
associated with surviving all or 
part of a grid outage drives 
increased in the PV capacity, 
energy storage duration, and 
net present value of the cost-
optimal backup power system 

Beyond the pragmatic approach of the present report, an alternative approach would be to 
engage in more-extensive model development and/or linkages to improve the ability to 
represent multiple components of resilience analysis with higher fidelity. For example, with 
abundant financial and computational resources, one could develop a new package that both 
modeled each component in detail and linked those detailed models through automated 
processes. In particular, for a given power interruption scenario (e.g., a hurricane), the 
overarching package would simulate the impacts of different scenarios of its realization (e.g., 
different tracks, strengths, and preparatory responses of system operators), similar to the 
approach we have taken in ResStock and PRAS. Those simulations would then be used to 
help populate metrics that quantify different performance impacts or consequences (e.g., 
EUE, number of customers with insufficient thermal resilience). In turn, the metrics could be 
implemented as constraints in different system optimization tools (e.g., ReEDS, SIIP::Power, 
REopt) to inform which actions would be most cost-effective for improving either system 
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(ReEDS, SIIP:: Power) or customer (REopt) resilience. Given appropriate model linkages 
and automation, the optimization tools could then iterate between the metrics and, sometimes 
with the simulation tools, to optimize the metric outcome given constraints. Finally, this 
result is sent to decisionmakers to determine which steps to take to improve resilience.  

The methods described represent an optimal approach to resilience analysis, but they come 
with a set of challenges. First, many of the entities responsible for evaluating and approving 
resilience investments operate with limited resources and, therefore, it would not be feasible 
for them to build and operate such a model. Second, there are computational resource 
challenges associated with such an approach, which would require extensive resources to 
operate and link multiple high-resolution models. Third, one of the underlying themes of 
resilience-testing events is that they result in impacts across multiple infrastructure systems; 
currently, models do not exist for representing these linkages, due to their complex 
interdependent nature. Fourth, some of the data necessary to define the parameters and 
variables across the different tools is sparse or unavailable, which introduces challenges 
associated with verifying the ultimate outcome. Moreover, determining “error bars” within, 
and across, the underlying tools would be difficult or impossible, given the wide range of 
sources of uncertainty. None of these challenges is insurmountable, but they rather represent 
areas of research that would help to improve the ability to perform a more-optimal resilience 
analysis of energy systems. 
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6 Conclusions and Future Research Needs 
Resilience is receiving much attention in relation to energy systems in general, with particular 
attention being paid to the supply of electricity. Incorporating resilience considerations into 
energy decisions would be useful for utilities and local planners, but power system modelers 
and operators have been challenged by resilience. One of the main challenges has been the 
limited extent to which resilience metrics have been implemented, tested, and validated in 
models of the energy system. The scenarios, methods, and metrics by which resilience is 
quantified vary depending on intent (in the case of analysis more broadly) and the availability 
of detailed analysis methods and data (in the case of incorporating resilience into an energy 
sector model). As a result, quantifying, valuing, and monetizing resilience and applying those 
concepts to energy sector models, plans, and investments has been problematic.  

To begin to address this problem, we applied various attributes of resilience in scenario 
analysis using five different energy sector tools. The chosen set of tools spans a range of 
modeling approaches, geographic scales, and segments of the energy sector. Moreover, the 
corresponding set and implementation of appropriate resilience metrics was similarly diverse. 
Within the detailed simulation models included in this study, resilience analysis took the form 
of developing new representations of grid outages and providing additional context for the 
model results. Within the least-cost optimization models, the preliminary resilience analyses 
involved modifying the constraints and/or objective functions that define the model solutions. 
Finally, comparison across all of the models and power interruption scenarios yielded the 
following five findings and areas of needed future research. 

A Multilayered System of Metrics  
The tools that were exercised in this research used different metrics, partly because the tools 
were not developed specifically to model resilience and partly because of the different 
attributes of resilience that apply to different systems within the power sector. There is no 
one-size-fits-all metric, nor should one metric be deemed successful for all systems 
modeling. A multilayered system of metrics will be needed for future resilience work. 

Research that helps identify a set of metrics that could be applied in a number of scenarios 
would be useful to various industries. Though no one metric would solve the decision-making 
and modeling challenges related to all resilience planning needs, a set of metrics for industry 
discussion and analysis would be helpful at many scales. Measuring the performance benefits 
of resilience strategies, along with establishing valuation methodologies for such strategies, 
would help with enhancing resilience across the energy sector. 

Resilience-Value Linkages 
Even if there were a universal method for quantifying resilience, an additional challenge 
lies in linking resilience to the corresponding value that is retained or added. The current 
understanding of what customers are willing to pay to avoid long-duration outages is highly 
limited, and it could benefit from an improved understanding of three key factors:  

1. How customers’ value of resilience evolves over the temporal arc of a long-term 
disruptive event 

2. The nature, extent, and evolution of system-wide consequences and interactions 
that are due to sectoral interdependencies (e.g., water, telecommunications, and 
natural gas) (National Academies of Sciences, Engineering, and Medicine 2017; 
Kintner-Meyer et al. 2016) 
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3. How to translate the impacts of such an event into associated consequences related 
to degraded health, safety, and economic activity. 

Improving the understanding of these three factors would improve the ability to determine 
an appropriate “value of resilience,” but there is significant uncertainty about whether these 
factors can be rigorously quantified. For example, it is challenging to determine the extent to 
which a given threat would impact the health, safety, and economic activity of a given region, 
as this depends on the likelihood, timing, and specific characteristics of the threat that is 
realized. Moreover, even if the health, safety, and economic impacts of a threat could be 
quantified, it is very challenging to translate those impacts into financial consequences, which 
will ultimately indicate to a given stakeholder whether a change in investment or operations 
is warranted. 

Quantification of Resilience Investments 
Accurately quantifying how a given resilience investment could lead to performance 
improvements (and, in turn, value) requires a more fundamental understanding of the 
relationship between a threat and its impacts. A particularly important area for future research 
is the development of methodologies for endogenously representing probabilities for response 
and recovery activities. For example, recovery timelines may be a function of advanced 
notice, type, and timing of the threat of interest; available resources; and dependency (or 
interdependency) with other critical infrastructures. This limitation primarily represents a 
need for data to inform such a relationship, as the improved understanding could be translated 
into energy decision models in various ways. For example, a relationship between advanced 
notice and recovery time could either be represented endogenously—through a model 
parameter that relates advanced notice with recovery time, accounting for changes in 
planning costs—or exogenously through scenario definitions.  

However, even if such a relationship were well-understood and parameterized, additional 
model development would be needed to implement it in a wide array of tools. For example, 
only one of the models explored here can capture one aspect of how sensitive an event’s 
consequences are to the threat: the production cost modeling framework in SIIP::Power can 
represent advanced notice through different unit commitment schedules, which will influence 
the amount of available energy and system costs associated with a long-duration outage.  

Modeling of Costs and Benefits 
In most cases, trade-offs between the costs and benefits of resilience measures are not 
currently modeled in power system tools. Modelers tend to measure either the benefit or the 
cost, but not both. Understanding both sides of the equation is essential to knowing how 
much resilience is reasonable for investments, which is the focus of Anderson et al. (2020).  

New Modeling of Resilience 
An alternative approach to modifying existing tools to enable them to effectively quantify 
and estimate the value of potential resilience investments would be to develop a new model 
that is especially designed for energy sector resilience. There would many challenges with 
such a model, given the broad extent, large number of stakeholders and sectors, data 
requirements, and diverse threat and consequence landscapes, all of which become 
increasingly challenging to capture when considering a large geographic extent. However, a 
new model or tool could enable a range of new research capabilities, including an evaluation 
of correlated failures and the most cost-effective mitigation options, including both long-term 
investments and real-time strategies for reducing response and recovery times. 
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Appendix 
The Scalable Integrated Infrastructure Planning (SIIP) toolkit provides data-driven system 
simulations that define a set of problems that can be solved using numerical techniques. 
Problems are generated by expressing model formulations against system data for 
infrastructure systems, including power, water, gas, buildings, thermal, transportation, and 
liquid fuels. SIIP collects information required for device-level modeling, including parsing 
capabilities, and utilizes the software, Julia, to create parametric dispatch for efficient code 
development and is agnostic to simulations performed. The mathematical formulations and 
simulation assemblies support optimization and dynamic simulation models through modular 
problem assembly for rapid development and extension. SIIP allows for broader modeling 
capabilities and expansion with interdependent systems, utilizing Julia to enable 
computational performance.  

The SIIP Power Systems toolkit (SIIP::Power) has been used to frame the duration-dependent 
value of lost load (VoLL) in event forecasting (Ericson and Lisell 2018). For example, in the 
context of representing grid decision-making processes, most outage scenarios can be 
classified by the availability of event forecasts. The representation of resilience event 
decision-making can be further classified by the forecast duration and the likely duration of 
outages caused by the event. For example, extreme weather conditions can be forecast with 
reasonable accuracy 6–24 hours ahead of time. Forecasts can provide a reasonable estimate of 
when the event will occur and when crews might be able to commence recovery activities. 
Other event types that could stress grid resiliency may have very different forecast profiles. 
For example, cybersecurity attacks would likely occur without any warning. Therefore, the 
representation of “resiliency events” in grid decision-making models depends on the 
forecasting characteristics of the events themselves. To understand the ability to adjust 
system schedules to improve grid resiliency, the modeling of such events can be done in an 
adapted production cost model.  

According to current understanding, VoLL depends on a variety of factors regarding both the 
threat type and timing, and the stakeholder whose “value” is being considered. Within a unit 
commitment and dispatch model framework, these factors are captured by three components: 
location of the bus, time of day of the event, and duration of the event. Within SIIP::Power’s 
current capabilities, we can capture the first two components of the VoLL in a production 
cost model that has information of the forecasted outage. The modeling approach to simulate 
system recovery or dispatch after the resiliency event is very similar to solving sequential 
decision problems, such as in an economic dispatch problem; in particular, we assume the 
commitment decision are fixed, as all units may already be online or they may take too long 
to come online. The model solves for one time period with an initial condition and some 
periods of look-ahead, which informs how the outage duration-dependent cost is going to rise 
at each bus if its load is not served.  

The current modeling approach is to build the optimization problem for each time period with 
a fixed initial system state, which may be right after or before the event starts, and then solve 
for decision variables to be made in the next hour (say T1) while having some information 
about how these actions will affect the cost incurred in future periods.  Then we use the 
decision made for T1 in the previous simulation as the initial conditions for the next one, and 
we build a similar optimization model but now we update the duration dependent VoLL, 
depending the outages that have occurred in T1. This way we solve for T2 and use the 
information to build the next simulation and so on. And in this way we can simulate the entire 
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duration of the resilience event and observe how the system schedules and serves the load 
at each bus. 

Furthermore, the load at each bus can be classified into various types (e.g., residential, 
commercial, and industrial). Each of these loads can have a separate curve of value/cost of 
lost load. Given this, the model can select the bus and type of load to serve in a compromised 
state. The formulation for time dependent cost of lost load (LL)—which is identical to the 
value of lost load, but with the opposite sign—is shown through a series of sets, including:  

𝑔𝑔 ∈ 𝐺𝐺  , 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔𝑔𝑔 𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑔𝑔 𝑆𝑆ℎ𝑆𝑆𝑔𝑔𝑒𝑒𝑔𝑔𝑖𝑖 𝑔𝑔𝑔𝑔𝑖𝑖 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑤𝑤𝑔𝑔𝑤𝑤𝑖𝑖𝑆𝑆𝑔𝑔 

𝑤𝑤 ∈ 𝐵𝐵 , 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑤𝑤𝑖𝑖𝑔𝑔𝑆𝑆𝑔𝑔 

𝑖𝑖 ∈ 𝐿𝐿 , 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆𝑔𝑔  

𝑆𝑆 ∈ 𝑇𝑇 , 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑆𝑆𝑖𝑖𝑒𝑒𝑆𝑆 𝑝𝑝𝑆𝑆𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖𝑔𝑔 

Parameters within this formulation include: 

𝑥𝑥𝑔𝑔,𝑡𝑡0    ,𝑦𝑦𝑏𝑏,𝑡𝑡0   ,𝑜𝑜𝑙𝑙,𝑡𝑡0   = 𝐼𝐼𝑔𝑔𝑖𝑖𝑆𝑆𝑖𝑖𝑔𝑔𝑖𝑖 𝑖𝑖𝑜𝑜𝑔𝑔𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑜𝑜𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑔𝑔𝑝𝑝𝑔𝑔𝑆𝑆𝑖𝑖ℎ 𝑖𝑖𝑆𝑆𝑙𝑙𝑆𝑆𝑖𝑖𝑔𝑔, 
 𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆 𝑜𝑜𝑖𝑖𝑜𝑜𝑤𝑤𝑔𝑔, 𝑔𝑔𝑔𝑔𝑖𝑖 𝑖𝑖𝑜𝑜𝑔𝑔𝑆𝑆 𝑖𝑖𝑜𝑜𝑔𝑔𝑖𝑖 

 
 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚   ,𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑀𝑀𝑖𝑖𝑔𝑔𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒 𝑔𝑔𝑔𝑔𝑖𝑖 𝑒𝑒𝑔𝑔𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒 𝑝𝑝𝑜𝑜𝑤𝑤𝑆𝑆𝑔𝑔 𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑆𝑆𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔 𝑔𝑔 

𝑅𝑅𝑔𝑔
𝑢𝑢𝑢𝑢 ,𝑅𝑅𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚    = 𝑅𝑅𝑔𝑔𝑒𝑒𝑝𝑝𝑖𝑖𝑔𝑔𝑔𝑔 𝑖𝑖𝑝𝑝 𝑔𝑔𝑔𝑔𝑖𝑖 𝑖𝑖𝑜𝑜𝑤𝑤𝑔𝑔 𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑆𝑆𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔 𝑔𝑔   

𝐹𝐹𝑖𝑖𝑜𝑜𝑤𝑤𝑙𝑙  = 𝑃𝑃𝑜𝑜𝑤𝑤𝑆𝑆𝑔𝑔 𝑜𝑜𝑖𝑖𝑜𝑜𝑤𝑤 𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑆𝑆𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆 𝑖𝑖  

𝐶𝐶𝑔𝑔,𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑔𝑔𝑆𝑆 𝑜𝑜𝑜𝑜 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑖𝑖𝑜𝑜𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔 𝑔𝑔 𝑖𝑖𝑔𝑔 𝑆𝑆𝑖𝑖𝑒𝑒𝑆𝑆 𝑆𝑆  

𝑉𝑉𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏,𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑔𝑔𝑆𝑆 𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆𝑆𝑆𝑖𝑖 𝑤𝑤𝑖𝑖𝑆𝑆ℎ 𝑖𝑖𝑜𝑜𝑔𝑔𝑆𝑆 𝑖𝑖𝑜𝑜𝑔𝑔𝑖𝑖 𝑔𝑔𝑆𝑆 𝑤𝑤𝑖𝑖𝑔𝑔 𝑤𝑤 𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 ℎ𝑜𝑜𝑖𝑖𝑔𝑔 𝑆𝑆  
𝑜𝑜𝑜𝑜 𝑆𝑆ℎ𝑆𝑆 𝑜𝑜𝑖𝑖𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆  

The variables incorporated include: 

𝑥𝑥𝑔𝑔,𝑡𝑡 =  𝐷𝐷𝑖𝑖𝑔𝑔𝑝𝑝𝑔𝑔𝑆𝑆𝑖𝑖ℎ 𝑖𝑖𝑆𝑆𝑙𝑙𝑆𝑆𝑖𝑖𝑔𝑔 𝑜𝑜𝑜𝑜𝑔𝑔 𝑔𝑔𝑆𝑆𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔 𝑔𝑔 𝑖𝑖𝑔𝑔 𝑆𝑆𝑖𝑖𝑒𝑒𝑆𝑆𝑝𝑝𝑆𝑆𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖 𝑆𝑆   

𝑦𝑦𝑏𝑏,𝑡𝑡 =    𝑁𝑁𝑜𝑜𝑔𝑔 − 𝑔𝑔𝑆𝑆𝑔𝑔𝑙𝑙𝑆𝑆𝑖𝑖 𝑖𝑖𝑜𝑜𝑔𝑔𝑖𝑖 𝑔𝑔𝑆𝑆 𝑤𝑤𝑖𝑖𝑔𝑔 𝑤𝑤 𝑔𝑔𝑆𝑆 𝑆𝑆𝑖𝑖𝑒𝑒𝑆𝑆 𝑝𝑝𝑆𝑆𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖 𝑆𝑆 

𝑜𝑜𝑙𝑙,𝑡𝑡 = 𝑃𝑃𝑜𝑜𝑤𝑤𝑆𝑆𝑔𝑔 𝑜𝑜𝑖𝑖𝑜𝑜𝑤𝑤 𝑆𝑆ℎ𝑔𝑔𝑜𝑜𝑖𝑖𝑔𝑔ℎ 𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆 𝑖𝑖 𝑖𝑖𝑔𝑔 𝑆𝑆𝑖𝑖𝑒𝑒𝑆𝑆 𝑝𝑝𝑆𝑆𝑔𝑔𝑖𝑖𝑜𝑜𝑖𝑖  𝑆𝑆 

The objective function is represented as: 

min�𝐶𝐶𝑔𝑔,𝑡𝑡 ∗ 𝑥𝑥𝑔𝑔,𝑡𝑡
𝑔𝑔,𝑡𝑡

+ �𝑉𝑉𝑉𝑉𝐿𝐿𝐿𝐿𝑏𝑏,𝑡𝑡 ∗ 𝑦𝑦𝑏𝑏,𝑡𝑡  
𝑏𝑏,𝑡𝑡

 

The constraints applied included: 

 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝑥𝑥𝑔𝑔,𝑡𝑡 ≤  𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚                         ∀ 𝑔𝑔 ∈ 𝐺𝐺, 𝑆𝑆 ∈ 𝑇𝑇   (1) 
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 −𝐹𝐹𝑖𝑖𝑜𝑜𝑤𝑤𝑙𝑙 ≤  𝑜𝑜𝑙𝑙,𝑡𝑡 ≤  𝐹𝐹𝑖𝑖𝑜𝑜𝑤𝑤𝑙𝑙                    ∀ 𝑖𝑖 ∈ 𝐿𝐿, 𝑆𝑆 ∈ 𝑇𝑇 (2) 

 𝑜𝑜𝑙𝑙,𝑡𝑡 = 𝛽𝛽𝑙𝑙 ∗ �𝜃𝜃𝑚𝑚 −  𝜃𝜃𝑗𝑗�                            ∀ 𝑖𝑖 ∈ 𝐿𝐿, 𝑆𝑆 ∈ 𝑇𝑇, 𝑖𝑖, 𝑗𝑗 ∈ 𝐵𝐵 (3) 

�𝑥𝑥𝑔𝑔,𝑡𝑡
𝑔𝑔

+ �𝑜𝑜𝑙𝑙,𝑡𝑡 
𝑙𝑙𝑖𝑖𝑖𝑖

–�𝑜𝑜𝑙𝑙,𝑡𝑡
𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜

=   𝐷𝐷𝑡𝑡 − 𝑦𝑦𝑏𝑏,𝑡𝑡     ∀ 𝑤𝑤 ∈ 𝐵𝐵, 𝑆𝑆 ∈ 𝑇𝑇 (4) 

𝑥𝑥𝑔𝑔,𝑡𝑡 ,𝑦𝑦𝑏𝑏,𝑡𝑡   ,𝑜𝑜𝑙𝑙,𝑡𝑡    ≥   0  

Under these conditions, the solutions included set parameters with start time, horizon, and 
predictive (i.e., look ahead) capabilities. Challenges identified during the SIIP::Power 
modeling included that the model can only apply the correct cost associated with lost load in 
the first period, as we pass a fixed cost curve. For example, if the model decides to serve load 
at Bus 101 in time periods 1 and 2 but 50 MW of load are lost in period 3, the cost associated 
with this would be Cost3 = $5,000/hr instead of Cost1 = $2,000/hr, where the subscript of 
Cost is the duration of the outage. One proposed formulation to handle this issue is shown 
below. Revised constraints are not shown but were applied to the scenarios in SIIP::Power.  

 𝑁𝑁𝑜𝑜𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑆𝑆𝑔𝑔𝑔𝑔 𝑜𝑜𝑤𝑤𝑗𝑗𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑙𝑙𝑆𝑆 𝑜𝑜𝑖𝑖𝑔𝑔𝑖𝑖𝑆𝑆𝑖𝑖𝑜𝑜𝑔𝑔: =   

min�𝐶𝐶𝑔𝑔,𝑡𝑡 ∗ 𝑥𝑥𝑔𝑔,𝑡𝑡
𝑔𝑔,𝑡𝑡

+ �𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑖𝑖𝑔𝑔𝑡𝑡1
𝑏𝑏,𝑡𝑡

∗ 𝐶𝐶𝐿𝐿𝐿𝐿1 ∗ 𝑦𝑦𝑏𝑏,𝑡𝑡  + �𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑖𝑖𝑔𝑔𝑡𝑡2
𝑏𝑏,𝑡𝑡

∗ 𝐶𝐶𝐿𝐿𝐿𝐿2 ∗ 𝑦𝑦𝑏𝑏,𝑡𝑡  …  

+�𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑖𝑖𝑔𝑔𝑡𝑡𝑚𝑚
𝑏𝑏,𝑡𝑡

∗ 𝐶𝐶𝐿𝐿𝐿𝐿𝑚𝑚 ∗ 𝑦𝑦𝑏𝑏,𝑡𝑡  

The results of the SIPP modeling indicate the cost of lost load varies with duration of the 
outage, as shown in the following graph. 

 
Figure A-1. Sample SIIP::Power results, indicating that the cost of lost load varies with the 

duration of the outage 
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