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Abstract—Integration of distributed energy resources (DER)
such as photovoltaics, electric vehicles (EVs) and battery energy
storage systems (BESS) is expected to rapidly increase in
distribution systems in India. These grid edge resources can
have adverse impacts on the grid and can provide additional
revenue streams as well. To mitigate these impacts distribution
planning and analysis is required. So this paper presents a
framework which can be used to complete all steps involved
in distribution planning and analysis. This framework uses
data in the same format as is readily available with Indian
utilities and processes it to generate detailed feeder models
and loading profiles. This framework already includes multiple
DER use cases such as peak shaving for BESS and EV demand
modelling and can be easily extended to simulate a number of
additional use cases. All of these use cases can be simulated
in parallel for multi-year time series simulations using an
integrated command line interface. A suit of grid readiness
metrics are then evaluated for each simulation to determine
required network upgrades and associated costs.

Index Terms—Distribution grid issues; electric vehicles;
power system studies; project experience

I. INTRODUCTION

The bulk power system is undergoing a major transfor-
mation with the integration of distributed energy resources
(DERs) such as photovoltaic systems, battery energy stor-
age systems (BESS) and more recently electric vehicles
(EVs). Grid integration of EVs pose unique challenges.
EV charging, especially from DC fast chargers, can act
as a large intermittent distribution-connected load which
might necessitate grid infrastructure upgrades. To mitigate
the grid impact of EVs and other DERs, distribution system
planning and analysis is essential. This paper presents a
comprehensive and easily extendable platform developed to
conduct this analysis starting from the available raw data
from an Indian utility to accurate year-long time series
analysis for different DER use cases.

Developing detailed and validated distribution feeder mod-
els is crucial before any distribution system impact study
may be conducted. A lot of research has been done on the
development of detailed feeder models [1], [2]. However,
many times these models only include the primary network
and not the secondary or the low voltage (LV) networks.
These models might be sufficient for some types of studies
but these cannot capture local parameters such as customer
nodal voltages. modelling the secondaries becomes even
more critical for Indian feeders as each distribution trans-
former (DT) caters to hundreds of customers via longer LV
lines unlike North American feeders which cater to 5-15 cus-
tomers through relatively shorter secondary lines. modelling

distribution feeders is challenging as line transposition and
balanced phase loading cannot be assumed and all the phases
of each feeder component have to be modeled accurately [3].

Conducting distribution planning studies can be challeng-
ing when the feeders are prone to be afflicted by outages
more frequently. Moreover, the metering/sensing equipment
can struggle to keep pace with the relatively rapid evolution
of the topology of these distribution systems. Thus, the
distribution transformer loading profiles-those essential for
power flow analysis of an electrical distribution network-can
also be afflicted by a host of inconsistencies which must
be addressed to enable power flow studies. So, section II
of this paper presents a method developed for generating
distribution feeder models and for optimally allocating the
loads using the Geographical Information Systems (GIS)
and meter data provided by an Indian utility. A novel
algorithmic method is also presented for producing serially-
complete distribution transformer loading profiles. Once the
validated network models and cleaned loading profiles are
available DER planning studies can be conducted. This
requires implementation of DER use cases such as for BESS
and EVs.

As EVs are rapidly becoming commonplace worldwide,
many states in India are setting the trend by encouraging fast
EV rollouts in urban areas. To assess the potential impacts
of grid integration of EVs, a Python-based framework is
discussed in section III of this paper which estimates ag-
gregate EV demand profiles using the developed network
models. Based on EV penetration level inputs (low, moder-
ate, or high), this framework first determines the required
number and locations of residential, workplace, and public
charging infrastructure. Once the number and locations of the
chargers are identified, the framework determines charging
profiles under three possible scenarios: residential-dominant
(mostly overnight charging), workplace-dominant (morning
to afternoon), or public station-dominant (early morning,
noon, and afternoon to evening). Second, the modeled EV
demand profiles are added on top of existing base loads for
the feeders, within the stipulated time horizon.

To ensure safe integration of EVs, system planners want
to ensure that there is enough capacity to service peak
loading conditions to maintain grid reliability. However,
conventional planning operations deploy expensive peaker
power plants such as natural gas turbines to service high
demand for electricity. Current operational practices now
deploy emerging technologies such as BESS for leveling
peak demands. To study the impact of BESS, it is essential
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to determine the location and sizing of these systems as well
as implement the required control algorithm.

Section IV of this paper proposes a data driven approach
for recommending three distinct battery sizes for utility-scale
lithium ion batteries to be integrated into the distribution
network in Delhi, India. The method ingests distribution
transformer loading time series data collected by the local
Utility during 2018 and produces distributions of energy
and power requirements which can be used for mitigating
overloading conditions during summer months, when loads
and the frequency of overload occurrences is highest. This
section also presents the impact of BESS peak shaving
control application and how it can be used to help alleviate
the possible distribution transformer overloading condition
with load growth and rapid adoption of EVs in the modelled
distribution feeders.

Once the network models, cleaned loading profiles and
DER use cases have been developed, a simulation architec-
ture is required to integrate them together. This architecture
should provide an easy to use interface and enable multiple
scenarios to be simulated in parallel while storing all data in
separate directories. So, section V discusses the simulation
architecture developed to run time-series simulations in
parallel for all the DER use cases presented in this paper.
This section also presents the results obtained using this
architecture which validate the effectiveness of the developed
distribution planning and analysis methodology.

II. DISTRIBUTION NETWORK MODELLING

In many instances, utilities do not have real electric
models which may be used for power flow studies, rather,
maintain a GIS database in order to manage network assets.
A pivotal step to enable accurate characterization of feeder
operations is to convert the GIS data into a format suitable
for OpenDSS, an open-source power system simulation
tool for distribution systems, developed by Electric Power
Research Institute (EPRI), USA. GIS-based shapefiles pro-
vide visualization for the feeder topology, optimal path and
engineering design of wires and towers [4], however, a
critical issue with GIS-based network diagram lies with the
accuracy of network segments connectivity. For example,
line segments that appear to be connected in GIS visual-
ization could be separate by a minute distance which may
not be obvious to visual perception and therefore, may result
in unsuitable model for power flow analysis [5].

A. Network segments creation in GIS

The distribution network segments are represented within
GIS with layers (e.g., distribution transformers, circuit break-
ers and low tension cables), which have different numbers of
features and geometry types such as polygons, line strings
and points.

The QGIS software uses line strings to represent line seg-
ments in the network, some of which are polylines, making
it difficult to have access to all the features of each segment.
Also, these polylines, which are continuous lines with one
(or more than one) line segments, are represented as a single
object in QGIS. These polylines have a single source and
end point coordinates which do not fully represent them and
are therefore insufficient to build electrical models in power

Fig. 1. GIS-based dataset translation to OpenDSS model

network modelling and simulation tools. To address the issue
with polylines, the following procedure A is implemented in
QGIS:

• Explode each line layer: This takes each line and creates
a set of new lines representing segments of the original
line. The new lines have a start and an end point without
intermediate nodes.

• Export the geometry of the exploded layer to nodes and
attribute files using the MMQGIS plugin. The resulting
line segments from step 1 have nodes with source and
end coordinates.

B. Generating OpenDSS model

This section describes the feeder reconnection process
from the GIS-based shapefiles to OpenDSS format using
node coordinates obtained from procedure A coupled with
the corresponding attribute table to perform the following
operations using python-based Networkx package:

1) Edge creation: To create edges for nodes with various
line layers of the feeder such as underground (UG) and
overhead (OH), the edge parameters (e.g., capacitance,
positive, negative and zero sequence impedances) are
defined to capture the different line characteristics.

2) Feeder head location: This is determined by identi-
fying any particular node within the vicinity of the
substation with only one neighbor connected.

3) Adding nodes and merging of neighboring nodes:
Nodal elements such as the circuit breakers (CBs), DTs
and switches with their properties in the attribute table
for the respective feeders are combined. To determine
if nodes should be merged, Euclidean distance metric
is used to compute the distance between nodes.

4) Remove loops in feeder layout: For instance, circuit
breaker nodes can easily form a loop which causes
power flow to be trapped in a section of the network
with a high tendency to increase network losses. To
remove these cycles, edges connecting these nodes to
create loops are removed from the network topology.

The complete procedure for translating GIS data to the
OpenDSS format is illustrated in Figure 1. The reconnection
models are updated with device data sheet to create the
OpenDSS model, with the load profiles as inputs to the
OpenDSS model.
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Fig. 2. Typical daily profile for each month

C. Data Cleaning

Serially complete time series distribution transformer
loading data is required for quasi-static time-series simu-
lations of the distribution feeder. Upon inspecting the distri-
bution transformer data obtained from field measurements,
it was observed that time series data sets were afflicted
with several types of inconsistencies. For example, missing
data and data corruption. The data cleaning process can be
understood as three primary operations. The first of the pri-
mary operations is to identify and remove the afflicted data.
Second, the remaining data is passed through a statistical
analysis. Third and finally, a serially complete data set is
compiled via an algorithm which leverages the statistical
summary information.

Most of the data afflictions can be identified program-
maticaly; when phases are not energized or carrying no
load, when there are outages, and when data is missing
entirely. The remaining rare instances during which the
loading data is systematically below what is typical for a
DT, are manually identified by visually inspecting the data.

After identifying and removing the problematic data, the
next step in the cleaning process is to analyze the remaining
data. The aim of this operation is to decouple trends within
the data from the inherent variability. The typical trends are
a composite of several timescales; load variability features
sub hourly, hourly, diurnal, and seasonal dynamics. Here,
we focus on the daily trend, which is characteristic for each
month of the year, and the seasonal variability, which is
characterized by a daily relative drift from the mean monthly
value. To obtain the typical daily profile for each month, the
mean loading condition observed during each half-hourly
time point was used. This process is repeated for each month
in the year, producing a profile which is used as a template
or donor profile to fill missing time points as shown in
figure 2. The final result for each DT represents a single
serially complete time series which is normalized relative
to the maximum loading condition for each transformer as
shown in figure 3.

D. Load allocation

As described in the previous subsection, statistical meth-
ods had to be used to clean the metering data. Moreover, for

Fig. 3. Serially complete time series; corrupt data has been identified,
removed, and replaced.

the secondary customers only the monthly energy consump-
tion from their billing data was available. No information
was available about their power factors, peak loading or
loading profiles. Thus, a new algorithm had to be created
which could utilize the original profiles for the feeder head
and DT data and also the monthly consumer billing data to
come up with accurate customer load values.

Figure 4 shows the relevant columns available in the DT
metering information. For each 30-minute interval, the per
phase real and reactive powers were available and also the
voltages on each phase. However, the voltage data was more
consistently available than the loading information both for
the DTs and feeder head. Also, since the objectives of this
project involved assessing the readiness of the grid to host
EVs it was essential to faithfully capture the peak loading
observed on each DT [6], [7]. So, the first step was to apply
the same kW values to the per phase secondary lumped
loads of each DT as the peak loading values from its profile.
However, since the exact capacitive compensation, if any, on
each DT at the peak loading condition was not known and
there were gaps in the data, the voltage drops from the feeder
head to the DTs obtained from the OpenDSS models did not
match the metering data (target voltages in figure 4).

To mitigate this issue, evolutionary algorithm (EA) was
used to get the optimal load kW and power factor values for
each phase of the DTs [8]. In this approach each DT was
allocated optimal loading values separately. For the DT being
optimized the load kW values were varied within ±25%
of its peak kW values (determined from its metering data)
while the PF was allowed to vary within ±1. The other DTs
were allocated the same loading values as shown in their
respecting loading profiles at the peak loading time point
of the DT being optimized. However, many times the other
DTs had missing data and so these DTs were assumed to
be loaded at 50% of their rated kVA. The tap positions for
these DTs were kept at the neutral position as they did not
have on-load tap changers. EA was then allowed to vary per
phase load kW and power factor values until convergence
was achieved. The objective function was to minimize the
squared sum of deviations of the DT secondary voltages
obtained from the OpenDSS models and target voltages.

Figure 5 shows the results obtained using this approach.
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Fig. 4. DT metering information and target voltages

Fig. 5. Results of evolutionary algorithm without DT taps

The green bars show the voltages obtained when the kW
values and power factors were directly used from the me-
tering data. Ideally these voltages should have matched the
target voltages shown as the blue bars. However, due to the
reasons mentioned previously the two did not match. The
yellow bars show the voltages obtained when EA achieved
convergence. It can be clearly seen that the load kW and
power factor values obtained from EA produce voltages
which match the target voltages perfectly for all three phases.
The load kW values were also very close to those observed
in the metering data. However, some of these voltages could
only be obtained when the power factor was negative, which
indicated voltage rise due to the presence of capacitive
compensation or a higher DT tap setting. So, this approach
was modified and the power factors were restricted to be
between [0.8,1] and the DT tap settings were allowed to
vary from [0.9,1.05] in discrete steps of 0.025 to mimic
the 6 available taps per DT. Using this approach most
optimal voltages were closer to target voltages than the initial
voltages and realistic power factors and DT tap positions
could be determined.

Using the modified approach the correct per phase load
kW and power factor values were obtained for all the
transformers. These loading values gave the correct voltage
drops from the feeder head to the DT secondaries for each
DT at their respective peak loading time points and also
captured the peak loading for each transformer faithfully.
Now these lumped loads at the DT secondaries had to be
distributed to all downstream customers. So the total number
of customers per DT were divided equally in all three phases.
Then the proportion of kWh consumption of each customer

was calculated as a percentage of the total kWh consumption
of all loads on the DT. Based on these proportions the DT
lumped loads were allocated to each customer. This ensured
that the total loading on each phase was exactly the same
as determined by EA and each load had a kW value in
proportion to its energy consumption. Figure 6 shows the per
phase loads in kW allocated to secondary consumers of a DT
arranged in descending orders of magnitude. Finally, since
the original GIS files did not have any secondary customer
nodes, new nodes were artificially created based on the plot
sizes observed in the modeled area and loads were attached
to these nodes as shown in figure 7.

Fig. 6. Loads allocated to secondary consumers
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Fig. 7. New nodes created to connect secondary customers

Fig. 8. Sample demand profile of a public charging station

III. EV DEMAND MODELLING

To evaluate the grid impacts, EV load was modeled
as spot demand profiles for various randomized locations
representing diffident scenarios. For example, a residential
EV charger was modeled as an additional load on top of the
base load profile but a public charging station was added
as a new load for which the peak load amounts to the
aggregation of the charger peak demand ratings under the
station. Charging scenarios are formulated based on the types
of chargers as initially specified by the utility. AC chargers
(230 V, 15 A, 3.3 kW) are assumed to be the most prevalent
models since this provides the most inexpensive charging
options. In a residential-dominant charging scenario, single
AC charger is assumed to fully charge a single vehicle
overnight. These chargers will be used by consumers in
public or workplace-dominant modes mostly to top-off, as
the charging rates are slow. Level 1 DC chargers are assumed
to be available in public or workplace/commercial stations
(48/72 V, 10/15 kW).

A. Daily demand profile estimates

Preliminary examples of how a public charging station
behaves throughout a day are seen in Figure 8. This station
in question has 30 slow chargers with a possible net peak
load of 99 kW. The model takes a bottom-up approach to
build the demand profile. For example, at a given time the
flock of new EV is assumed to arrive at the station with
varying levels of initial SOC values. These parameters are
dependent on time of the day, as seen in Figure 9. The dark
blue trace in Figure 9 shows how many EVs arrive at the
station at different times (nearly 250 in total, the numbers

Fig. 9. Bottom-up model development for public charging station demand
calculation- number of EVs and their initial SOC levels

Fig. 10. Bottom-up model development for public charging station demand
calculation- number of EVs waiting in the queue

are high in early morning and evening timeframe, moderate
around noon time, and low at other times), and their initial
SOCs are plotted by the red trace. Both variables are drawn
from random distributions. Such distributions are created as
a plug-n-play part of the larger model and are subject to
change. Net consumption profile for this charging station
thus shows constant high load in the evening through the
night (Figure 8). This refers to the fact that EVs require
longer time to charge in the evening as their initial SOCs
are low, and consequently all the chargers in the station are
occupied for this duration. The long EV queue at night is
represented in Figure 10 for this example, which suggests
that the waiting queue keeps growing after 8pm but tapers
down around midnight.

B. Initial results

Initial results are presented in this section from the
EV scenario simulation framework. There are 300 charg-

Fig. 11. Base load and total load (after EV integration) profiles for a
summer day
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Fig. 12. Comparison of minimum voltages between baseline and EV
integration scenario

ers clustered among 10 charging stations (public + work-
place/commercial). Number of chargers in a station may
vary to reflect diversity in locations. In this scenario, there
are about 2000 EVs being considered that create discrete
charging events within a single day. A hot summer day
profile was selected for this initial simulation. Total EV loads
for all these stations and base loads for the given day are seen
in Figure 11. As this figure suggests, for this scenario the EV
load adds more than a MW on top of the existing base load
of 1.5 MW. Voltage impacts are seen in Figure 12 which
plots minimum voltages (among all the nodes) for every 30
minutes. Figure 12 shows that theres a clear voltage drop in
the evening due to the high EV load as compared to the no
EV or baseline scenario. Such a drop will be dependent on
the daily profile, and variations in EV charging profiles.

IV. BATTERY ENERGY STORAGE SYSTEMS

BESS is a fast growing and reliable technique to mitigate
the potential adverse impacts from integration of DERs.
For instance they can charged during periods when DER
generation is high but load demand is low and can be
discharged during high load demand periods. This can reduce
the dependence on expensive peaker plants. BESS can also
be used for providing reactive power support to maintain sys-
tem voltages, backup supply, energy arbitrage among others.
However, before these revenue streams may be evaluated it
is essential to determine the correct location and sizing of
BESS as they require a significant capital investment.

A. Battery Sizing

This subsection describes the form of the battery sizing
map which can be used to obtain the battery size appropriate
for any distribution transform subject to any loading profile.
Each point-pair, corresponding to every overloading instance
observed during a year, can be plotted as a scatter plot.
The bivariate distribution of the overloading point-pairs can
be superimposed over the scatter plot as shown in figure
13. There will exist one overloading instance point-pair
with the maximum power requirement. It is assumed that
commercially available batteries are generally available with
a 4:1 ratio between energy and power, e.g. a 2kW, 8kWh
battery could be readily procured whereas a 2kW, 20kWh is
not expected to be commercially available. Thus, all of the
battery sizes which are recommended in this study will be
on the 4:1 energy to power ratio line. There are three points
which are of interest in the battery sizing map, these are (1)
the peak power overloading instance point-pair shown in red,
(2) the projected peak power point-pair to the 4:1 ratio line
shown in purple, and (3) the 70th percentile point-pair. The

Fig. 13. Battery sizing map

Fig. 14. Peak shaving control configuration

70th percentile point represents the point on the 4:1 ratio line
most near the point simultaneously at the 70th percentile of
power and energy for all observed overloading instances.

B. Peak shaving control application

Power system planning operations ensure that there is
enough capacity to service peak loading conditions to main-
tain grid reliability. Traditionally, peaking power plants such
as natural gas turbines have been used to service high
demand for electricity. The peak shaving mode requires the
service operator to provide trigger values for peak shaving
and base loading. The BESS will discharge power into the
grid if the active power demand at the measured point, DT
in this case, is greater than the peak shaving upper reference
limit as shown in Figure 14 .

Conversely, the BESS will charge if the load consump-
tion at the measured point is lower than the base loading
limit. This BESS control application is used to defer large
investments required for system upgrade and to mitigate use
of peaking generators for flattening the load profile. This
research will provide insight into the impact of such BESS
application on capacity deferrals.

C. Results

The implementation of peak shaving algorithm in 30-
minute time step for one day is presented. Figure 15 shows
the active power at this particular distribution transformer,
SOCs of the attached local BESS and the batteries active
power output with and without (base case) the peak shaving
grid support.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 15. Energy storage integration results at a distribution transformer for
Feeder 1

This BESS control application functions such that the
BESS charges during the base loading condition of the distri-
bution transformer to prevent an exacerbation of its loading
during a possible peak demand and low SOC scenario.
The peak shaving algorithm discharges the BESS power to
service peak demands when the upper limit threshold of the
distribution transformer is violated. The BESS idles during
periods when neither reference set points, upper and lower
limits, are violated. The peak shaving control application
continues to function until the BESS is completely depleted.

V. SIMULATION ARCHITECTURE

In order to assess the grid readiness of the modeled net-
work to host EVs, a large number of time series simulations
had to be completed. For instance the baseline had to be
simulated over 10 years at 30-minute resolution to determine
required network upgrades. The selected upgrades would
then have to be modeled to verify that they can indeed correct
the observed violations. Along with the baseline simulations
a number of EV scenarios have to simulated followed by
BESS use cases. Simulating them serially on a local machine
would be time intensive and inflexible. Thus, a simulation
architecture had to be created which could run all of these
simulations in parallel by leveraging the high performance
computing facilities available at NREL.

Figure 16 shows the architecture created for this purpose.
A command line interface was developed which can be used
to specify the names of all the feeders to be simulated,
the time resolution required, total simulation time and all
the EV and BESS use cases. These inputs are then sent
to a job handler which arranges them in batches and each
batch is sent to a task node. On each node the batch is
split into individual time series simulations which are run
in parallel on the different cores. The raw data is stored in
separate directories which is then post processed to get the
grid readiness metrics.

To get the baseline results, time series simulations were
run on the developed network model for the entire year using
time series profiles developed using the statistical methods
described in the previous sections. It was essential to ensure
that the DTs were actually observing the same loading

throughout the year as expected from the allocated loads.
So, the loading observed on each DT at all time points was
stored in a data structure and exported as an output file. This
year-long baseline loading profile was then compared with
the expected loading of each DT. Expected loading is the
sum of loading on each phase of the DT at each time point,
obtained by multiplying the load allocated using EA with the
time series profile multiplier, DTloadEA

perphase ∗ Loadmult.
As can be seen in figure 17, the actual loading is slightly
higher than the expected loading because of the losses which
verified that the network model and OpenDSS simulations
were giving correct results.

The original DT meter data and OpenDSS outputs were
also compared. These comparisons could only be made for
a subset of DTs which had relatively fewer gaps in the data
as shown in figure 18. Even though the OpenDSS output in-
cludes the impact of the EA based load allocation algorithm
and the statistical methods used for filling in missing or bad
data, it looks very similar to the raw input data. This helps
in validating the effectiveness of the simulation platform
described in this paper to conduct meaningful distribution
planning analysis using data sources readily available with
the Indian utility companies.

VI. FUTURE WORK

Time series simulations can provide a lot of valuable
information. For each one of the multi-year time series
simulations a suit of grid readiness metrics will be evaluated.
These metrics will provide information about the required
network upgrades to mitigate thermal and voltage violations.
The EV demand profiles will also be included to simulate
the network impacts of varying levels of EV penetration.
The BESS use cases such as peak shaving will then be
implemented along with the EV scenarios to determine the
effectiveness of BESS in facilitating EV integration.

VII. CONCLUSIONS

This paper presented a platform developed to conduct
detailed distribution planning and analysis studies. This
platform uses input data in the same format as is readily
available with the utility and then processes it to a usable
format. This platform can be used to model a detailed
distribution network model including both the primary and
secondary networks, and get accurate load allocations and
statistically correct loading profiles.

The modular nature of this platform allows it to be easily
extended to any DER use case in addition to the BESS
and EV use cases already implemented. The simulation
architecture is also flexible enough to run a multi-year time
series analysis with these use cases and evaluate the grid
readiness metrics. The presented baseline results validate the
effectiveness of this platform to generate accurate models
and power flow results.
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Fig. 16. Simulation architecture used to run hundreds of time-series simulations in parallel
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