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Foreword 
This project began in April 2016 and has a total duration of 3 years. It was conducted primarily 
at the National Renewable Energy Laboratory, in collaboration with the University of Texas at 
Dallas, and with advisory participation from the Electric Reliability Council of Texas. 
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Preface 
This project aims to develop an innovative, integrated, and transformative approach to mitigate 
the impact of wind ramping by providing flexible ramping products from wind power. The 
project will significantly contribute to the reduction of wind integration costs by making wind 
power dispatchable and allowing the efficient management of wind ramping characteristics. In 
addition, we collaborated with industry to test and validate the methodology, considering 
economic and reliability goals, by integrating the proposed methodology into the simulated 
market frameworks of two independent system operators: California Independent System 
Operator and the Electric Reliability Council of Texas. 
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Executive Summary 
Maintaining the power system balance requires controllable resources to adjust their power 
output to match the time-varying net load. This is becoming more challenging when the 
proportion of generation from variable and uncertain renewable resources in the system is high. 
It has been observed recently that the variability of the net load will bring two main negative 
impacts to power systems: (1) the ramp response of controllable resources will become taxed, 
and (2) the frequency of short-term generation scarcity events will increase as a result of 
shortages of ramping capacity. 

In power system real-time operations, regulation services provide the only response option for 
balancing the variations in net load in the time frame of seconds or minutes. In the dispatch 
horizon, load-following resources are scheduled to provide the most economic solution to the 
expected level of variation. Currently, the expected level of variation can be met by residual 
capabilities of controllable resources. The challenge, however, is that system changes beyond the 
visibility of the dispatch horizon can leave the dispatchable resources with sufficient capacity but 
without ramp capability to respond when needed. This can lead to a short-term scarcity event. 

This project developed an innovative, integrated, and transformative approach to mitigate the 
impact of net load ramping by providing flexible ramping products from wind power. The 
project facilitates the efficient management of wind ramping, leading to increased dispatchability 
and subsequent reduction in the cost of wind integration. In addition, the National Renewable 
Energy Laboratory team worked with industry to design the wind ramping product and will 
disseminate the findings related to system economics, flexibility, and market efficiency 
improvements. This project: 

• Developed a probabilistic wind power ramp forecasting method to characterize and 
forecast ramps from a utility-scale perspective 

• Analyzed and synthesized ramping products specific to the proposed test system(s) 
• Designed flexible ramping products that can be implemented in a new market model to 

co-optimize energy, reserve, and ramping 
• Validated benefits of incorporating wind ramp forecasts and improving wind power 

dispatch management and demonstrated potential economic and reliability benefits 
• Developed an open-source Python-based market dispatch tool, the Open-source 

Sequential Multi-timescale Electricity Market Simulation (OpenSMEMS) toolbox and 
integrated the proposed ramping product model into it. The Pyomo package is used for 
the optimization modeling, and the Xpress solver is used for the MIP and LP 
optimization. 

• Used OpenSMEMS to simulate an actual independent system operator large-scale system 
• Created awareness of the benefits of flexible ramping products for the enhanced 

integration of wind energy by sharing methodologies and lessons learned with industry.  
On the wind ramp forecast, the proposed method considers both the ramping features’ 
dependence and wind power ramp forecasting error uncertainties by using the Gaussian mixture 
model marginal distribution. The model yields better results than conventional forecasting 
methods and lead to the lowest average coverage error, lowest average score value, and lowest 
synthetic evaluation metric. The proposed copula-based model (cp-WPRF) consistently presents 
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the closest coverage probability curve and the smallest interval score regardless of the 
uncertainty distribution, demonstrating its robustness. 

It has also been found that wind providing ramping services in day-ahead or hour-ahead markets 
can result in significant conventional generator dispatch displacement in real-time operation, as 
shown in Figure ES-1. 

 
Figure ES-1. Change in real-time generation dispatch as a result of wind providing ramping 

services in the Texas A&M University 2,000-bus system 

This change in generation resource allocation translates into operational cost reduction. When 
provided in the day-ahead, wind ramping products result in a 72% ramp cost reduction and 6% 
total system cost reduction, whereas the real-time market wind ramping product provision leads 
to a 63% ramp cost reduction and 5% total system cost reduction for the 2000-bus system 
considered. 
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Introduction 
This project aims to develop an innovative, integrated, and transformative approach to mitigate 
the impact of wind ramping by providing flexible ramping products from wind power. The 
project will significantly contribute to the reduction of wind integration costs by making wind 
power dispatchable and allowing the efficient management of wind ramping characteristics. In 
addition, we collaborated with industry to test and validate the methodology, taking into account 
economic and reliability goals, by integrating the proposed methodology into the simulated 
market frameworks of two independent system operators (ISOs): California Independent System 
Operator (CAISO) and the Electric Reliability Council of Texas (ERCOT). 

Maintaining the power system balance requires controllable resources to adjust their power 
output to match the time-varying net load. This is becoming more challenging when the 
proportion of generation from variable and uncertain renewable resources in the system is high. 
It has been observed recently that the variability of the net load will bring two main negative 
impacts to power systems: (1) the ramp response of controllable resources will become taxed, 
and (2) the frequency of short-term generation scarcity events will increase as a result of 
shortages of ramping capacity. 

In power system real-time operations, regulation services provide the only response option for 
balancing the variations in net load in the time frame of seconds or minutes. In the dispatch 
horizon, load-following resources are scheduled to provide the most economical solution to the 
expected level of variation. Currently, the expected level of variation can be met by residual 
capabilities of controllable resources. The challenge, however, is that the system changes beyond 
the visibility of the dispatch horizon can leave the dispatchable resources with sufficient capacity 
but without ramp capability to respond when needed. This can lead to a short-term scarcity event 
in the system. 

This project developed an innovative, integrated, and transformative approach to mitigate the 
impact of net load ramping by providing flexible ramping products from wind power. The 
project facilitates the efficient management of wind ramping, leading to increased dispatchability 
and subsequent reduction in the cost of wind integration. In addition, the National Renewable 
Energy Laboratory team worked with industry to design the wind ramping product and will 
disseminate the findings related to system economics, flexibility, and market efficiency 
improvements. This project: 

• Developed a probabilistic wind power ramp forecasting method to characterize and 
forecast ramps from a utility-scale perspective 

• Analyzed and synthesized ramping products specific to the proposed test system(s) 
• Designed flexible ramping products that can be implemented in a new market model to 

co-optimize energy, reserve, and ramping 
• Validated benefits of incorporating wind ramp forecasts and improving wind power 

dispatch management and demonstrated potential economic and reliability benefits 
• Developed an open-source market dispatch tool, the Open source Sequential Multi-

timescale Electricity Market Simulation (OpenSMEMS) toolbox, and integrated the 
proposed ramping product model into it 
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• Used OpenSMEMS to simulate an actual ISO large-scale system 
• Created awareness of the benefits of flexible ramping products for the enhanced 

integration of wind energy by sharing methodologies and lessons learned with industry.  
To mitigate the uncertainty in real-time operations, several ISOs have initiated or launched 
ramping products in electricity market operation. The state-of-the-art ramping products in the 
electric power industry are described as follows. 

• CAISO: “In August 2011, the California ISO Board of Governors approved the flexible 
ramping constraint interim compensation methodology. At that time the ISO committed 
to begin a stakeholder initiative to evaluate the creation of a flexible ramping product that 
will allow the ISO to procure sufficient ramping capability via economic bids. Through 
this initiative, the ISO will evaluate allocating costs to generation and load in accordance 
with cost causation principles. [CAISO, 2012]” 

• Pacific Gas and Electric Company (PG&E): “PG&E supports the CAISO’s efforts to 
identify through the FRP stakeholder process a market-based solution to the operational 
challenge of maintaining power balance in the Real-Time Dispatch (RTD) under 
increasing levels of variable energy resources (VERs). As these comments detail, 
however, key elements of the CAISO’s proposed FRP market design changes remain 
unclear to PG&E and other stakeholders. To achieve broad stakeholder support for the 
FRP initiative, the CAISO must explain much more precisely the mechanics of FRP 
procurement and settlement. Furthermore, PG&E strongly encourages the CAISO to 
conduct robust market simulations as part of the FRP stakeholder process to demonstrate 
to stakeholders that the proposed market design changes are likely to yield reasonable 
market outcomes. [PG&E, 2011]” 

• Midcontinent Independent System Operator (MISO): “MISO recommends an approach 
that extends the concepts embedded in the Ramp-Up and Ramp-Down Headroom 
Capacity Constraints to improve the availability of ramp capability through new up ramp 
capability (URC) and down ramp capability (DRC) products. It is expected that the 
introduction of ramp capability products can provide an attractive approach to obtaining 
needed operational flexibility at a lower cost than other alternatives, providing both 
market and reliability benefits. Potential benefits include: reduced frequency of reserve 
shortages or transmission violations, less need to dispatch high cost resources, avoided 
cost of uneconomic CT commitments to provide ramp, reduced need for ad hoc operator 
actions such as RT adjustments in the UDS Offset MW and CT commitment providing 
increased consistency of market results, transparent pricing and incentives for the supply 
of ramp capability, reduced need for operator intervention in routine real-time market 
operations, freeing operator time to focus on other issues, etc. [MISO, 2013]” 

Although several ISOs and utilities in the United States are realizing the importance of procuring 
adequate flexible resources in market operation and proposing new ramping products, they have 
not planned to use wind as a source of ramping service. Because many states have set up 
ambitious plans for the penetration level of wind power, we believe that the wind-friendly 
ramping product can provide an attractive approach to guarantee the needed operational 
flexibility and bring substantial economic benefits to the system.  

The aim of the proposed wind-friendly flexible ramping product is to transform a negative 
characteristic of wind power ramping into an advantageous one. Through efficient management 
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of wind ramps, wind power integration costs can be significantly reduced while simultaneously 
allowing the optimization of wind power as a ramping product in the market.  

Main project initiatives are to:  

1. Develop a probabilistic wind power ramp forecasting method to characterize and forecast 
ramps from a utility-scale perspective 

2. Perform analysis and synthesis of ramping products specific to the proposed test 
system(s), allowing guidelines and recommendations to be derived with respect to 
spatiotemporal impacts and other case-specific considerations  

3. Design flexible ramping products that can be implemented in a new market model to co-
optimize energy, reserves, and ramping  

4. Validate the benefits of incorporating wind ramp forecasts and improved management of 
wind power dispatch and demonstrate potential economic and reliability benefits  

5. Continue to develop OpenSMEMS (formerly called GridLAB-ISO) and integrate the 
proposed ramping product model into it; use OpenSMEMS to simulate an ISO’s system 
operations  

6. Create awareness of the benefits of flexible ramping products for the enhanced 
integration of wind energy, sharing methodologies and lessons learned with industry. The 
National Renewable Energy Laboratory will work with utilities and the Electric Power 
Research Institute to share findings and methodologies with utilities and ISOs. 



4 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

1  Probabilistic Wind Ramping Forecasting 
Wind power ramps are caused by large fluctuations in wind speed in a short time period and can 
threaten the secure and stable operation of power systems. Wind power ramp forecasting 
(WPRF), however, is still challenging for system operators, even though larger wind power 
penetrations are being seen in power systems worldwide, which makes wind power ramp 
forecasting significant for practical applications. 

Wind power ramp forecasting methods can be divided into deterministic forecasts (d-WPRF) and 
probabilistic forecasts (p-WPRF). The recent development of machine learning methods makes it 
possible to constitute deterministic wind power ramp forecasting models. The p-WPRF is 
expected to provide more information on forecasting uncertainties of wind power ramps. 
Accurate information of p-WPRF can improve the robustness of wind-friendly flexible ramping 
product design, thus achieving better cost-effectiveness of power market operations. Most 
existing p-WPRF methods can be further categorized into two-step and one-step methods. The 
two-step p-WPRF method is realized by extracting all possible wind power ramps from a 
massive number of wind power scenarios, which are generated by using wind power forecasting 
techniques. The probabilistic characteristics of wind power ramp forecasting are then obtained 
through statistical analysis of the detected wind power ramps. Although employed in a wide 
range of studies, the two-step p-WPRF method is generally computationally expensive because 
of its dependence on a large number of wind power scenarios. In contrast, the one-step p-WPRF 
method directly forecasts ramp features based on historical measured wind power ramp 
characteristics and can avoid reliance on wind power scenario generation. Generally, wind power 
ramps can be characterized by four features: ramp rate, duration, magnitude, and start time. Most 
current literature, however, focuses on ramp rate forecasts while neglecting the stochastic 
dependence between different ramp features. To this end, a one-step, copula-based, conditional 
p-WPRF (cp-WPRF) model is developed using copula theory, which is able to model conditional 
probabilistic forecasts of wind power ramp features.  

In this chapter, we seek to address two critical questions for balancing authorities with increasing 
penetrations of wind power in their power systems:  

1. Is it possible to quantitatively evaluate the probabilistic information of wind power ramp 
features (e.g., rate, duration, magnitude, and start time)?  

2. What is the impact of the stochastic dependence between WPRF uncertainties and 
different ramp features?  

A cp-WPRF model is developed to characterize key ramp features: (1) using the Gaussian 
mixture model (GMM) to accurately fit the probability distributions of wind power ramp 
forecasting errors and ramp features, (2) using the copula theory to develop a cp-WPRF model to 
separately forecast each wind power ramp feature considering the stochastic dependence of 
ramping features, and (3) analyzing the probability information of conditional forecasts for ramp 
features. 
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1.1 Definition and Detection of Wind Power Ramps 

1.1.1 Ramp Features 
A brief example of a wind power ramp is illustrated in Figure 1. As shown, one wind power 
ramp consists of four ramp features and one auxiliary variable. The four ramp features are ramp 
rate, duration, magnitude, and nonramp duration/start time, which are represented by symbols 𝑅𝑅, 
𝐷𝐷, 𝑀𝑀, and 𝑆𝑆, respectively. The auxiliary variable is the start-time wind power output, represented 
by the symbol 𝑃𝑃. Note that the ramp start time can be calculated from the nonramp duration. 
Because ramp features are more practical for power system operations than the auxiliary 
variable, the developed wind power ramp forecasting model will forecast each ramp feature. 
Because four features and one auxiliary variable constitute one wind power ramp, the stochastic 
dependence among them needs to be modeled to forecast any ramp feature. To characterize the 
mutual dependence of wind power ramp features and the auxiliary variable, the copula theory is 
adopted for analytical analysis and introduced.  

 
Figure 1. A typical wind power ramp represented by different ramp features 

1.1.2 Uncertainty and Variability Characterization of Wind Power Ramp 
Forecasting 

Similar to wind power, wind power ramp features present uncertainty and variability 
characteristics. Wind power ramp forecasting errors vary over time with different forecasting 
accuracies, which is a proxy for the uncertainty (see the green brace in Figure 2). The wind 
power ramp features change frequently with time, which is the variability (see the red brace in 
Figure 2). Taking the ramp rate forecast error as an example, Figure 3 shows the scatter plots of 
joint distributions of the ramp rate forecast error and two representative wind power ramp 
features: ramp rate and duration. Figure 3a shows that the ramp rate forecast error is directly 
proportional to the ramp rate. Figure 3b shows that the ramp rate forecast error is inversely 
proportional to the ramp duration. This observation illustrates that the ramp rate forecast error 
correlates with wind power ramp features, such as ramp rate and duration; however, it is still 
challenging to model the stochastic dependence analytically when considering multivariate 
marginal distributions. Although a correlation coefficient can characterize the relationship 
between the ramp rate forecast error and ramp features, it cannot capture all the dependence 
information. Copulas are efficient at describing the correlations of stochastically dependent 
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variables, and they have thus been adopted to model the probabilistic relationship between wind 
power ramp forecasting errors and wind power ramp features. 

 
Figure 2. Deterministic forecasting results of ramp rate 

 

 

Figure 3. Scatter plots of joint distributions for the ramp rate forecast error (𝒚𝒚-axis) and two 
representative wind power ramp features (𝒙𝒙-axis): ramp rate (a) and ramp duration (b). 

Currently, most of the literature uses unimodal distributions (normal distribution) or 
nonparametric distributions (kernel density estimation) to model the marginal distributions of the 
copula theory; however, unimodal distributions cannot accurately fit the irregular distributions of 
wind power ramp features, and nonparametric distributions cannot be solved analytically. To 
characterize the uncertainty and variability of wind power ramp features, the GMM distribution 
is used to accurately model the multimodal probability distributions of wind power ramp 
forecasting errors and wind power ramp features, respectively. The GMM distribution is 
formulated by: 

𝑓𝑓(𝑥𝑥𝑟𝑟|𝚪𝚪) = �𝜔𝜔𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥𝑟𝑟|μ𝑖𝑖,𝜎𝜎𝑖𝑖)
𝑁𝑁𝐺𝐺

𝑖𝑖=1

, 𝑟𝑟 ∈ {𝑅𝑅,𝐷𝐷,𝑀𝑀, 𝑆𝑆} (1) 

Measured SVM Forecasts

Samples
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� 𝑓𝑓(𝑥𝑥𝑟𝑟|𝚪𝚪)
∞

−∞
= 1 ⟹�𝜔𝜔𝑖𝑖 � 𝑔𝑔(𝑥𝑥𝑟𝑟|μ𝑖𝑖,𝜎𝜎𝑖𝑖)

∞

−∞

𝑁𝑁𝐺𝐺

𝑖𝑖=1

= 1 (2) 

where 𝑁𝑁𝐺𝐺  is the total number of mixture components. 𝑅𝑅 is the wind power ramp features set, 
including the ramp rate (𝑅𝑅), ramp duration (𝐷𝐷), ramp magnitude (𝑀𝑀), and ramp start time (𝑆𝑆). 𝛤𝛤 
defines the parameter set of all mixture components, i.e., Γ = {𝜔𝜔𝑖𝑖, 𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖}𝑖𝑖=1

𝑁𝑁𝐺𝐺 . 𝜎𝜎 is the standard 
deviation. 𝜇𝜇 is the mean value. 𝜔𝜔 is the weight. Each component 𝑔𝑔 (𝑥𝑥𝑟𝑟|𝜇𝜇,𝜎𝜎) conforms to a 
normal distribution, given by: 

𝑔𝑔(𝑥𝑥𝑟𝑟|μ𝑖𝑖,𝜎𝜎𝑖𝑖) =
1

𝜎𝜎√2𝜋𝜋
exp �−

(𝑥𝑥𝑟𝑟 − 𝜇𝜇)2

2𝜎𝜎2
� (3) 

where the integral of a normal distribution equals unity, i.e.: 

�𝜔𝜔𝑖𝑖

𝑁𝑁𝐺𝐺

𝑖𝑖=1

= 1. (4) 

The GMM distribution has two unity attributes formulated in Eq. (2) and Eq. (4), which make it 
possible to use the expectation maximization algorithm to estimate all the parameters of mixture 
components. More detailed information about this algorithm can be found in [ Bodini, et al, 
2017]. The uncertainty and variability of wind power ramp features are separately characterized 
by the GMM distribution with specific parameters. 

1.1.3 Ramp Detection 
The Wind Integration National Dataset (WIND) Toolkit [Draxl 2015] is used to construct the 
historical wind power ramps database, and the optimized swinging door algorithm (OpSDA) [ 
Zhu 2017] is used to automatically detect wind power ramps. In the OpSDA, the conventional 
swinging door algorithm with a predefined value is first applied to segregate the wind power data 
into multiple discrete segments. Then dynamic programming is used to merge adjacent segments 
with the same ramp direction and relatively high ramp rates. A brief description of the OpSDA is 
introduced in this section, and more details can be found in [Cui 2017]. Subintervals that satisfy 
the ramp rules are rewarded by a score function; otherwise, their score is set to zero. The current 
subinterval is retested as shown in subsection 1.1.2 after being combined with the next 
subinterval. This process is performed recursively until the end of the data set. A positive score 
function, 𝑆𝑆𝑐𝑐, is designed based on the length of the interval segregated by the swinging door 
algorithm. Given a time interval (𝑚𝑚,𝑛𝑛) i n the forecasting horizon and an objective function, 𝑆𝑆2, 
of the dynamic programming, a wind power ramp is detected by maximizing the objective 
function, 𝑆𝑆2: 

𝑆𝑆2(𝑚𝑚,𝑛𝑛) = max
𝑚𝑚≤𝑣𝑣≤𝑛𝑛

[𝑆𝑆𝑐𝑐(𝑚𝑚, 𝑣𝑣) + 𝑆𝑆2(𝑣𝑣,𝑛𝑛)] ,𝑚𝑚 < 𝑛𝑛 (5) 

s.t. 

𝑆𝑆𝑐𝑐(𝑚𝑚,𝑛𝑛) > 𝑆𝑆𝑐𝑐(𝑚𝑚, 𝑣𝑣) + 𝑆𝑆𝑐𝑐(𝑣𝑣 + 1,𝑛𝑛),∀𝑚𝑚 < 𝑣𝑣 < 𝑛𝑛 (6) 
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𝑆𝑆𝑐𝑐(𝑚𝑚,𝑛𝑛) = (𝑚𝑚− 𝑛𝑛)2 × 𝑅𝑅𝑅𝑅(𝑚𝑚, 𝑛𝑛),∀𝑚𝑚 < 𝑣𝑣 < 𝑛𝑛 (7) 

where the positive score function, Sc, conforms to a superadditivity property in Eq. (6) and is 
formulated in Eq. (7). The ramp rule, 𝑅𝑅𝑅𝑅(𝑚𝑚,𝑛𝑛), is defined as the change in wind power 
magnitude without ramp duration limits. Thus, the wind power ramp is defined as the wind 
power change that exceeds the threshold (15% of the installed wind capacity) without 
constraining the ramping duration. A brief example of wind power ramp detection in 1 day is 
illustrated in Figure 4. Figure 4a shows that the conventional swinging door algorithm detects 
only one wind power ramp without any optimization. As shown in Figure 4b, the OpSDA is able 
to combine the adjacent segments in the same direction and detect wind power ramps more 
accurately. 

 

Figure 4. Comparison of wind power ramp detection using the swinging door algorithm and 
OpSDA  

1.2 Conditional Probability Wind Power Ramp Forecast 
Generally, the behavior of wind power ramp uncertainties is affected by wind power ramp 
variabilities, which is called stochastic dependence. In other words, the wind power ramp 
uncertainty and variability are stochastically dependent on each other. To analytically 
characterize the stochastic dependence between wind power ramp uncertainty and variability, the 
copula theory provides an effective way of capturing these correlations. Suppose that 𝑥𝑥𝑟𝑟 is the 
𝑟𝑟th uncertainty variable (wind power ramp forecasting errors), and 𝑥𝑥𝑟𝑟 ∈ {𝑥𝑥𝑅𝑅; 𝑥𝑥𝐷𝐷; 𝑥𝑥𝑀𝑀; 𝑥𝑥𝑆𝑆) (𝑟𝑟 ∈
𝑅𝑅); 𝑦𝑦𝑐𝑐 is the 𝑐𝑐th random variability (or condition) variable (wind power ramp features and 
auxiliary variable), and 𝑦𝑦𝑐𝑐 ∈ {𝑦𝑦𝑅𝑅;𝑦𝑦𝐷𝐷;𝑦𝑦𝑀𝑀;𝑦𝑦𝑆𝑆;𝑦𝑦𝑃𝑃}(𝑐𝑐 ∈ 𝑅𝑅 ∪ {𝑃𝑃}). The joint cumulative distribution 
function 𝐹𝐹𝑋𝑋𝑟𝑟𝑌𝑌𝑐𝑐 represents the stochastic dependence, given by: 

𝐹𝐹𝑋𝑋𝑟𝑟𝑌𝑌𝑐𝑐(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑐𝑐) = 𝐹𝐹𝐶𝐶 �𝐹𝐹𝑋𝑋𝑟𝑟(𝑥𝑥𝑟𝑟),𝐹𝐹𝑌𝑌𝑐𝑐(𝑦𝑦𝑐𝑐)� (8) 

where 𝐹𝐹𝑋𝑋𝑟𝑟 and 𝐹𝐹𝑌𝑌𝑐𝑐  are the marginal cumulative distribution functions of wind power ramp 
uncertainty and variability that transform 𝑥𝑥𝑟𝑟 and 𝑦𝑦𝑐𝑐 into the uniform distributions, respectively. 
𝐹𝐹𝐶𝐶(⋅) is the copula cumulative distribution function. In this way, the copula theory transforms the 
stochastic dependence problem into modeling 𝐹𝐹𝑋𝑋𝑟𝑟, 𝐹𝐹𝑌𝑌𝑐𝑐 , and 𝐹𝐹𝐶𝐶(⋅). 
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1.2.1 Conditional Forecast of Uncertainty with Stochastic Dependence on 
Variability 

Because of the stochastic nature of wind power ramps, a change in random wind power ramp 
forecasting errors would occur when the condition variables are altered, which is regarded as the 
stochastic dependence of wind power ramp uncertainty on variability. The joint distribution of 
wind power ramp forecasting errors and the conditional variable can be modeled by the copula 
function. The joint probability density function 𝑓𝑓𝑋𝑋𝑟𝑟𝑌𝑌𝑐𝑐(𝑥𝑥𝑟𝑟;𝑦𝑦𝑐𝑐) is formulated with the marginal 
probability density functions of 𝑥𝑥𝑟𝑟, 𝑦𝑦𝑐𝑐, and the copula probability density function𝑓𝑓𝐶𝐶(⋅). Given 
that the point forecast of a single conditional variable is 𝑦𝑦𝑐𝑐 = 𝑅𝑅�𝑐𝑐, the conditional probability 
density function of wind power ramp forecasting errors can be expressed as: 

𝑓𝑓𝑋𝑋𝑟𝑟|𝑌𝑌𝑐𝑐�𝑥𝑥𝑟𝑟�𝑅𝑅�𝑐𝑐� =
𝑓𝑓𝑋𝑋𝑟𝑟𝑌𝑌𝑐𝑐�𝑥𝑥𝑟𝑟 ,𝑅𝑅�𝑐𝑐�
𝑓𝑓𝑌𝑌𝑐𝑐�𝑅𝑅�𝑐𝑐�

(9) 

= 𝑓𝑓𝑐𝑐 �𝐹𝐹𝑋𝑋𝑟𝑟(𝑥𝑥𝑟𝑟),𝐹𝐹𝑌𝑌𝑐𝑐�𝑅𝑅�𝑐𝑐�� ⋅ 𝑓𝑓𝑋𝑋𝑟𝑟(𝑥𝑥𝑟𝑟) 

where the wind power ramp uncertainty variable (𝑥𝑥𝑟𝑟) pool 𝑥𝑥𝑟𝑟 ∈ {𝑥𝑥𝑅𝑅; 𝑥𝑥𝐷𝐷; 𝑥𝑥𝑀𝑀; 𝑥𝑥𝑆𝑆) includes the 
wind power ramp uncertainties of four wind power ramp features. The dependent condition (𝑦𝑦𝑐𝑐) 
pool in 𝑦𝑦𝑐𝑐 ∈ {𝑦𝑦𝑅𝑅;𝑦𝑦𝐷𝐷;𝑦𝑦𝑀𝑀;𝑦𝑦𝑆𝑆;𝑦𝑦𝑃𝑃} includes all the possible variables that are correlated with the 
wind power ramp uncertainty. Here, the dependent conditional variable pool consists of four 
wind power ramp features and start-time wind power output (𝑃𝑃). Note that the aforementioned 
pool definitions can be extended by balancing authorities for further studies. Each uncertainty or 
condition variable is normalized by: 

𝑥𝑥 =
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. − 𝜇𝜇

𝜎𝜎
(10) 

where 𝜇𝜇 and 𝜎𝜎 represent the mean value and standard deviation of uncertainty or condition 
variables, respectively. 

1.2.2 Multiple Conditions-Based cp-WPRF 
Copula theory can also be used to establish the multiple-conditions based cp-WPRF model by 
expanding Eq. (9). Given that point forecasts of multiple conditional variables are 𝑦𝑦1 = 𝑅𝑅�1,𝑦𝑦2 =
𝑅𝑅�2,⋯ ,𝑦𝑦𝑐𝑐 = 𝑅𝑅�𝑐𝑐, the conditional probability density function of wind power ramp forecasting 
errors, namely 𝑓𝑓𝑋𝑋𝑟𝑟|𝑌𝑌1𝑌𝑌2⋯𝑌𝑌𝑐𝑐(𝑥𝑥𝑟𝑟;𝑅𝑅�1,𝑅𝑅�2,⋯ ,𝑅𝑅�𝑐𝑐), can be expressed. Unlike the single condition-based 
cp-WPRF, multiple conditional variables (𝑦𝑦1;𝑦𝑦2;⋯ ;𝑦𝑦𝑐𝑐) are selected from the dependent 
condition pool in Eq. (11) based on the constraint in Eq. (12). By varying the 𝑐𝑐 value, all the 
possible conditions can be considered. 

𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑐𝑐 ∈ {𝑦𝑦𝑅𝑅;𝑦𝑦𝐷𝐷;𝑦𝑦𝑀𝑀;𝑦𝑦𝑆𝑆;𝑦𝑦𝑃𝑃}; 𝑐𝑐 ∈ 𝑅𝑅 ∪ {𝑃𝑃} (11) 

𝑦𝑦1 ≠ 𝑦𝑦2 ≠ ⋯ ≠ 𝑦𝑦𝑐𝑐 (12) 

Overall, the conditional distribution of wind power ramp uncertainty variables consists of the 
copula-based conditional probability density function as the variant multiplier and the marginal 
GMM distribution as the base. 
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1.2.3 Optimal Copula Model Determination 
To choose the optimal copula model, the Bayesian information criterion is used to assess the 
performance of different copula models. Thus, the optimal copula model is chosen by 
minimizing the Bayesian information criterion, formulated by: 

arg min𝑁𝑁𝑃𝑃 ln𝑁𝑁𝑆𝑆 − 2 ln �� ln 𝑓𝑓𝐶𝐶�𝑢𝑢𝑡𝑡 , 𝑣𝑣1,𝑡𝑡,⋯ , 𝑣𝑣𝑐𝑐,𝑡𝑡;𝜃𝜃��
𝑁𝑁𝑆𝑆

𝑡𝑡=1

� (13) 

where 𝑁𝑁𝑃𝑃 is the number of parameters in a copula model. 𝑁𝑁𝑆𝑆 is the number of measured samples. 
For the Gaussian copula, 𝑁𝑁𝑃𝑃 = 𝑐𝑐(𝑐𝑐 + 1)/2. For the 𝑡𝑡 copula, 𝑁𝑁𝑃𝑃 = 1 + 𝑐𝑐(𝑐𝑐 + 1)/2. For the 
Archimedean copula family, 𝑁𝑁𝑃𝑃 = 1. 

The optimal copula model is determined by the Bayesian information criterion. In statistics, the 
Bayesian information criterion is a criterion used for model selection among a finite set of 
models. The copula model with the minimum Bayesian information criterion is preferred. The 
minimum Bayesian information criterion is calculated using cumulative distribution functions 
that transform the ramping feature data into uniform distributions. Different cumulative 
distribution function profiles of each ramping feature might generate a different optimal copula 
model.  

1.2.4 Development of cp-WPRF Model: An Example of Ramp Rate Forecasts 
Based on the optimal copula model, the predictive intervals of wind power ramp uncertainties 
[𝑥𝑥𝑟𝑟,𝑡𝑡

𝛼𝛼𝐿𝐿 , 𝑥𝑥𝑟𝑟,𝑡𝑡
𝛼𝛼𝑈𝑈] can be calculated by using the conditional probability density function in Eq. (9). A 

predictive interval (𝐼𝐼𝑟𝑟,𝑡𝑡
𝛽𝛽 ) of the forecasted wind power ramps with a nominal coverage rate (1 −

𝛽𝛽) can be expressed with the lower bound, 𝑅𝑅�𝑟𝑟,𝑡𝑡
𝛼𝛼𝐿𝐿, and the upper bound, 𝑅𝑅�𝑟𝑟,𝑡𝑡

𝛼𝛼𝐻𝐻 , given by: 

𝐼𝐼𝑟𝑟,𝑡𝑡
𝛽𝛽 = �𝑅𝑅�𝑟𝑟,𝑡𝑡

𝛼𝛼𝐿𝐿 ,𝑅𝑅�𝑟𝑟,𝑡𝑡
𝛼𝛼𝑈𝑈� = 𝑅𝑅�𝑟𝑟,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆 + �𝑥𝑥𝑟𝑟,𝑡𝑡
𝛼𝛼𝐿𝐿 , 𝑥𝑥𝑟𝑟,𝑡𝑡

𝛼𝛼𝑈𝑈� (14) 

where the lower and upper nominal proportions 𝛼𝛼𝐿𝐿 and 𝛼𝛼𝑈𝑈 equal 𝛽𝛽/2 and (1 − 𝛽𝛽/2), 
respectively. The inverse function of the conditional cumulative distribution function, however, 
cannot be analytically deduced. Alternatively, we use the Newton-Raphson method to obtain the 
numerical solution. Taking the ramp rate forecasts as an example, the lower bound of the ramp 
rate uncertainty is generated based on the copula probability density function and the lower 
nominal proportion 𝛼𝛼𝐿𝐿. The overall framework for generating the cp-WPRF of the ramp rate is 
illustrated in Figure 5, which mainly consists of four major steps: deterministic ramp rate 
forecast, marginal distribution fit, optimal copula model selection, and determining the best 
conditions-based cp-WPRF model. The four major steps are described as follows: 

• Step 1: Based on the measured wind power ramp data of ramp features, a machine 
learning method (i.e., support vector machine) is used to separately generate deterministic 
forecasts of all wind power ramp features and the corresponding wind power ramp 
forecasting errors. 

• Step 2: Each wind power ramp feature and its forecasting errors are characterized by the 
GMM distribution, which is used as the marginal distribution in copula models. 
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• Step 3: Parameters of the copula models are estimated by the ML/CML method. The best 
copula model is chosen based on the minimum Bayesian information criterion. 

• Step 4: The predictive intervals of ramp rate 𝐼𝐼𝑟𝑟,𝑡𝑡
𝛽𝛽  are calculated as the combination of the 

deterministic forecasts and the wind power ramp uncertainties predictive intervals (see 
Eq. (14)). The best conditions-based cp-WPRF model is determined by the quality of the 
predictive intervals with evaluation metrics. 

 
Figure 5. Overall framework of the developed cp-WPRF model: an example of ramp rate forecasts 

1.3 cp-WPRF Evaluation Metrics 
To evaluate the performance of cp-WPRF at different conditions, two predictive interval-based 
metrics—reliability and sharpness—are adopted and briefly introduced in this section. Reliability 
indicates the correct degree of a cp-WPRF assessed by the hit percentage. Sharpness indicates 
the uncertainty conveyed by the cp-WPRF. 

1.3.1 Reliability 
The forecasted wind power ramp features are expected to lie within the predictive interval 
bounds with a prescribed probability termed the nominal proportion. It is expected that the 
coverage probability of obtained predictive intervals will asymptotically reach the nominal level 
of confidence (ideal case) during the full wind power ramps. Predictive interval coverage 
probability (PICP) is a critical measure for the reliability of the wind power ramp predictive 
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intervals, formulated as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1
𝑁𝑁𝑡𝑡
∑ 𝜙𝜙𝑡𝑡

𝛽𝛽 × 100%𝑁𝑁𝑡𝑡
𝑡𝑡=1 , where the indicator of predictive interval 

coverage probability (𝜙𝜙𝑡𝑡
𝛽𝛽) is defined in Eq. (15). Theoretically, the predictive interval coverage 

probability should be close to the corresponding predictive interval nominal confidence (PINC). 
The average coverage error (ACE) metric formulated in Eq. (16) should be as close to zero as 
possible. A smaller absolute ACE indicates more reliable predictive intervals of wind power 
ramps. 

𝜙𝜙𝑡𝑡
𝛽𝛽 = �

1,𝑅𝑅�𝑟𝑟,𝑡𝑡 ∈ 𝐼𝐼𝑟𝑟,𝑡𝑡
𝛽𝛽

0,𝑅𝑅�𝑟𝑟,𝑡𝑡 ∉ 𝐼𝐼𝑟𝑟,𝑡𝑡
𝛽𝛽 (15) 

𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑁𝑁𝑆𝑆𝑆𝑆

��
1
𝑁𝑁𝑡𝑡
�𝜙𝜙𝑡𝑡

𝛽𝛽𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝛽𝛽𝑗𝑗
𝑁𝑁𝑡𝑡

𝑡𝑡=1

� × 100%
𝑁𝑁𝑆𝑆𝑆𝑆

𝑗𝑗=1

(16) 

where 𝑁𝑁𝑆𝑆𝑆𝑆 is the number of significance levels. 𝑁𝑁𝑡𝑡 is the number of test samples. 

1.3.2 Sharpness 
Sharpness is related to the interval size of different significance levels. The mean size of the 
predictive intervals (𝛿𝛿𝑟𝑟

𝛽𝛽) at nominal coverage rate (1 − 𝛽𝛽) is: 

𝛿𝛿𝑟𝑟,𝑡𝑡
𝛽𝛽 =

1
𝑁𝑁𝑡𝑡
��𝑥𝑥𝑟𝑟,𝑡𝑡

𝛼𝛼𝑈𝑈 − 𝑥𝑥𝑟𝑟,𝑡𝑡
𝛼𝛼𝐿𝐿� × 100%

𝑁𝑁𝑡𝑡

𝑡𝑡=1

(17) 

The interval score 𝑆𝑆𝑐𝑐𝑟𝑟
𝛽𝛽(𝑅𝑅�𝑟𝑟,𝑡𝑡) rewards narrow predictive intervals and assesses a penalty if a 

target does not lie within estimated predictive intervals. 

𝑆𝑆𝑐𝑐𝑟𝑟
𝛽𝛽�𝑅𝑅�𝑟𝑟,𝑡𝑡� =

⎩
⎨

⎧2𝛽𝛽𝛿𝛿𝑟𝑟
𝛽𝛽�𝑅𝑅�𝑟𝑟,𝑡𝑡� + 𝑟𝑟�𝑅𝑅�𝑟𝑟,𝑡𝑡

𝛼𝛼𝐿𝐿 − 𝑅𝑅�𝑟𝑟,𝑡𝑡�, if 𝑅𝑅�𝑟𝑟,𝑡𝑡 < 𝑅𝑅�𝑟𝑟,𝑡𝑡
𝛼𝛼𝐿𝐿

2𝛽𝛽𝛿𝛿𝑟𝑟
𝛽𝛽�𝑅𝑅�𝑟𝑟,𝑡𝑡�, if 𝑅𝑅�𝑟𝑟,𝑡𝑡 ∈ 𝐼𝐼𝑟𝑟,𝑡𝑡

𝛽𝛽

2𝛽𝛽𝛿𝛿𝑟𝑟
𝛽𝛽�𝑅𝑅�𝑟𝑟,𝑡𝑡� + 𝑟𝑟�𝑅𝑅�𝑟𝑟,𝑡𝑡 − 𝑅𝑅�𝑟𝑟,𝑡𝑡

𝛼𝛼𝑈𝑈�, if 𝑅𝑅�𝑟𝑟,𝑡𝑡 > 𝑅𝑅�𝑟𝑟,𝑡𝑡
𝛼𝛼𝐿𝐿

(18) 

The average score value (ASV) can be employed to comprehensively evaluate the overall skill of 
wind power ramp predictive intervals to assess the sharpness, given by: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
1

𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁𝑡𝑡
��𝑆𝑆𝑐𝑐𝑟𝑟

𝛽𝛽�𝑅𝑅�𝑟𝑟,𝑡𝑡�
𝑁𝑁𝑡𝑡

𝑡𝑡=1

× 100%
𝑁𝑁𝑆𝑆𝐿𝐿

𝑗𝑗=1

(19) 

Generally, smaller ACE and ASV values indicate better forecasting performance. To examine 
the trade-off between the reliability and sharpness metrics, the synthetic evaluation metric (SEM) 
is formulated by: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜆𝜆1𝐴𝐴𝐴𝐴𝐸𝐸������ + 𝜆𝜆2𝐴𝐴𝐴𝐴𝐴𝐴������ (20) 
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where ACE and ASV are normalized by Eq. (10). 𝜆𝜆1 and 𝜆𝜆2 are the weight coefficients (here, 
𝜆𝜆1 = 𝜆𝜆2 = 0.5). The weights could be adjusted based on the balancing authorities’ (or other 
stakeholders’) preferences between the two metrics. 

1.3.3 Optimal Condition Determination 
To select the optimal condition from the conditions pool, the objective function is constructed by 
minimizing the SEM metric for each correlated condition, given by: 

arg min
𝑖𝑖∈Ω

𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 = 𝜆𝜆1,𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴������𝑖𝑖 + 𝜆𝜆2,𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴������𝑖𝑖 (21) 

where Ω is the set of the conditions pool. 

Figure 6 shows the procedure of selecting the optimal condition from the conditions pool, which 
is described as follows: 

• Step 1: Prepare a conditions pool and choose the 𝑖𝑖th condition from the conditions pool. 
• Step 2: select the optimal copula model, calculate the predictive intervals, and calculate 

the evaluation metrics 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 in Eq. (21). 
• Step 3: If 𝑖𝑖 = 1, the optimal SEM is set as 𝑆𝑆𝑆𝑆𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜,1 = 𝑆𝑆𝑆𝑆𝑀𝑀1; otherwise, compare the ith 

SEM 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 with the optimal SEM 𝑆𝑆𝑆𝑆𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜,1 in the last (𝑖𝑖 − 1)th iteration. 
• Step 4: If 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 < 𝑆𝑆𝑆𝑆𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖−1, the optimal SEM is replaced by 𝑆𝑆𝑆𝑆𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 ← 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 and 

𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ← 𝑖𝑖; otherwise, this step is skipped, and go to Step 5. 
• Step 5: Evaluate the termination condition. If the condition index 𝑖𝑖 is smaller than the 

total number of conditions 𝑖𝑖 < 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(Ω), the index is updated by i= 𝑖𝑖 + 1, and it 
returns to Step 1; otherwise, the iteration calculation is terminated. The optimal condition 
is selected as the 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜th condition. 
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Figure 6. Flowchart of selecting the optimal condition 

1.4 Case Studies 
The developed cp-WPRF model is evaluated using data from the WIND Toolkit. The data 
represents wind power generation from January 1, 2007, to December 31, 2012. The wind power 
plants used in this analysis are located in the regions of Dallas, Miami, Chicago, Los Angeles, 
and New York with a 5-minute data resolution. The total rated wind power capacities are 10,028 
MW, 9,555 MW, 9,974 MW, 10,119 MW, and 9,825 MW, respectively. There are 
approximately 1,585, 1,121, 1,819, 1,245, and 1,080 wind power ramps in each location, 
respectively. The last 140 wind power ramps are used for testing. The remaining wind power 
ramps are used for training. The door width of the OpSDA is set as 0.2% of the rated capacity. 

1.4.1 Comparisons of Different Probabilistic Wind Power Ramp Forecasting 
Models 

To verify the effectiveness of the developed cp-WPRF model, four probabilistic wind power 
ramp forecasting models are used for comparisons. The detailed information on the four models 
is described as follows and also summarized in Table 1. 

• Model 1: considers only the ramp features’ dependence without modeling wind power 
ramp forecasting error uncertainties 
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• Model 2: considers only the wind power ramp forecasting error uncertainties without 
modeling the ramp features’ dependence 

• Model 3: considers both the ramp features’ dependence and wind power ramp forecasting 
error uncertainties by using the normal marginal distribution 

• Model 4 (proposed): considers both the ramping features’ dependence and wind power 
ramp forecasting error uncertainties by using the GMM marginal distribution. 

Two cases are studied to compare the performance of four probabilistic wind power ramp 
forecasting models: (1) Case 1: wind power ramp forecasting results of different ramp features in 
the same region and (2) Case 2: wind power ramp forecasting results of the same ramp feature in 
different regions. 

Table 1. Descriptions of Probabilistic Wind Power Ramp Forecasting Models 

Wind Power Ramp 
Forecasting Models 

 Descriptions  

Marginal Distribution Wind Power Ramp 
Forecasting Error 
Uncertainty 

Copula Dependence 

Model 1 GMM –  

Model 2 GMM  – 

Model 3 Normal   

Model 4 (Proposed) GMM   

Case 1: The wind power ramp data of the Dallas area are used as an extensive study in this case, 
i.e., different ramp features with multiple wind power ramp forecasting models. For ramp rate, 
Model 4 uses the selected 𝑋𝑋|𝑅𝑅 condition as the best cp-WPRF model with the optimal Gumbel 
copula. For ramp magnitude, Model 4 uses the selected 𝑋𝑋|𝑅𝑅𝑅𝑅𝑅𝑅 condition as the best cp-WPRF 
model with the optimal 𝑡𝑡 copula. For ramp duration, Model 4 uses the selected 𝑋𝑋|𝐷𝐷𝐷𝐷 condition 
as the best cp-WPRF model with the optimal Gaussian copula. For ramp start time, Model 4 uses 
the selected 𝑋𝑋|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 condition as the best cp-WPRF model with the optimal 𝑡𝑡 copula. For 
simplicity of comparison, Figure 7 shows the coverage probabilities (reliability) and interval 
scores (sharpness) for different ramp features. As shown, the coverage probability curve of 
Model 4 (the blue solid line) is the closest to the ideal nominal proportion line (the red solid line) 
in all cases. It also shows that Model 4 has the smallest interval scores for each nominal 
proportion. Particularly, Model 4 performs much better in terms of the interval score for ramp 
rate, as shown in Figure 7d. This is probably because the stochastic dependence between the 
ramp rate feature and its uncertainty is simultaneously considered in Model 4. For a better 
illustration, Table 2 lists the numerical results of the evaluation metrics for different ramp 
features. Specifically, the reliability metric ranges of models 1, 2, 3, and 4 are 4%–13%, 6%–
14%, 7%–13%, and 1%–7%, respectively. The sharpness metric ranges of models 1, 2, 3, and 4 
are 40%–134%, 35%–63%, 31%–69%, and 30%–51%, respectively. The final SEM ranges are 
0.3–1.04, 0.09–0.28, -0.15–0.42, and -1.14–-0.85, respectively. For all four ramp features, Model 
4 presents the smallest ACE, ASV, and SEM values. This is because Model 4 considers both the 
wind power ramp forecasting error uncertainty and the stochastic dependence of different ramp 
features, unlike both Model 1 and Model 2. In addition, the accurate characterization of marginal 



16 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

distributions in Model 4 can significantly improve probabilistic wind power ramp forecasting 
metrics compared to Model 3. 

Table 2. Comparative Results for Different Ramp Features 

Features Metrics Model 1 Model 2 Model 3 Model 4 

Rate 

ACE [%] 12.46 6.64 9.45 1.64 

ASV [%] 40.18 38.97 31.58 30.05 

SEM 1.02 0.27 -0.15 -1.14 

Mag. 

ACE [%] 4.87 8.40 7.53 2.83 

ASV [%] 134.30 63.03 68.74 50.26 

SEM 0.53 0.28 0.18 -0.99 

Dur. 

ACE [%] 6.86 13.25 12.86 6.34 

ASV [%] 65.76 35.98 46.13 34.48 

SEM 0.30 0.12 0.42 -0.85 

Start 
Time 

ACE [%] 9.37 9.35 8.85 5.89 

ASV [%] 110.80 45.35 46.24 34.82 

SEM 1.04 0.09 -0.04 -1.09 

 



17 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 7. Comparison of different models of conditional probabilistic forecasts for ramp features 

in the Dallas area. From left to right: (a) magnitude, (b) duration, (c) start time, and (d) rate 

The impact of the copula-based stochastic dependence is further analyzed by comparing Model 2 
and Model 4. For all wind power ramp features, evaluation metrics are better with improved 
SEM values of 1.41 [=0.27-(-1.14)], 1.27 [=0.28-(-0.99)], 0.97 [=0.12-(-0.85)], and 1.18 [=0.09-
(-1.09)]. These findings would help balancing authorities efficiently manage wind power ramps. 
For example, a better forecast accuracy of ramp magnitude can be used to design more reliable 
ramping products in the electricity market. 

Case 2: The ramp rate data of the four regions in Miami, Chicago, New York, and Los Angeles 
are used to verify the robustness of the developed cp-WPRF model. Figure 8 shows the coverage 
probabilities and interval scores for ramp rate forecasts in these regions. Model 4 presents the 
closest coverage probability curve (the blue solid line) to the ideal nominal proportion line (the 
red solid line) in all cases. This model also shows the smallest interval scores for each nominal 
proportion. Numerical results of evaluation metrics for ramp rate in different regions are 
illustrated in Table 3. Specifically, the reliability metric ranges of models 1, 2, 3, and 4 are 2%–
14%, 3%–7%, 4%–8%, and 2%–3%, respectively. The sharpness metric ranges of models 1, 2, 3, 
and 4 are 33%–37%, 31%–47%, 26%–33%, and 25%–32%, respectively. The SEM ranges are 
0.37–1.16, -0.06–0.5, -0.65–0.48, and -0.91–-0.79, respectively. For all regions, Model 4 
presents the smallest ACE, ASV, and SEM values. This is because Model 4 considers both the 
wind power ramp forecasting error uncertainty and the stochastic dependence of other ramp 
features. Comparing Model 2 to Model 4 shows significant improvements to all four regions in 
the evaluation metrics. The improved SEM values in Miami, Chicago, New York, and Los 
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Angeles are 1.31 [=0.40-(-0.91)], 1.39 [=0.50-(-0.89)], 1.27 [=0.41-(-0.86)], and 0.73 [=-0.06-(-
0.79)], respectively.  

 
Figure 8. Comparison of different models of cp-WPRF for ramp rate in multiple regions. From left 

to right: (a) Miami, (b) Chicago, (c) New York City, and (d) Los Angeles 
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Table 3. Comparative Results for Ramp Rate in Multiple Regions 

Regions Metrics Model 1 Model 2 Model 3 Model 4 

MIA 

ACE [%] 13.51 6.93 4.65 2.65 

ASV [%] 36.38 35.67 26.31 25.71 

SEM 1.16 0.40 -0.65 -0.91 

CHI 

ACE [%] 10.56 4.55 5.72 2.61 

ASV [%] 35.78 46.42 29.97 28.45 

SEM 0.73 0.50 -0.34 -0.89 

NYC 

ACE [%] 10.69 3.42 7.03 2.27 

ASV [%] 33.91 42.67 32.65 30.93 

SEM 0.53 0.41 -0.07 -0.86 

LA 

ACE [%] 2.78 4.33 5.66 2.58 

ASV [%] 34.55 31.45 31.71 31.07 

SEM 0.37 -0.06 0.48 -0.79 

 
Another interesting finding is that the interval score difference between Model 3 and Model 4 in 
Figure 7 is more significant than that in all four regions in Figure 8. This is because the GMM 
marginal distribution fits the wind power ramp forecasting error uncertainties significantly better 
than the normal marginal distribution. For the other four regions in Figure 8, however, the GMM 
marginal distribution fits the wind power ramp forecasting error uncertainties only slightly better 
than the normal marginal distribution. To compare the fitting performance of the normal and 
GMM distributions for wind power ramp forecasting errors, Table 4 illustrates the Chisquare 
(𝜒𝜒2) statistics to measure the goodness of fit. As shown, for the Dallas data, the fitting 
performance of GMM is about 72% better than that of the normal distribution. For the other four 
regions (MIA, CHI, NYC, and LA), however, the slight improvements of using GMM are 
approximately 21%–27%, compared to the normal distribution. 

Table 4. 𝛘𝛘𝟐𝟐 Statistics Comparison of GMM and Normal Distributions for Ramp Rate at Five Regions 

Distributions MIA CHI NYC LA DAL 

Normal 3.11 2.98 3.28 3.31 3.82 

GMM 2.37 2.15 2.62 2.54 1.07 

Improvement by GMM 23% 27% 21% 23% 72% 

1.4.2 Robustness Analysis of cp-WPRF Models 
To verify the robustness of the developed model with different forecasting methods, three 
autoregressive moving average model (ARMA) methods are used as a comparison with the 
support vector machine-based cp-WPRF model in Figure 7d: ARMA(1,1), ARMA(2,1), and 
ARMA(3,1). Figure 9 shows the performance of the cp-WPRF models using various ARMA 
forecasting methods. As shown in Figure 9a–c, the developed cp-WPRF model (Model 4) 
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consistently presents the closest coverage probability curve (the blue solid line) and the smallest 
interval score (the green solid line) when using different ARMA methods. Specifically, Figure 
9d compares the SEM values of the cp-WPRF models using different forecasting methods. The 
developed cp-WPRF model (Model 4) consistently provides the smallest SEM values (see the 
dark blue bars). These observations verify that the developed cp-WPRF is robust with different 
forecasting methods. 

Table 5 illustrates the optimal copula models and best conditions of different forecasting 
methods based on the cp-WPRF models. It shows that the optimal copula model might change 
with the forecasting method. This is because the probability distributions of the ramp rates 
forecasted by the distinct forecasting method are different. These probability distributions could 
generate different cumulative distribution function values of 𝑢𝑢 = 𝐹𝐹(𝑥𝑥𝑟𝑟), which can impact the 
estimated parameters and the performance of the optimal copula model with different Bayesian 
information criterion values in Eq. (13). 

 
Figure 9. Performance of different forecasting methods based cp-WPRF models (from left to 

right): ARMA-based cp-WPRF in (a), (b), (c); SEM values of multiple models in (d) 
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Table 5. Optimal Copula Models and Best Conditions of Different Forecasting Methods-Based 
cp-WPRF Models 

Forecasting Method Best Condition Optimal Copula Model 

ARMA(1,1) 𝑋𝑋|𝑅𝑅𝑅𝑅𝑅𝑅 t 

ARMA(2,1) 𝑋𝑋|𝑅𝑅𝑅𝑅𝑅𝑅 Frank 

ARMA(3,1) 𝑋𝑋|𝑀𝑀𝑀𝑀 t 

Support Vector 
Machine 

𝑋𝑋|𝑅𝑅 Gumbel 
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2 Sequential Multi-Timescale Electricity Market 
Simulation Tool (OpenSMEMS) 

The objective of the sequential market simulation tool is to represent market events in their 
practical order of occurrence to analyze the intrinsic implications of one event on another. The 
analysis of the impact of wind ramping product is a special point of interest. To this end, we 
model the day-ahead market problem as a security-constrained unit commitment (SCUC) 
problem and the real-time market as a sequence of hour-ahead SCUC and intra-hour security-
constrained economic dispatch (SCED). Modeling details are presented in the following 
subsections. 

2.1 Security-Constrained Unit Commitment 
On a daily basis, electric power system operators face the challenge of ensuring resource 
adequacy. This includes securing enough generation capacity to supply the next day’s estimated 
or forecasted demand. Day-ahead SCUC is used to achieve this goal and schedule for each hour 
of the next day the generation units that should come online for reliable and economic operation 
of the grid. The objective function and constraints that define the SCUC model are presented in 
Eq. (2.1) through Eq. (2.27). The SCUC problem seeks to minimize the overall operating cost 
𝑇𝑇𝑇𝑇, comprising startup costs (𝑠𝑠𝑢𝑢𝑔𝑔,𝑡𝑡) and shutdown costs (𝑠𝑠𝑑𝑑𝑔𝑔,𝑡𝑡), production costs (𝑝𝑝𝑐𝑐𝑔𝑔,𝑡𝑡), 
ramping costs (𝑟𝑟𝑐𝑐𝑔𝑔,𝑡𝑡) and load-shedding costs (𝑙𝑙𝑠𝑠𝑡𝑡), as expressed by Eq. (2.1). Equations (2.2)– 
( 2.6) define the aforementioned components of 𝑇𝑇𝑇𝑇. 

 
𝑇𝑇𝑇𝑇 = ∑𝑡𝑡∈𝑇𝑇 �∑𝑔𝑔∈𝐺𝐺 𝑠𝑠𝑢𝑢𝑔𝑔,𝑡𝑡 + 𝑠𝑠𝑑𝑑𝑔𝑔,𝑡𝑡 + 𝑝𝑝𝑐𝑐𝑔𝑔,𝑡𝑡 + 𝑟𝑟𝑐𝑐𝑔𝑔,𝑡𝑡� + 𝑙𝑙𝑠𝑠𝑡𝑡 (2.1) 

with:  

𝑠𝑠𝑢𝑢𝑔𝑔,𝑡𝑡 ≥ 𝑆𝑆𝑈𝑈𝑔𝑔�𝑣𝑣𝑔𝑔,𝑡𝑡 − 𝑣𝑣𝑔𝑔,𝑡𝑡−1�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.2) 

𝑠𝑠𝑑𝑑𝑔𝑔,𝑡𝑡 ≥ 𝑆𝑆𝐷𝐷𝑔𝑔�𝑣𝑣𝑔𝑔,𝑡𝑡−1 − 𝑣𝑣𝑔𝑔,𝑡𝑡�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.3) 

𝑝𝑝𝑐𝑐𝑔𝑔,𝑡𝑡 = 𝑁𝑁𝐿𝐿𝑔𝑔𝑣𝑣𝑔𝑔,𝑡𝑡 + �

𝐾𝐾𝑔𝑔

𝑘𝑘=1

𝑝𝑝𝑔𝑔,𝑡𝑡
𝑘𝑘 𝐶𝐶𝑔𝑔𝑘𝑘,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.4) 

𝑟𝑟𝑐𝑐𝑔𝑔,𝑡𝑡 = 𝑅𝑅𝑈𝑈𝑔𝑔𝑓𝑓𝑓𝑓𝑢𝑢𝑔𝑔,𝑡𝑡,𝑠𝑠 + 𝑅𝑅𝐷𝐷𝑔𝑔,𝑡𝑡𝑓𝑓𝑓𝑓𝑑𝑑𝑔𝑔,𝑡𝑡,𝑠𝑠,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.5)  

𝑙𝑙𝑠𝑠𝑡𝑡 = �
𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐿𝐿𝐿𝐿𝑃𝑃𝑏𝑏𝛿𝛿𝑏𝑏,𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 (2.6) 

Equations (2.2) and (2.3) define the units’ startup and shutdown costs, respectively; Eq. (2.4) 
presents the generation production cost modeled as a combination of no-load costs and block-
wise generator cost functions 𝐶𝐶𝑔𝑔𝑘𝑘, where 𝑘𝑘 is the block index. 𝐶𝐶𝑔𝑔𝑘𝑘 is the amount it costs generator 
g to produce one unit of energy when operating in block 𝑘𝑘. We assume 𝐶𝐶𝑔𝑔𝑘𝑘 increases with 𝑘𝑘, i.e., 
0 ≤ 𝐶𝐶𝑔𝑔𝑘𝑘 < 𝐶𝐶𝑔𝑔𝑘𝑘+1. Equation (2.5) gives the system ramping product procurement cost. We use Eq. 
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(2.6) to express the load curtailment penalty, where we consider a locational curtailment penalty 
𝐿𝐿𝐿𝐿𝑃𝑃𝑏𝑏, specific to each load bus 𝑏𝑏. In addition to the system operating cost definition, several 
operational constraints need to be enforced to ensure feasible, reliable, and secure grid 
operations. These well-known and widely used constraints are presented in Eq. (2.7) through Eq. 
(2.27), for completeness. 

In power generation industry practice, the operation cycles of the generation units are tracked. 
Different classes of generation assets have different up- and down-time requirements. 
Constraints (2.7) through (2.12) ensure that these requirements are met. 

 
∑𝐼𝐼𝐼𝐼𝑇𝑇𝑔𝑔
𝑡𝑡=1 �1 − 𝑣𝑣𝑔𝑔,𝑡𝑡� = 0,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ (2.7) 

�

𝑡𝑡+𝑈𝑈𝑇𝑇𝑔𝑔−1

𝜏𝜏=𝑡𝑡

𝑣𝑣𝑔𝑔,𝜏𝜏 ≥ 𝑈𝑈𝑇𝑇𝑔𝑔�𝑣𝑣𝑔𝑔,𝑡𝑡 − 𝑣𝑣𝑔𝑔,𝑡𝑡−1�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = 𝐼𝐼𝐼𝐼𝑇𝑇𝑔𝑔 + 1, … , |𝑇𝑇| − 𝑈𝑈𝑇𝑇𝑔𝑔 + 1 (2.8) 

�
𝑇𝑇

𝜏𝜏=𝑡𝑡

�𝑣𝑣𝑔𝑔,𝜏𝜏 − �𝑣𝑣𝑔𝑔,𝑡𝑡 − 𝑣𝑣𝑔𝑔,𝑡𝑡−1�� ≥ 0,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = |𝑇𝑇| −𝑈𝑈𝑇𝑇𝑔𝑔 + 2, … , |𝑇𝑇| (2.9) 

�

𝐼𝐼𝐼𝐼𝑇𝑇𝑔𝑔

𝑡𝑡=1

𝑣𝑣𝑔𝑔,𝑡𝑡 = 0,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ (2.10) 

�

𝑡𝑡+𝐷𝐷𝑇𝑇𝑔𝑔−1

𝜏𝜏=𝑡𝑡

�1 − 𝑣𝑣𝑔𝑔,𝜏𝜏� ≥ 𝐷𝐷𝑇𝑇𝑔𝑔�𝑣𝑣𝑔𝑔,𝑡𝑡−1 − 𝑣𝑣𝑔𝑔,𝑡𝑡�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = 𝐼𝐼𝐼𝐼𝑇𝑇𝑔𝑔 + 1, … , |𝑇𝑇| − 𝐷𝐷𝑇𝑇𝑔𝑔 + 1 (2.11) 

�
𝑇𝑇

𝜏𝜏=𝑡𝑡

�1 − 𝑣𝑣𝑔𝑔,𝜏𝜏 − �𝑣𝑣𝑔𝑔,𝑡𝑡−1 − 𝑣𝑣𝑔𝑔,𝑡𝑡�� ≥ 0,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = |𝑇𝑇| − 𝐷𝐷𝑇𝑇𝑔𝑔 + 2, … , |𝑇𝑇| (2.12) 

To ensure ramping, regulating, and spinning reserves can be procured, constraints (2.13) define 
their joint feasible region. Constraints (2.14) limit the available power in the time interval prior 
to a shutdown, to the shutdown rate 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆. Equation (2.15) controls the amount of spinning 
reserve offered by generation unit 𝑔𝑔 at time 𝑡𝑡, and Eq. (2.16) enforces its ramp capability limits. 

 
𝑝𝑝𝑔𝑔,𝑡𝑡 − 𝑝𝑝𝑔𝑔,𝑡𝑡−1 − 𝑟𝑟𝑟𝑟𝑔𝑔,𝑡𝑡

𝑈𝑈 − 𝑠𝑠𝑟𝑟𝑔𝑔,𝑡𝑡 ≤ 𝑅𝑅𝑔𝑔𝑈𝑈𝑣𝑣𝑔𝑔,𝑡𝑡−1 + 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆�𝑣𝑣𝑔𝑔,𝑡𝑡 − 𝑣𝑣𝑔𝑔,𝑡𝑡−1�

+𝑃𝑃𝑔𝑔max�1 − 𝑣𝑣𝑔𝑔,𝑡𝑡�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇  (2.13)
 

𝑝𝑝𝑔𝑔,𝑡𝑡 ≤ 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆𝑣𝑣𝑔𝑔,𝑡𝑡 + 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑔𝑔,𝑡𝑡+1,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = 1, … , |𝑇𝑇| − 1 (2.14) 

𝑝𝑝𝑔𝑔,𝑡𝑡 + 𝑠𝑠𝑟𝑟𝑔𝑔,𝑡𝑡 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇 (2.15) 
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𝑝𝑝𝑔𝑔,𝑡𝑡−1 − 𝑝𝑝𝑔𝑔,𝑡𝑡 ≤ 𝑅𝑅𝑔𝑔𝐷𝐷𝑣𝑣𝑔𝑔,𝑡𝑡 + 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆�𝑣𝑣𝑔𝑔,𝑡𝑡−1 − 𝑣𝑣𝑔𝑔,𝑡𝑡� + 𝑃𝑃𝑔𝑔max�1 − 𝑣𝑣𝑔𝑔,𝑡𝑡−1�,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.16) 

The amount of spinning and regulating reserve procured at a given time depends on the 
capabilities of individual generation units and the overall reserve requirements. These 
requirements are generally determined based on estimated demand profiles. Equations (2.17) 
through (2.22) express such constraints. Equations (2.17), (2.18), and (2.19) ensure that the 
estimated requirements for spinning, regulation-up, and regulation-down reserves are met, 
respectively. Constraints (2.20) through (2.22) ensure that each participating generation unit is 
capable of providing the amount of reserve it offers.  

�
𝑔𝑔∈𝐺𝐺

𝑠𝑠𝑟𝑟𝑔𝑔,𝑡𝑡 ≥ 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡 ,∀𝑡𝑡 ∈ 𝑇𝑇 (2.17) 

�
𝑔𝑔∈𝐺𝐺

𝑟𝑟𝑟𝑟𝑔𝑔,𝑡𝑡
𝑈𝑈 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑈𝑈,∀𝑡𝑡 ∈ 𝑇𝑇 (2.18) 

�
𝑔𝑔∈𝐺𝐺

𝑟𝑟𝑟𝑟𝑔𝑔,𝑡𝑡
𝐷𝐷 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝐷𝐷 ,∀𝑡𝑡 ∈ 𝑇𝑇 (2.19) 

𝑠𝑠𝑟𝑟𝑔𝑔,𝑡𝑡 ≤ 𝑅𝑅𝑔𝑔𝑈𝑈,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇 (2.20) 

𝑟𝑟𝑟𝑟𝑔𝑔,𝑡𝑡
𝑈𝑈 ≤ 𝑅𝑅𝑔𝑔𝑈𝑈,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇 (2.21) 

𝑟𝑟𝑟𝑟𝑔𝑔,𝑡𝑡
𝐷𝐷 ≤ 𝑅𝑅𝑔𝑔𝐷𝐷,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇 (2.22) 

The power output of unit 𝑔𝑔 is defined, in Eq. (2.23), as the combination of its minimum 
production 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 and its generation amount in each block 𝑘𝑘. In fact, we slice the generation 
margin into blocks with size Δ𝑃𝑃𝑔𝑔𝑘𝑘, as shown in constraint (2.24). 

𝑝𝑝𝑔𝑔,𝑡𝑡 = 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑔𝑔,𝑡𝑡 + �

𝐾𝐾𝑔𝑔

𝑘𝑘=1

𝑝𝑝𝑔𝑔,𝑡𝑡
𝑘𝑘 ,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.23) 

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡
𝑘𝑘 ≤ Δ𝑃𝑃𝑔𝑔𝑘𝑘,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇 (2.24) 

Constraints (2.25) and (2.26) impose the minimum and maximum generation dispatch limits. 

 
𝑃𝑃𝑔𝑔min𝑣𝑣𝑔𝑔,𝑡𝑡 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.25) 

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡 ≤ 𝑃𝑃𝑔𝑔max𝑣𝑣𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇 (2.26) 

Constraints (2.27) and (2.28) define the maximum available flexible ramping-up and ramping-
down products, respectively.   
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𝑝𝑝𝑔𝑔,𝑡𝑡 + 𝑓𝑓𝑓𝑓𝑢𝑢𝑔𝑔,𝑡𝑡,𝑠𝑠 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡+1,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 = 1, … , |𝑇𝑇| − 1, 𝑠𝑠 ∈ 𝑆𝑆 (2.27) 

𝑝𝑝𝑔𝑔,𝑡𝑡 − 𝑓𝑓𝑓𝑓𝑑𝑑𝑔𝑔,𝑡𝑡,𝑠𝑠 ≥ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑔𝑔,𝑡𝑡+1,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 = 1, … , |𝑇𝑇| − 1, 𝑠𝑠 ∈ 𝑆𝑆 (2.28) 

For renewable generation units, the average hourly available power output is constrained by the 
forecasted power as expressed in Eq. (2.29). Constraint (2.30) bounds 𝑔𝑔’s actual output dispatch.   

0 ≤ 𝑝𝑝𝑗𝑗,𝑡𝑡 ≤
1

|𝑆𝑆|�
𝑠𝑠∈𝑆𝑆

𝐹𝐹𝐹𝐹𝑅𝑅𝑔𝑔,𝑡𝑡,𝑠𝑠,∀𝑔𝑔 ∈ 𝐺𝐺𝑅𝑅𝑅𝑅 , 𝑡𝑡 ∈ 𝑇𝑇 (2.29) 

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺𝑅𝑅𝑅𝑅 , 𝑡𝑡 ∈ 𝑇𝑇 (2.30) 

In addition to these constraints, system constraints that account for supply-demand balance 
(2.31) and transmission line limits (2.32) are worth enforcing. 

�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔,𝑡𝑡 − �
𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐷𝐷𝑏𝑏,𝑡𝑡 − 𝛿𝛿𝑏𝑏,𝑡𝑡 = 0,∀𝑡𝑡 ∈ 𝑇𝑇 (2.31) 

−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙 ≤ �
𝑖𝑖∈𝐵𝐵𝐺𝐺

𝐺𝐺𝐺𝐺𝐹𝐹𝑙𝑙−𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖 − �

𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐺𝐺𝐺𝐺𝐹𝐹𝑙𝑙−𝑏𝑏�𝐷𝐷𝑏𝑏,𝑡𝑡 − 𝛿𝛿𝑏𝑏,𝑡𝑡� ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙,∀𝑡𝑡 ∈ 𝑇𝑇, 𝑙𝑙 ∈ 𝐿𝐿 (2.32) 

where 𝑝𝑝𝑖𝑖,𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖 is the total power injected (by generation units connected) at generator bus 𝑖𝑖 in time 

𝑡𝑡, 𝐷𝐷𝑏𝑏,𝑡𝑡 the total demand (by all loads connected) at load bus 𝑏𝑏 in time 𝑡𝑡. Constraints (2.32) ensure 
that line flows do not exceed transmission capacities. 

The amount of load curtailment at bus 𝑏𝑏 (𝛿𝛿𝑏𝑏,𝑡𝑡) is bound by the actual demand 𝐷𝐷𝑏𝑏,𝑡𝑡 as in (2.33). 

𝛿𝛿𝑏𝑏,𝑡𝑡 ≤ 𝐷𝐷𝑏𝑏,𝑡𝑡,∀𝑏𝑏 ∈ 𝐵𝐵𝐿𝐿 , 𝑡𝑡 ∈ 𝑇𝑇 (2.33) 

Special attention is given to the wind ramping product formulation in [Sedzro 2018]. We opt for 
the wind ramping product formulation given by (2.34) and (2.35). These constraints are the 
equivalents of (2.27) and (2.28) for the wind ramping product. The up-ramping product captures 
both intra-time slot and inter-time slot ramps. 

𝑝𝑝𝑤𝑤,𝑡𝑡 + 𝑓𝑓𝑓𝑓𝑢𝑢𝑤𝑤,𝑡𝑡,𝑠𝑠 ≤ max �𝑝𝑝𝑤𝑤,𝑡𝑡,𝑝𝑝𝑤𝑤,𝑡𝑡+1� ,∀𝑤𝑤 ∈ 𝐺𝐺𝑊𝑊, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.34) 

𝑝𝑝𝑤𝑤,𝑡𝑡 − 𝑓𝑓𝑓𝑓𝑑𝑑𝑤𝑤,𝑡𝑡,𝑠𝑠 ≥ 0,∀𝑤𝑤 ∈ 𝐺𝐺𝑊𝑊, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.35) 

Equations (2.36) and (2.37) enforce ramp sufficiency. This set of constraints ensures that enough 
ramp reserve is available to meet the expected demand variability.  

�
𝑔𝑔∈𝐺𝐺𝑇𝑇ℎ∪𝐺𝐺𝑊𝑊

𝑓𝑓𝑓𝑓𝑢𝑢𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥ 𝐹𝐹𝐹𝐹𝑅𝑅𝑡𝑡,𝑠𝑠
𝑈𝑈 ,∀𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.36) 
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�
𝑔𝑔∈𝐺𝐺𝑇𝑇ℎ∪𝐺𝐺𝑊𝑊

𝑓𝑓𝑓𝑓𝑑𝑑𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥ 𝐹𝐹𝐹𝐹𝑅𝑅𝑡𝑡,𝑠𝑠
𝐷𝐷 ,∀𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.37) 

2.2 Security-Constrained Economic Dispatch 
We formulate the SCED model as the linear counterpart of the SCUC by setting generation unit 
availability parameters 𝑉𝑉𝑔𝑔,𝑡𝑡 to the same values as the corresponding SCUC unit status binary 
variables 𝑣𝑣𝑔𝑔,𝑡𝑡. In other words, the unit status binary variable 𝑣𝑣𝑔𝑔,𝑡𝑡 is replaced by the availability 
parameter 𝑉𝑉𝑔𝑔,𝑡𝑡 in equations (2.2), (2.3), (2.13), (2.14), (2.16), (2.23), ( 2.25), ( 2.26), (2.28), in 
the SCED model. The SCED model is deployed both in the day-ahead market and in the real-
time market. 

In the day-ahead, the goal of the day-ahead SCED (DA-SCED) instance is to obtain the 
locational marginal prices. Hence, the linearization of the SCUC model using commitment status 
solutions from DA-SCUC, as discussed, is enough. The time horizon is the same as in SCUC, 24 
h at an hourly time interval with 10-min renewable forecast resolution. 

In real time, the aim of the real-time SCED (RT-SCED) is to evaluate the delivery of energy 
commitments in real time. Hence, ramping products are not considered in the RT-SCED. In 
addition, because RT-SCED is solved one time slot at a time, all RT-SCED variables and 
parameters are time-slot based. For example, the generation dispatch variable 𝑝𝑝𝑔𝑔,𝑡𝑡 in SCUC 
becomes 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 in RT-SCED. 

2.3 Market Simulation Sequence 
The sequential market simulation starts with the day-ahead unit commitment and ends with the 
real-time economic dispatch of the last time slot of the day, as shown in Figure 10. DA-SCUC 
and DA-SCED are solved for 𝑇𝑇𝑇𝑇𝑇𝑇 hours. RT-SCUC is solved for 𝑇𝑇𝑇𝑇𝑇𝑇 consecutive hours, i.e., 
(𝑇𝑇𝑇𝑇𝑇𝑇 − 1) look-ahead horizon, and produces hourly generation dispatch schedules and 60

|𝑆𝑆|
-min 

ramp schedules. The order of a real-time market stage or run 𝑠𝑠𝑠𝑠𝑠𝑠 in the simulation sequence is 
given by (2.38). From (2.38), we derive the total number of runs given by (2.39). The stage time 
slot 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is set to 0 for SCUC stages.  

𝑂𝑂(𝑠𝑠𝑠𝑠𝑠𝑠) = �
2 + 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 + �𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − 1�|𝑆𝑆| + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∀𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇 + 1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆
3 + 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇 + �𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − 1�|𝑆𝑆| + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∀𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇 + 1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆

(2.38) 

 
Number − of − runs = 3 + 𝑇𝑇𝑇𝑇𝑇𝑇(|𝑆𝑆| + 1) − 𝑇𝑇𝑇𝑇𝑇𝑇 (2.39) 

Subsections 2.3.1 through 2.3.4 present the summary of the model components and specifics of 
the market stages shown in Figure 10. 
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Figure 10. Market sequence 

2.3.1 DA-SCUC 
The objective of the DA-SCUC is to minimize the total system cost defined in Eq. (2.1), i.e.:  

  min  𝑇𝑇𝑇𝑇 (2.40) 
 

subject to the following set of constraints: (2.2) through (2.28). 

2.3.2 DA-SCED 
As mentioned in Section 2.1.2, the purpose of the DA-SCED stage is to compute the day-ahead 
locational marginal price values. Hence, the objective of our DA-SCED model is the same as in 
Eq. (2.40). 

The set of constraints enforced are (2.2) through (2.28), with the following modification applied 
to constraints (2.2), (2.3), (2.13), (2.14), (2.16), (2.23), ( 2.25), ( 2.26), and (2.28): the unit status 
binary variable 𝑣𝑣𝑔𝑔,𝑡𝑡 is replaced by the availability parameter 𝑉𝑉𝑔𝑔,𝑡𝑡, which is a solution from the 
DA-SCUC stage.  

2.3.3 RT-SCUC 
As shown in Figure 1, the RT-SCUC stage solves the unit commitment problem of minimizing 
the total system cost as in (2.40), subject to constraints (2.2) through (2.28). The main difference 
is the reduction of the time horizon from 𝑇𝑇𝑇𝑇𝑇𝑇 to 𝑇𝑇𝑇𝑇𝑇𝑇, where 𝑇𝑇𝑇𝑇𝑇𝑇 is the length of the set of time 
interval 𝑇𝑇 considered in the DA-SCUC, and 𝑇𝑇𝑇𝑇𝑇𝑇 is that of the time interval set considered in RT-
SCUC. 
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2.3.4 RT-SCED 
The RT-SCED stage solves for each time slot 𝑠𝑠 in a given time interval 𝑡𝑡, one time slot at a time. 
Therefore, an RT-SCED stage is defined by its time interval and time slot, as shown in Figure 
10. For clarity, we present the complete RT-SCED model:  

min �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑐𝑐𝑔𝑔,𝑡𝑡,𝑠𝑠 + 𝑙𝑙𝑠𝑠𝑡𝑡,𝑠𝑠 (2.41) 

Subject to: 

𝑝𝑝𝑐𝑐𝑔𝑔,𝑡𝑡,𝑠𝑠 =
1

|𝑆𝑆|�𝑁𝑁𝐿𝐿𝑔𝑔𝑉𝑉𝑔𝑔,𝑡𝑡 + �

𝐾𝐾𝑔𝑔

𝑘𝑘=1

𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠
𝑘𝑘 𝐶𝐶𝑔𝑔𝑘𝑘� ,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.42) 

 

𝑙𝑙𝑠𝑠𝑡𝑡 =
1

|𝑆𝑆|��
𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐿𝐿𝐿𝐿𝑃𝑃𝑏𝑏𝛿𝛿𝑏𝑏,𝑡𝑡,𝑠𝑠� ,∀𝑡𝑡 ∈ 𝑇𝑇 (2.43) 

 

𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 = 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑔𝑔,𝑡𝑡 + �

𝐾𝐾𝑔𝑔

𝑘𝑘=1

𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠
𝑘𝑘 ,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.44) 

    
0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠

𝑘𝑘 ≤ Δ𝑃𝑃𝑔𝑔𝑘𝑘,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.45) 
    

𝑃𝑃𝑔𝑔min𝑉𝑉𝑔𝑔,𝑡𝑡 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡, ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.46) 
    

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 ≤ 𝑃𝑃𝑔𝑔max𝑉𝑉𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.47) 
    

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 ≤ 𝐹𝐹𝐹𝐹𝑅𝑅𝑔𝑔,𝑡𝑡,𝑠𝑠,∀𝑔𝑔 ∈ 𝐺𝐺𝑅𝑅𝑅𝑅 , 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.48) 
   

0 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠,∀𝑔𝑔 ∈ 𝐺𝐺𝑅𝑅𝑅𝑅 , 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.49) 

�
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 − �
𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐷𝐷𝑏𝑏,𝑡𝑡,𝑠𝑠 − 𝛿𝛿𝑏𝑏,𝑡𝑡,𝑠𝑠 = 0,∀𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.50) 

   
−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙 ≤ �

𝑖𝑖∈𝐵𝐵𝐺𝐺

𝐺𝐺𝐺𝐺𝐹𝐹𝑙𝑙−𝑖𝑖𝑝𝑝𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑖𝑖𝑖𝑖𝑖𝑖 − �

𝑏𝑏∈𝐵𝐵𝐿𝐿

𝐺𝐺𝐺𝐺𝐹𝐹𝑙𝑙−𝑏𝑏�𝐷𝐷𝑏𝑏,𝑡𝑡,𝑠𝑠 − 𝛿𝛿𝑏𝑏,𝑡𝑡,𝑠𝑠� ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑙𝑙 ,∀𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆, 𝑙𝑙 ∈ 𝐿𝐿 (2.51) 

 
𝛿𝛿𝑏𝑏,𝑡𝑡,𝑠𝑠 ≤ 𝐷𝐷𝑏𝑏,𝑡𝑡,𝑠𝑠,∀𝑏𝑏 ∈ 𝐵𝐵𝐿𝐿 , 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.52) 

 
Constraints (2.42), (2.43), (2.44), (2.45), (2.46), (2.47), (2.48), (2.49), (2.50), (2.51), and (2.52) 
are, respectively, the SCED counterparts of (2.4), (2.6), (2.23), (2.24), (2.25), (2.26), (2.29), 
(2.30), (2.31), (2.32), and (2.33). 
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In addition, because our RT-SCED solves for a single time slot at a time, we keep track of the 
previous dispatch to bound the current dispatch using the maximum ramp rate, as shown in 
constraints (2.53), where 𝑃𝑃𝑔𝑔,𝑡𝑡,𝑠𝑠−1 is the dispatch obtained from the previous RT-SCED stage and 
used in the current stage as a parameter.  

 
− 1

|𝑆𝑆|𝑅𝑅𝑔𝑔
𝐷𝐷 ≤ 𝑝𝑝𝑔𝑔,𝑡𝑡,𝑠𝑠 − 𝑃𝑃𝑔𝑔,𝑡𝑡,𝑠𝑠−1 ≤

1
|𝑆𝑆|𝑅𝑅𝑔𝑔

𝑈𝑈,∀𝑔𝑔 ∈ 𝐺𝐺𝑇𝑇ℎ, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (2.53) 

Using the underlying models described in sections 2.1 and 2.3 as well as the simulation structure 
presented in this section, we developed OpenSMEMS. OpenSMEMS is fully developed in 
Python/Pyomo and tested using the solver “Xpress.” Because of its modular design, it can be 
used to simulate market segments independently or in a sequential fashion. Because 
OpenSMEMS explicitly models the wind ramping product in market formulations, we present its 
native use case in Section 3. Nevertheless, it is possible to turn off the wind ramping product 
constraints in any market segment by a simple wind ramping product input option in the 
parameters. 

  



30 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

3 OpenSMEMS Use Case: Evaluating the Impact of 
Wind Providing Ramping Services 

The aim of this case study is to evaluate the impact of wind ramping product in either the day-
ahead or real-time market segments. To this end, we model and simulate scenarios with and 
without the wind ramping product. Three main scenarios are considered:  

• Scenario 0 (Sc.0): base case scenario where wind is not allowed to provide ramping 
services in either the day-ahead or real-time market  

• Scenario 1 (Sc.1): scenario where wind provides ramping services in the day-ahead 
market segment only  

• Scenario 2 (Sc.2): scenario where wind provides ramping services in the real-time market 
segment only. 

We also study the sensitivity of the wind ramping product with regard to wind penetration levels, 
such as 10%, 20%, 30%, 40% and 50%. These penetrations are tested on the PJM 5-bus system. 
To ensure that OpenSMEMS is scalable, we simulate the Texas A&M University (TAMU) 
2,000-bus system at 25% wind penetration and for scenarios Sc.0 through Sc.2. Section 4 
presents the simulation results and analysis. 

This study does not reflect the details of any specific existing market. We consider a generalized 
electricity market structure made of day-ahead and real-time segments. The DA-SCUC and DA-
SCED are 24-hour horizon market instances (𝑇𝑇𝑇𝑇𝑇𝑇 = 24), with hourly generation schedules and 
10-min ramp services. The DA-SCED is a mere linearization of the DA-SCUC with the purpose 
of computing the locational marginal prices. The time horizon of the RT-SCUC is set to 3 hours 
(𝑇𝑇𝑇𝑇𝑇𝑇 = 3), i.e, 1-hour operation and 2-h look-ahead. Each instance of RT-SCED covers a 10-min 
time slot, and we have six time slots in 1 hour (|𝑆𝑆| = 6). With these settings, the total number of 
stages in a daily market sequence is 168 (see Eq. (2.39)). 

Sections 3.1 and 3.2 present the test systems and their corresponding results. 

3.1 Modified PJM 5-Bus System 
The 5-bus system used for the wind ramping impact study is presented in Figure 11. The base 
case system comprises 1,219 MW of supply capacity with 6% solar photovoltaic, 20% wind, and 
74% natural gas. The total load is 1,250 MW. Throughout the study, the capacity of the 
photovoltaic and natural gas assets is kept unchanged, whereas the capacity of wind power plants 
can be linearly scaled to achieve a desired wind penetration according to the formulae (3.1) 
defining the scaling factor.  

𝜎𝜎 =
𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
×

1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛
(3.1) 

where 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the initial wind penetration (e.g., 0.02 for 20%), and 𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛 is the desired 
penetration. 
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Figure 11. Modified PJM 5-bus test system 

In addition to the network data required as input to the market simulation tool, load and wind 
power forecast data are necessary. Figure 12 shows load and wind power forecast profiles, as 
perceived in each market segment, for one day at 20% wind penetration.  

 
Figure 12. Demand and wind power forecasts at different market stages: PJM 5-bus 

The “HA” or hour-ahead flag refers to the RT-SCUC stage, whereas the “RT” flag designates the 
RT-SCED stage. The “DA” flagged forecasts are used in both DA-SCUC and DA-SCED. 
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At 20% wind power penetration in the legacy case, where the flexible ramping product is entirely 
provided by thermal units (i.e., natural gas units in this test system), OpenSMEMS gives the 
dispatch by fuel type shown in Figure 13. 

 
Figure 13. Dispatch by fuel type in different market segments in Sc.0 

From one market stage to another (see Figure 10), demand and renewable output forecasts are 
refined, which leads to a better dispatch, as shown in Figure 13. Note that the DA-SCUC and 
RT-SCUC yield hourly schedules. With approximately the same wind power forecast trend and 
magnitude in all market segments, we see significantly different wind power generation profiles 
in the day-ahead and real-time commitments as well as in the real-time dispatch. This indicates 
intra- and inter-temporal wind curtailments that could be leveraged to provide ramping. 

To evaluate the impact of the wind resources providing ramping product on the system ramp 
procurement cost, we compare the ramp cost in the base scenario (Sc.0, no wind ramping 
product) with the ramp cost in Scenario Sc.1 for the day-ahead and with Sc.2 for real time. We 
observe a ramping decrease in both the day-ahead and real time. To capture the trend of this 
impact, as we witness increasing wind penetration levels, we perform this analysis for wind 
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levels ranging from 10% to 50%. Figure 14 shows the temporal day-ahead ramp cost reductions 
for each wind penetration level, whereas Figure 15 presents the temporal real-time ramp cost 
reductions for each wind penetration.  

 

Figure 14. Impact of wind ramping product on system day-ahead ramp procurement cost at 
different wind penetration levels 

 
Figure 15. Impact of wind ramping product on system real-time ramp procurement cost at different 

wind penetration levels 

Allowing wind to provide a flexible ramping product proves to yield consistently increasing 
ramp cost reductions in both the day-ahead and real-time market segments, as shown in Figure 
14 and Figure 15. The ramping reserve displacement can also impact generation units’ 
commitment and dispatch.  
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Figure 16 shows how the aggregate dispatch of wind and natural gas power plants are affected by 
the wind ramping product (WRP) in day-ahead, at 40% wind penetration. Because solar PV 
plants do not participate in the flexible ramping and their operating cost is low, their output is not 
affected.  

 

Figure 16. Day-ahead dispatch with and without WRP - 40% wind penetration 

To test the scalability of OpenSMEMS, we perform a wind ramping product impact analysis on 
the synthetic TAMU 2,000-bus system.  

3.2 Modified TAMU 2,000-Bus System 
The 2000-bus synthetic case is “built from public information and a statistical analysis” on the 
footprint of the State of Texas. The data is obtained from Electric Grid Test Case Repository 
(https://electricgrids.engr.tamu.edu/). With 2,000 buses and 3,206 branches, the case boasts a 
total generation capacity of 96,291.53 MW shared among coal, hydro, natural gas, nuclear, solar, 
and wind generating units, as presented in Figure 17 and Table 6. The generation fleet is 
composed of 39 coal power plants, 25 hydroelectric power plants, 4 nuclear power plants, and 
367 natural gas power plants, 22 solar PV plants, and 87 wind power plants (WPP). Given that 
we do not have the water stream time series data, we do not schedule hydro plants the day 
chosen for our case study. We generate a synthetic normalized time series as a reference shape 
for solar PV generation. We extract normalized reference wind power output time series from the 
WIND Toolkit, matching closely station names with WPP bus names. No new WPP was added 
to the existing ones. Various wind penetration levels are obtained through formulae (3.1). The 
case studied in this section is the 25% wind penetration case, i.e., the total wind capacity is one 
fourth of the total fleet capacity. Figure 17-a shows the generation mix in the original TAMU 
2,000-bus system. The composition of the modified system as considered in this case study is 
presented in Figure 17-b. The capacity share of all fuel types is shown in Table 6. 
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Table 6. Generation capacity shares in the original and the modified TAMU 2000-bus system 

Fuel Type Capacity in Original System (MW) Capacity in Modified System (MW) 

Coal 14,501.59 14,501.59 

Hydro 2,603.37 2,603.37* 

Natural gas 63,810.22 63,810.22 

Nuclear 5,138.60 5,138.60 

Solar PV 650.97 650.97 

Wind 9,586.78 28,901.58 

* Not scheduled 
 
We set the ramp cost for each generation unit to 10% of its marginal production cost given in the 
TAMU data. 

At each bus, we use a nominal load profile weighted by the corresponding demand found in the 
2,000-bus power flow case data. For each market stage, we generate the forecast data by 
superposing the reference weighted demand and a random error signal. Figure 18 shows the 
aggregate demand profiles considered in different market segments as well the corresponding 
wind power forecasts. 

As in the PJM 5-bus case, the simulation horizon is one day (144 time-slots of 10 minutes each) 
and processed according the market sequence shown in Figure 10. 

 
a. Original generation mix                               b. Modified generation mix 
Figure 17. Generation mix considered in the TAMU 2,000-bus base case 

 



36 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 18. Demand and wind power forecasts in different market segments: TAMU 2,000-bus 

system 

Figures 19 through 22 show OpenSMEMS’ dispatch output for the following scenarios: 

• No wind plant provides ramping product 

• Wind power plants provide ramping product only in day-ahead market 

• Wind power plants provide ramping product in real-time (hour-ahead or RT-SCUC stage) 
only 

• Wind power plants offer ramping services in both day-ahead and real-time markets. 

Each figure corresponds to the aggregate power dispatch for one fuel type at the time as given by 
DA-SCUC, RT-SCUC and RT-SCED, respectively. Given that nuclear plants are baseload units, 
their output is constant throughout all market segments. Thus, their output profiles are not 
represented. 
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Figure 19. Aggregate coal power output dispatch across all ramping service provision scenarios 

As shown in Figure 19, the aggregate dispatch of coal power plants remains consistent through 
all four WRP provision scenarios. However, the real-time aggregate dispatch is more sensible to 
whether or not wind provides ramping services, as evidenced by comparing the hour-ahead (HA-
Coal) and real-time (RT-Coal) dispatches in Figure 19-(c) to the ones in Figure 19-(c) for 
example. 
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Figure 20. Aggregate natural gas power output dispatch across all ramping service provision 
scenarios 
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Figure 21. Aggregate solar PV power output dispatch across all ramping service provision 

scenarios 



40 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 22. Aggregate wind power output dispatch across all ramping service provision scenarios 

The changes in aggregate dispatch for natural gas, solar PV and wind output across WRP 
scenarios shown in Figures 20, 21 and 22 are not as evident as in the aggregate coal dispatch 
case presented in Figure 19. We zoom in these changes in Figure 23 for the hour-ahead real-time 
segment, by means of the dispatch offset defined as the difference between the dispatch with 
WRP and the dispatch without WRP as given by equation (3.2): 



41 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Dispatch_offset = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑊𝑊𝑊𝑊𝑊𝑊 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑛𝑛𝑛𝑛 𝑊𝑊𝑊𝑊𝑊𝑊 (3.2) 

 
As expected, the dispatches affected by WRP scenarios concern the fuel types that participate in 
the flexible ramping market opportunity, namely, coal, natural gas and wind. Figure 23 shows 
the hour-ahead dispatch offsets of the aforementioned fuel types. While WRP provision causes a 
decrease in coal power scheduled output, it leads to and increase in natural gas dispatch. The 
agregate wind dispatch experiences a slight drop (~12 MW) in the first 20 time slots. It is worth 
noting the symmetry of the dispatch offsets, confirming the demand conservation across 
scenarios with and without WRP. 

Without wind providing the flexible ramping products, the flexible natural gas units are operated 
at lower levels to provide the flexible ramping products. Therefore, the total power outputs from 
the coal units is higher. However, with wind providing the flexible ramping products, the flexible 
ramping contributions from the natural gas units reduces. Therefore, the total power output from 
the natural gas units increases.  

 
Figure 23. Hour-ahead power dispatch offset 

These offsets in the hour-ahead dispatch resulting from adjustments in unit commitments, 
propagate to the real-time SCED dispatch. This displacement propagation between hour-ahead 
and RT-SCED is expected because the real-time dispatch inherits from the ahead commitment 
which updates generation unit availability while considering the latest (and generally, more 
accurate) demand and variable resource forecasts. Figure 24 shows the real-time aggregate 
dispatch offsets for natural gas, coal and wind power output. It represents the resulting 
displacement of real-time economic dispatch, induced by the provision of  WRP in the hour-
ahead market segment. The offset trend is similar to the one found in hour-ahead dispatch, as 
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anticipated. With wind providing the flexible ramping products, the power output from the 
natural gas units increases while the output from coal power units decreases. This displacement 
translates into the reduction of generation-related greenhouse gas emissions, as the most 
emission-intensive technology shrinks in output in this case. Similar effect can be inferred from 
Figure 24. In fact, natural gas emits 50 to 60 percent less carbon dioxide (CO2) when combusted 
in a new, efficient natural gas power plant compared with emissions from a typical new coal 
plant [NETL 2010]. For reference, analyses have shown that every 10,000 U.S. homes powered 
with natural gas instead of coal avoids the annual emissions of 1,900 tons of NOx, 3,900 tons of 
SO2, and 5,200 tons of particulates [Alvarez 2012]. 

 

Figure 24. Aggregate real-time power dispatch offset 

In addition, the TAMU 2,000-bus test case shows a ramp cost reduction similar to that in the 
PJM 5-bus case. Table 7 shows the total daily market cost components for all market segments 
and WRP scenarios, for the TAMU 2,000-bus system case. For reference, the total demand 
expected in day-ahead is 1,613,596 MWh. The daily demand considered in hour-ahead (RT-
SCUC) and real-time (RT-SCED) are 1,611,422 MWh and 1,610,373 MWh, respectively. The 
penalty for load curtailment is $10,000/MWh. 

Before the start of the simulation, all thermal generation units are assumed committed (ON 
status). In hour-ahead commitment stage (RT-SCUC), because the lookahead horizon is only 2 
hours, some units are turned off for economical operation purposes. Hence, the fix cost in hour 
ahead is higher than in day-ahead where the planning horizon is 24h, as shown in table 7. It is 
also evident that the provision of WRP affects the commitment status of generation units more in 
hour-ahead than in day-ahead, due to the shorter horizon and frequent status updates in hour-
ahead. In the real time, the available flexible resources are limited compared to the day ahead 
operation. Consequently, the dispatch of thermal units is also affected.  



43 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

The WRP provision results in 72% ramp cost reduction in day-ahead market and 63% in real-
time market. The overall total cost reduces by 6% in day-ahead and by 5% in real-time market.  
With a total daily demand of 1,613,596 MWh in day-ahead, 1,611,422 MWh in hour-ahead (RT-
SCUC), and 1,610,373 MWh in real-time (RT-SCED). In this case study, the total daily demand 
estimate decreases with the time-until-realization. This trend is reflected in the production costs 
across all market segments. For instance, the production cost in real-time is less than the 
production cost in hour-ahead. Even though the on/off generation statuses do not change in day-
ahead with wind providing ramping products, the ramp cost experiences a significance reduction. 

In real-time, the provision of wind ramping products impacts the generation statuses as shown by 
the fix cost column in Table 7, where the fix cost reduces from $9,790 to $5,975. This shift in 
generation schedules is susceptible to affect the emission pattern as mentioned earlier. 

Table 7. Sequential daily market cost summary 
 

WRP Provided in: Fix Cost ($) Ramp Cost ($) Production Cost ($) 

Day-
ahead 

None 0 2,096,196 23,350,956 

Day-ahead 0 589,004 23,350,705 

Hour-ahead 0 2,096,196 23,350,956 

Day- & hour-ahead  0 589,004 23,350,705 

Hour-
ahead 

None 9,790 2,098,658 22,544,201 

Day-ahead 9,790 2,098,658 22,544,201 

Hour-ahead 5,975 773,235 22,545,109 

Day- & hour-ahead 5,975 773,235 22,545,109 

Real-
time 

None - - 21,476,930 

Day-ahead - - 21,476,930 

Hour-ahead - - 21,478,995 

 Day- & hour-ahead - - 21,478,995 

 
Table 8. Simulation time summary of a sequential daily market operation 

Test Case Market Segment Time (sec.) 

PJM 5-bus  Day-ahead 6.20 

Real-time 39.60 

TAMU 2,000-bus Day-ahead 1,900.44 

Real-time 14,915.28 

 
This study reveals that with a proper wind ramping product design and accurate short-term 
forecasting techniques, wind power plants can significantly participate in providing the much-
needed ramping reserve in an electric power grid with increasing shares of variable generation 
resources. The examples considered in this report support such a conclusion. The ramp cost 
decreases consistently with the increase in wind penetration in the PJM 5-bus case for both the 
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day-ahead and real-time wind ramping product deployments. Table 7 confirms that the ramp cost 
when the wind ramping product is provided is always less than the case when it is not. In 
addition to the ramp cost reduction, the wind ramping product can affect the thermal units’ 
dispatch by deferring their commitments as seen in the TAMU 2,000-bus system case in real 
time (RT-SCUC). Even in cases where dispatch displacement may not be observed, the wind 
ramping product displaces the thermal units’ ramping reserve. OpenSMEMS is able to capture 
these details and many more. The total base case simulation time for both the PJM 5-bus system 
and the TAMU 2,000-bus system are reported in Table 8. It takes approximately 45 seconds to 
simulate a one-day sequential market operation on the 5-bus system and, 4 hours 40 minutes on 
the 2000-bus system. The differences in simulation times for each WRP scenario compared to 
the base case scenario, are negligible. The simulations were performed on a computer with the 
following characteristics: Processor Intel (R) Core i5-7300U CPU@2.60 GHz, 8 GB RAM and 
64-bit OS. 

  



45 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Conclusion 
In this project, an innovative, integrated, and transformative approach to mitigate the impact of 
wind ramping is proposed. Through probabilistic wind ramp forecasting, wind power has the 
capability to provide flexible ramping products. By making wind power dispatchable and 
allowing the efficient management of wind ramping characteristics, wind integration costs can be 
significantly reduced.  

A Python based open source, sequential, multi-timescale electricity market simulation tool 
(OpenSMEMS) is developed in this project. The day-ahead SCUC, real-time SCUC, and real-
time SCED are sequentially simulated with updated load and renewable forecasting information. 
Then the wind flexible ramping products are investigated at different timescales in the electricity 
market simulation, including both the day-ahead and real-time operations. From both the small 
5-bus system and 2,000-bus case studies, it is demonstrated that the system operating cost and 
the ramping cost can be reduced with wind power providing the flexible ramping products. 
Whether the wind flexible ramping products are provided in the day-ahead or real-time 
operation, the system operating cost and the ramping cost are reduced. When wind power 
provides flexible ramping products in the day-ahead market, the reduction in the system 
operating cost is larger than the case with wind providing flexible ramping products in the real-
time market. When provided in the day-ahead, wind ramping products result in a 72% ramp cost 
reduction and a 6% total system cost reduction, and the real-time market wind ramping product 
provision leads to a 63% ramp cost reduction and a 5% total system cost reduction for the 2,000-
bus system considered. Therefore, per the case studies conducted in this project, wind providing 
flexible ramping has a higher cost impact in the day-ahead market than in real time; however, the 
impact on generation schedules proves to be higher in real time than in the day-ahead. In 
addition to reducing system operating costs, wind ramping products induce fuel-type generation 
displacement that can translate into emissions reduction based on the flexibility of the different 
technologies at hand. In fact, in the cases studied, when wind power plants provide ramping 
services, the energy generation of coal power plants is displaced by that of natural gas power 
plants. In such a case, a fraction of generation-related greenhouse gas emission is avoided by 
allowing wind to provide ramping services. 
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