
Sustainability, Feasibility, and Economics of a Fuel Cell-Powered Data Center

Jennifer Kurtz¹, Tahir Cader², Zhiwen Ma^{1,}, (Presenter) Genevieve Saur¹, Phil Clark¹, Robert L. Mount³, Dietrich Thoss⁴, and Steve Hammond¹

¹National Renewable Energy Laboratory; ²Hewlett Packard Enterprise; ³Power Innovations; ⁴Daimler AG

> TechConnect World Innovation Conference June 17-19, 2019 Boston, MA

Data Center Energy Challenge – High costs in power infrastructure, inefficiencies, and backup power required

* http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

Carbon-Free Data Center Vision & Possible Future Energy Infrastructure – Rethink power delivery and distribution to and within data centers

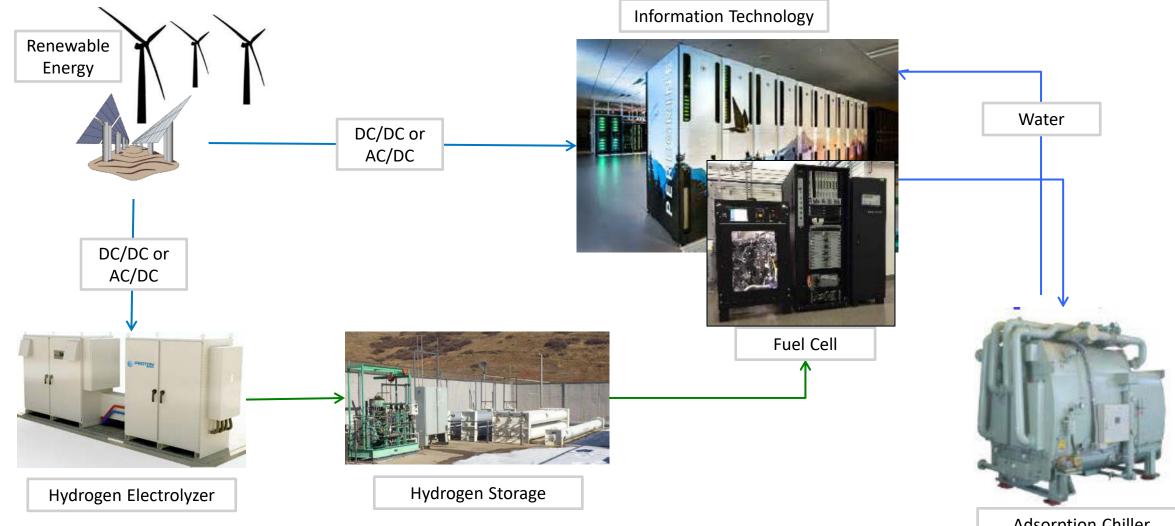


Photo credits (L to R): Proton Onsite; NREL; Power Innovations; NREL; HPE

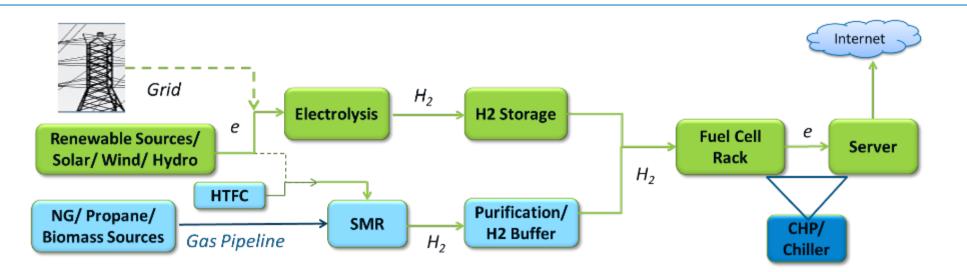
Schematic illustrative of possible system

Adsorption Chiller

Modeling Objectives and Methods

HOMER Pro Microgrid Analysis Tool	[DatacenterWithHy	12	A50MW.homer] URCES PROJE		M HELP
Home Kesults Library View	Electric #1 Electric	#2 Deferrable Th	ermal #1 Therma	#2 Hydrogen	
SCHEMATIC					DESIG
Tank	Name:		ata Center With	H2 Fuel C	198 Dolo
	Author:	Zhiwen Ma			
Electrolyzer Primary Load	Description	on:			
FC PV	power to possible and 1.5 media an fuel cell s In the renewabl produces storage to the fuel c	b a remote tele sources of pow MWe wind tur d generation us ystem. hydrogen stora e power goes to hydrogen. The ank to be consur	options for prove ecom site. The ver are photovor rbines. The st e a hydrogen st age system, su an electrolyzer hydrogen goes med when requir	e two bltaics orage orage urplus which into a	00° 00 00.00
SUGGESTIONS: Download new HOMER Pro	I linked the elect the fuel of goes dow	of the hydrogen the capital and rolyzer and hydr ell capital cost.	on the wind spee subsystem. Not replacement co- ogen storage ta So as the fuel cel sost of the electro	e that sts of ink to II cost	LEAT CER
		rate (%):	6.00		COURS
		S. E.			
	Inflation	rate (%):	2.00		
H •MER	Annual c	apacity shortage	(%): 1.00		
PRO	Project li	fetime (years):	25.00	()	

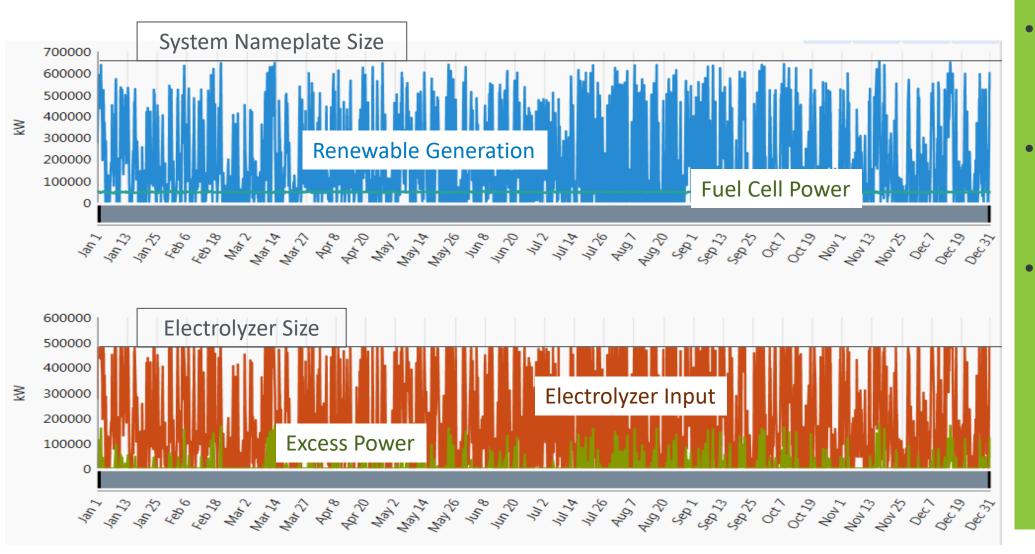
Utilize hydrogen as energy storage to integrate renewable solar and wind resources for a data center

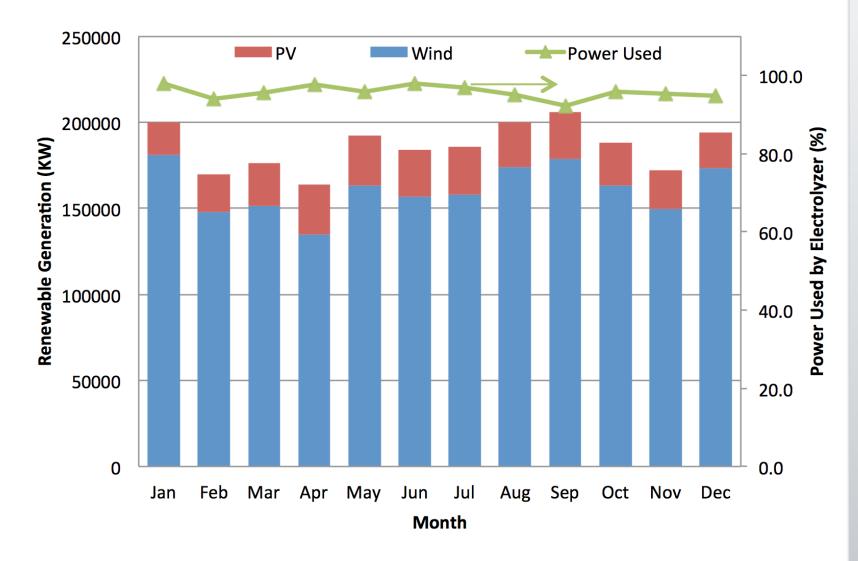

- Model Scope: The hydrogen generation , storage, and consumption equipment will be defined in a conceptual block diagram. These components and subsystems will be included in a <u>**HOMER**</u> model to:
 - create equipment sizing (quantity and footprint)
 - annual renewable generation profile (based on Quincy, WA and San Antonio, TX locations)
 - o annual renewable hydrogen generation profile
 - o annual hydrogen demand profile
 - equipment cost estimates (based on current technology status, which are undersized for this full scale rollout)
 - Model Results

•

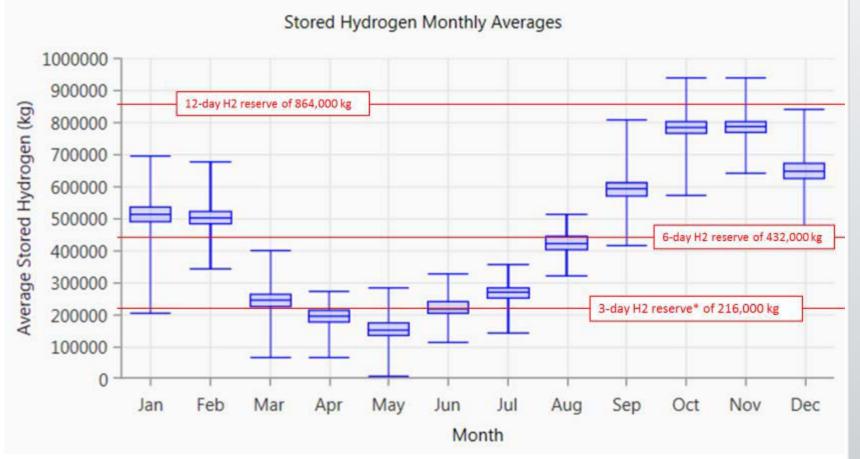
- Verified required capacity, load, and hydrogen storage.
- Generated electricity and hydrogen generation profile.
- Sized equipment.
- Estimated electric and capital cost.

Partner Scenarios - System Modeling (in progress)


Scenarios	Sizing	Economics
 Two Suggested Locations Energy Sources 100% renewable (PV and wind) Natural gas to hydrogen Grid independent and grid dependent 	 Renewable generation name plate Renewable generation output estimate Electrolysis name plate Hydrogen production estimate Hydrogen storage Equipment footprint 50 MW 24/7 demand 	 Renewable generation and hydrogen infrastructure Data center total cost of ownership Capital costs Operation and maintenance costs Cost estimates include current and projected


Installed Components	Current Cost (2016)	Projected Cost (2030?)	Reference Source
Wind (\$/kW)	1,397	1,200	NREL report TP53045
Solar (\$/kW)	1,500	1,000	GTM Research and DOE SunShot
Fuel cell (\$/kW)	300 (eff. 50%)	50 (eff. 50%)	Industry and DOE Goal
Electrolyzer (\$/kW)	1200 (eff. 65%, 25 yrs continuous)	800 (eff. 75%, 25 yrs)	NREL report TP53045 and internal discussion
Storage (\$/kg)	500 (10 yrs)	7 (20 yrs) Cavern	Refer to DOE MYRDD and TP53045

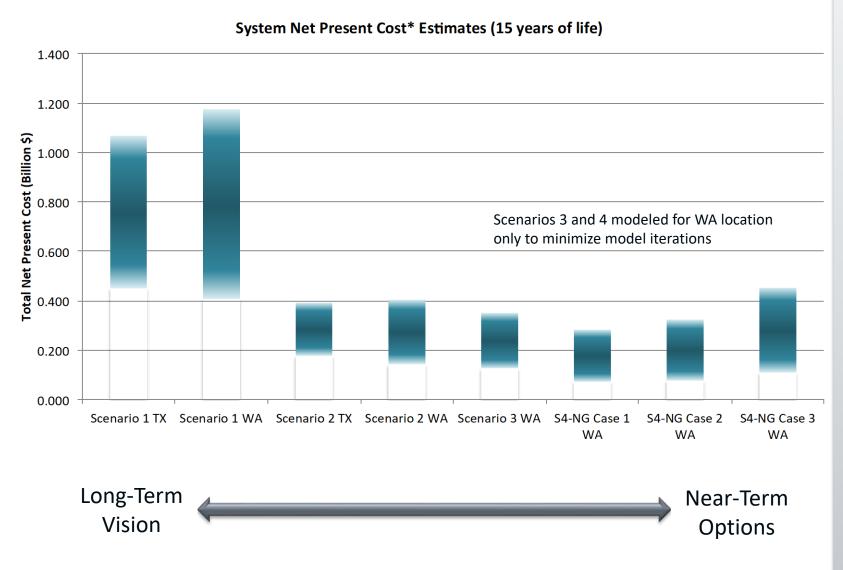
Annual Renewable Generation, Fuel Cell, Electrolyzer and Excess Power Estimate Scenario 1 Quincy WA


- Generation does peak at nameplate capacity
- FC Power constant for Data Center demand
- Electrolyzer size limited to 480 MW, which results in small amounts of excess renewable generation (< #%)

Renewable Hydrogen Production Modeling

- ~33% renewable generation capacity factor (location specific)
- Electrolyzer follows variable renewable generation
- Nameplate size to ensure sufficient storage during low or no renewable generation
- Example 100% renewable, WA location has 635 MW generation (525 MW is wind) and 250 MW of electrolysis
- Smaller systems for other intermediate scenarios

Renewable Hydrogen Storage Modeling (Quincy, WA site)



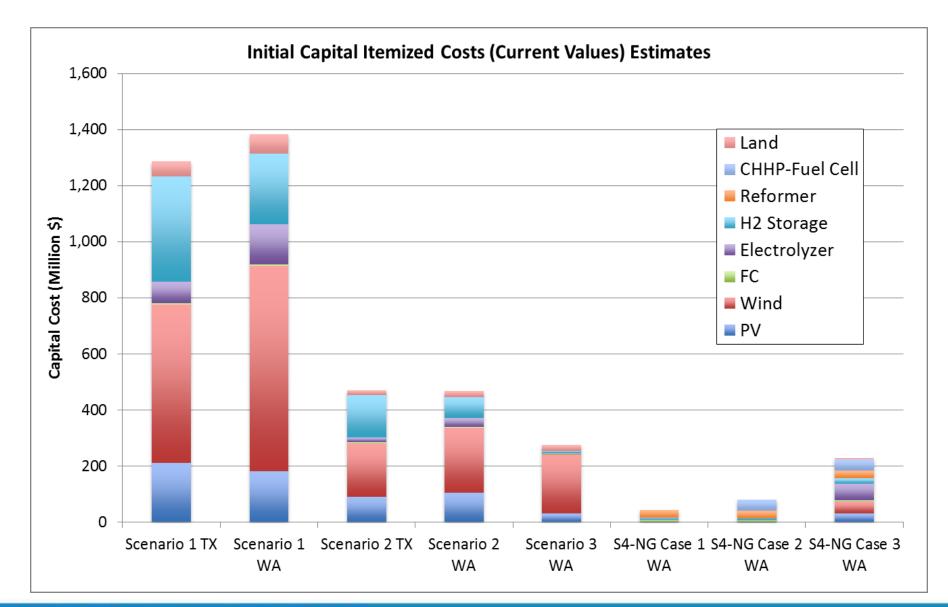
- Hydrogen storage for minimum 3 day reserve (216,000 kg)
- 50 MW, 24/7 demand = 72,000 kg H₂/day (~50% efficient fuel cell)
- Some months hydrogen production is less than demand (e.g., February to April in WA)
- System footprint and hydrogen storage is largest for 100% renewable scenarios (e.g., ~650 acres in WA)

Multiple System Scenarios Modeled

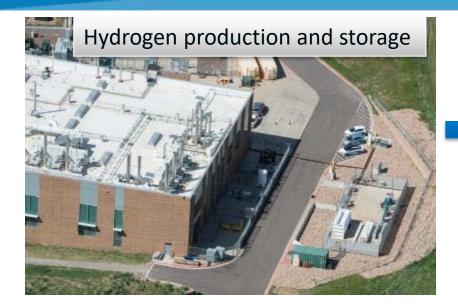
		Facility power to racks?	24/7/365 operation of FCs?
Scenario 1	Wind/PV to H2 to powering IT	No	Yes
Scenario 2	Wind/PV to H2 to powering IT Wind/PV to directly powering IT	Yes	No
Scenario 3	Wind/PV to H2 to powering IT Wind/PV to directly powering IT Grid power	Yes	No
Scenario 4, Case 1	Natural gas with SMR to H2 Grid power	No	Yes
Scenario 4, Case 2	Natural gas with SMR to H2 High temp FC for power	No	Yes
Scenario 4, Case 3	Natural gas with SMR to H2 High temp FC for power Wind/PV to H2 to powering IT	No	Yes

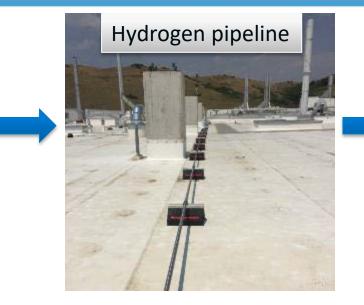
System Economic Estimates (excludes data center costs)

- *High estimates based on current costs and low estimates based on projected costs
- Lower capital cost does not necessarily result in lower total cost of ownership


Modeled scenarios

Scenario 1: Grid-independent, renewable generation to hydrogen directly to fuel cell power in server racks.


Scenario 2: Grid-independent, renewable generation to hydrogen production to fuel cell power and to supply power to servers in rack.Scenario 3: Grid-tied, renewable and fuel cell power supply.


Scenario 4: Three cases: Reforming natural gas hybrid with grid and renewable to produce hydrogen to supply fuel cells to power server racks.

Modeling – Economic Results Summary

Hardware Proof-of-Concept at NREL

Proof-of-concept of the integrated system for verification of safe operation in data center

- A collaboration among industry and national lab to demonstrate the fuel cell power supply and electric control system.
- Integrated fuel-cell IT rack at NREL's Energy Systems Integration Lab; completing safe operation verification

Photos from NREL (top row) and Power Innovations (bottom)

FC & IT racks

in ESI data center

Summary

Holistic System Vision

- Conceptual models for size, performance, and economic estimates
- Economically viable nearterm option includes natural gas
- Lowest up-front costs may not be lowest total cost of ownership options

Product Acceleration

- Verify proof-of-concept in a functional data center
- Identify codes and standards for hydrogen fuel cells in data centers
- Automotive fuel cell in a new application => increase quantity and decrease cost
- Partners include product developers and end users

What's Next

- Identify systematic solutions for challenges
- Refine and define system
- Improve estimates
- Validate system and install at scale
- Develop code and standard complying data center.
- Synergize hydrogen infrastructure with fuel cell racks.

With the sustained drop of the cost for renewable power, long-term renewable hydrogen to supply fuel cells for powering a data center can realize both decarbonization and economic returns.

Questions?

Thank you

Zhiwen Ma, 303-275-3784 Email: Zhiwen.ma@nrel.gov

www.nrel.gov

NREL/PR-5400-73604

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

