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Quasi-Stochastic Approximation
and Off-Policy Reinforcement Learning

Andrey Bernstein∗ Yue Chen∗ Marcello Colombino∗ Emiliano Dall’Anese‡ Prashant Mehta§ Sean Meyn¶

Abstract— The Robbins-Monro stochastic approximation al-
gorithm is a foundation of many algorithmic frameworks for
reinforcement learning (RL), and often an efficient approach to
solving (or approximating the solution to) complex optimal con-
trol problems. However, in many cases practitioners are unable
to apply these techniques because of an inherent high variance.
This paper aims to provide a general foundation for “quasi-
stochastic approximation,” in which all of the processes under
consideration are deterministic, much like quasi-Monte-Carlo
for variance reduction in simulation. The variance reduction
can be substantial, subject to tuning of pertinent parameters in
the algorithm. This paper introduces a new coupling argument
to establish optimal rate of convergence provided the gain
is sufficiently large. These results are established for linear
models, and tested also in non-ideal settings.

A major application of these general results is a new class
of RL algorithms for deterministic state space models. In this
setting, the main contribution is a class of algorithms for
approximating the value function for a given policy, using a
different policy designed to introduce exploration.

I. INTRODUCTION AND PROPOSED FRAMEWORK

Stochastic approximation concerns the root-finding prob-
lem f(θ∗) = 0, where θ∗ ∈ Rd is a parameter to be computed
or approximated, and f : Rd → Rd is defined using the
following expectation

f(θ) := E[f(θ, ξ)] , θ ∈ Rd , (1)

in which f : Rd × Rm → Rd and ξ is an m-dimensional
random vector. With this problem in mind, the stochastic
approximation (SA) method of Robbins and Monro [1], [2]
involves recursive algorithms to estimate the parameter θ∗.
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The simplest algorithm is defined by the following recursion
(n is the iteration index):

θn+1 = θn + anf(θn, ξn) , n ≥ 0, (2)

where ξ := {ξn} is an exogenous m-dimensional stochastic
process, an > 0 is the step size, and θ0 ∈ Rd is given. For
consistency with (1), it is assumed that the distribution of
ξn converges to that of ξ as n → ∞; e.g., ξ is an ergodic
Markov process.

The motivation for the SA recursion (and also an important
tool for convergence analysis) is the associated ordinary
differential equation (ODE):

d
du
χ(u) = f (χ(u)) . (3)

Under general assumptions, including boundedness of the
stochastic recursion (2), the limit points of (2) are a subset
of the stationary points of the ODE; that is, solutions to
f(θ∗) = 0. See [2], [3] and the earlier monographs [4], [5].

The upshot of stochastic approximation is that it can be
implemented without knowledge of the function f or of
the distribution of ξ; rather, it can rely on observations of
the sequence {f(θn, ξn)}. This is one reason why these
algorithms are valuable in the context of reinforcement
learning (RL) [2], [6], [7], [8], [9]. In such cases, the driving
noise is typically modeled as a Markov chain.

The present paper considers a quasi-stochastic approxi-
mation (QSA) algorithm, in which the “noise” is generated
from a deterministic signal rather than a stochastic process.
We opt for the continuous-time model:

d
dtθ(t) = a(t)f(θ(t), ξ(t)) . (4)

The entries of the vector-valued process ξ may be chosen
to be sums of sinusoids with irrationally related frequencies.
The continuous time setting is adopted mainly for simplicity
of exposition, especially for the convergence analysis; results
can be extended to the discrete-time setting, but are omitted
due to space constraints.

One motivation for the proposed framework was to provide
foundations for the Q-learning algorithm introduced in [10],
which treats nonlinear optimal control in continuous time. In
[10] it was found in numerical experiments that the rate of
convergence is superior to the ones of traditional applications
of Q-learning. The present paper provides explanations for
this fast convergence, and presents a methodology to design
algorithms with optimal rate of convergence.

A. Contributions
Contributions of the present paper are explained in terms

of theoretical advancements for the QSA and applications.
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Analysis: As in the classical SA algorithm, analysis is
based on consideration of the associated ODE (3) in which
the “averaged” vector field is given by the ergodic average:

f(θ) = lim
T→∞

1

T

∫ T

0

f(θ, ξ(t)) dt, for all θ ∈ Rd. (5)

The paper will introduce pertinent assumptions in Section IV
to ensure that the limit (5) exists, and that the averaged ODE
(3) has a unique globally asymptotically stable stationary
point θ∗. It will be shown that the QSA (4) converges to the
same limit. Relative to convergence theory in the stochastic
setting, new results concerning rates of convergence will be
offered in Section IV.

The variance analysis outlined in Section IV begins by
considering a linear setting f̄(θ) = A(θ − θ∗), with A
Hurwitz. The linearity assumption is typical in much of the
literature on variance for stochastic approximation and is
justified by constructing a linearized approximation for the
original nonlinear algorithm [11], [5]. Rates of convergence
of nonlinear QSA is beyond the scope of this paper and will
be pursued in future work.

Under the assumption that I + A is Hurwitz (that is,
each eigenvalue λ of A satisfies Re(λ) < −1), it will be
shown that the optimal rate of convergence of 1/t can be
obtained. In particular, there is a constant σ <∞ such that
the following holds for each initial condition θ(0):

lim sup
t→∞

t‖θ(t)− θ∗‖ ≤ σ (6)

This assumption is stronger than what is imposed to obtain
the Central Limit Theorem for stochastic approximation,
which requires Re(λ) < − 1

2 . On the other hand, the con-
clusions for stochastic approximation algorithms are weaker,
where the above bound is replaced by

lim sup
t→∞

tE[‖θ(t)− θ∗‖2] ≤ σ2 (7)

That is, the rate is 1/
√
t rather than 1/t [4], [5].

The most compelling applications are: (i) gradient-free op-
timization methods, based on ideas from extremum-seeking
control [12], [13]; and (ii) RL for deterministic control sys-
tems. Q-learning with function approximation is reviewed,
following [10]. It is shown that the most straightforward
application of RL does not satisfy the conditions of the paper,
and in fact may not be stable. In view of these challenges,
a new class of “off policy” RL algorithms are introduced.
These algorithms have attractive numerical properties, and
are suitable for application to approximate policy iteration.

B. Literature review

The first appearance of QSA methods appears to have
originated in the domain of quasi-Monte Carlo methods
applied to finance [14], [15]. Rates of convergence were
obtained in [16], but with only partial proofs, and without
the coupling bounds reported here.

Gradient-free optimization has been studied in several,
seemingly disconnected lines of work. The Kiefer-Wolfowitz
algorithm is the classical gradient-free optimization method

that uses finite-difference approximation the gradient [17].
For a d-dimensional problem, it perturbs each dimension sep-
arately and requires 2d function evaluations. The simultane-
ous perturbation stochastic approximation (SPSA) algorithm
uses random perturbations that are zero-mean independent
variables [18], requiring two function evaluations at each
update. Deterministic perturbations in SPSA are proposed
in [19]. Another line of work, typically known as “bandit
optimization” (see e.g., [20], [21], [22]) leverages a stochas-
tic estimate of the gradient, based on a single or multiple
evaluations of the objective function. Such algorithms have
been analyzed extensively using tools similar to the classical
SA approach, with similar conclusion on the high variance
of the estimates [23]. In addition, the gradient-free technique
termed “extremum-seeking control” (ESC) [12], [13] adopts
sinusoidal signals as perturbations to estimate the gradient;
it is a special application of the QSA theory developed in
this paper. Stability of the classic ESC feedback scheme was
analyzed in e.g., [24], [25].

The rate of convergence result (7) is an interpretation of
classical results in the SA literature. Under mild conditions,
the “limsup” can be replaced by a limit, and moreover the
Central Limit Theorem holds for the scaled error process
{
√
t[θ(t)− θ∗]} [4], [5], [2]. In these works, the asymptotic

covariance is the solution to a Lyapunov equation, derived
from the linearized ODE and the noise covariance. The
results in the QSA setting are different. It is shown in
Theorem 4.3 that under the Hurwitz assumption on I+A, the
scaled parameter estimates {t[θ(t)−θ∗]} couple with another
process, obtained by integrating the noise process. There is
a large literature on techniques to minimize the asymptotic
variance in stochastic approximation, including Ruppert-
Polyak-Juditsky (RPJ) averaging [26], [27], or adaptive gain
selection, resulting in the stochastic Newton-Raphson (SNR)
algorithm [28], [5].

There is a large literature on techniques to minimize
the asymptotic variance in stochastic approximation, includ-
ing Ruppert-Polyak-Juditsky (RPJ) averaging [26], [27], or
adaptive gain selection, resulting in the stochastic Newton-
Raphson (SNR) algorithm [28], [5]. The problem of optimiz-
ing the rate for QSA (e.g., minimizing the bound σ in (6))
through choice of algorithm parameters is not trivial. This
is because coupling occurs only when the eigenvalues of A
satisfy Re(λ) < −1.

The fixed-policy Q-learning algorithm introduced here
may be regarded as an off policy TD-learning algorithm
(or SARSA) [29], [30]. The standard TD and SARSA
algorithms are not well-suited to deterministic systems since
the introduction of exploration creates bias. By definition,
an off policy method allows an arbitrary stable input, which
can be chosen to speed value function estimation. Q-learning
also allows for exploration, but this is a nonlinear algorithm
that often presents numerical challenges, and there is little
theory to support this class of algorithms beyond special
cases such as optimal stopping, or the complex “tabular”
case for finite state-space models [29], [30]. In the special
case of linear systems with quadratic cost, the off-policy TD
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learning algorithm introduced here reduces to [31].
Organization: The remainder of this paper is organized

as follows. Sections II and III contain several general applica-
tion areas for QSA, along with numerical examples. Stability
and convergence theory is summarized in Section IV, with
most technical proofs deferred to [32]. Conclusions and
future directions for research are summarized in Section V.

II. MOTIVATIONAL APPLICATION EXAMPLES

To motivate the QSA theory, this section briefly discusses
quasi Monte-Carlo and gradient-free optimization. A deeper
look at applications to optimal control, which is the main
focus of this paper, will be given in Section III.

A. Quasi Monte-Carlo

Consider the problem of obtaining the integral over the
interval [0, 1] of a function y : R→ R. To fit the QSA model
(4), let ξ(t) := t (modulo 1), and set

f(θ, ξ) := y(ξ)− θ. (8)

The averaged function is then given by

f(θ) = lim
T→∞

1

T

∫ T

0

f(θ, ξ(t)) dt =

∫ 1

0

y(t) dt− θ

so that θ∗ =
∫ 1

0
y(t) dt. Algorithm (4) is given by:

d
dtθ(t) = a(t)[y(ξ(t))− θ(t)]. (9)

The numerical results that follow are based on the function
y(t) = e4t sin(100t). This exotic function was among many
tested – it is used here only because the conclusions are
particularly striking.

-2
0
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0 10 20 30 40 50 60 70 80 90 100

g = 0.25 g = 0.5 g = 1

g = 2 g = 5 g = 10

t

Fig. 1: Sample paths of Quasi Monte-Carlo estimates.

The differential equation was approximated using a stan-
dard Euler scheme with step-size 10−3. Two algorithms
are compared in the numerical results that follow: standard
Monte-Carlo, and versions of the deterministic algorithm (9),
differentiated by the gain a(t) = g/(t + 1). Fig. 1 shows
typical sample paths of the resulting estimates for a range
of gains; in each case the algorithm was initialized with
θ(0) = 10. The true mean is θ∗ ≈ −0.4841.

Monte Carlo QSA QSAµ = -0.47

σ2 = 2e-03

µ = -0.48

σ2 = 1e-03

µ = -0.48

σ2 = 1e-7
g = 1 g = 1 g = 2

Fig. 2: Histograms of Monte-Carlo and Quasi Monte-Carlo esti-
mates after 104 independent runs.

Independent trials were conducted to obtain variance esti-
mates. In each of 104 independent runs, the common initial
condition was drawn from N(0, 10), and the estimate was
collected at time T = 100. Fig. 2 shows three histograms of
estimates for standard Monte-Carlo, and QSA using gains
g = 1 and 2. An alert reader must wonder: why is the
variance reduced by 4 orders of magnitude when the gain is
increased from 1 to 2? The relative success of the high-gain
algorithm is explained in Section IV.

B. Gradient-Free Optimization

Consider the unconstrained optimization problem:

min
θ∈Rd

J(θ). (10)

The goal is to minimize this function based on observations
of J(x(t)), where the signal x is chosen by design. It is
assumed that J : Rd → R is convex, twice continuously
differentiable, and that it has a unique minimizer, denoted θ∗.
Computation of the optimizer is thus equivalent to obtaining
a zero of the gradient of J . The goal is to design QSA
algorithms that seek solutions to the equation f(θ∗) = 0,
where

f(θ) := H∇J(θ) , θ ∈ Rd . (11)

The choice of the invertible matrix H is part of the algorithm
design.

We design the signal x as the sum of two terms x(t) =
θ(t) + εξ(t), t ≥ 0, where ε > 0 and ξi(t) =

√
2 sin(ωit),

for ωi 6= ωj for all i 6= j. It can be shown that this process
satisfies:

lim
T→∞

1

T

∫ T

t=0

ξ(t) dt = 0 (12)

lim
T→∞

1

T

∫ T

t=0

ξ(t)ξ(t)T dt = I (13)

For a given θ ∈ Rd, consider then the second-order Taylor
expansion of the objective function around θ:

J(θ + εξ(t)) = J(θ)

+ εξ(t)T∇J(θ) +
1

2
ε2ξ(t)T∇2J(θ)ξ(t) + o(ε2).

Define f(θ, ξ) := −ξJ(θ+εξ). It is easy to verify that under
(12) and (13), one has that:

f(θ) := lim
T→∞

1

T

∫ T

t=0

f(θ, ξ(t)) dt = −ε∇J(θ) + Err(ε)

(14)

where ‖Err(ε)‖ ≤ O(ε2). Thus, based on (4), the following
algorithm seeks for (approximate) zeros of ∇J :

d
dtθ(t) = −a(t)ξ(t)J(x(t))

x(t) = θ(t) + εξ(t) .
(15)

In fact, (15) is a stylized version of the extremum-seeking
algorithm of [12]. The gain a is typically assumed constant
in this literature, and there is a large literature on how to
improve the algorithm, such as through the introduction of
a linear filter on the measurements {J(x(t))}. It is hoped
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that the results of this paper can be used to guide algorithm
design in this application.

III. QSA FOR REINFORCEMENT LEARNING

In this section we show how QSA can be used to speed
up the exploration phase that is needed for policy evaluation
in reinforcement learning.

A. Off-policy TD Learning

Consider the nonlinear state space model

d
dtx(t) = g(x(t), u(t)) , t ≥ 0

with x(t) ∈ Rn, u(t) ∈ Rm. Given a cost function
c : Rn+m → R, and a feedback law u(t) = φ(x(t)), let
J denote the associated value function:

Jφ(x) =

∫ ∞
0

c(x(t), φ(x(t))) dt , x = x(0).

The goal of policy evaluation (or TD-learning [33]) is to
approximate this value function based on input-output mea-
surements. It is assumed in [33] that the joint process (x,u)
is an ergodic Markov chain, which presents an obvious
challenge in this deterministic setting: this ergodic steady
state will typically be degenerate. It is common to introduce
noise, as in Q-learning [10], and also a discount factor in
the definition of J to ensure that J(x) < ∞ for all x.
Following these modifications, the approximation objective
has been changed significantly: rather than approximating
the original value function J , the algorithm will provide an
approximation for the value function with discounting, and
with a randomized policy. Exploration and/or discounting
may create significant distortion in the value function.

The algorithm proposed here avoids these difficulties. The
construction begins with a Q-function [10] defined with
respect to the given policy:

Qφ(x, u) = Jφ(x) + c(x, u) + g(x, u) · ∇Jφ (x).

This function solves the fixed point equation

Qφ(x, u) = Qφ(x) + c(x, u) + g(x, u) · ∇Qφ (x) (16)

in which we use the notational convention F (x) =
F (x, φ(x)) for any function F . We consider a family of
functions Qφθ(x, u) parameterized by θ, and define the
Bellman error for a given parameter as

Eθ(x, u) =−Qφθ(x, u) +Qφθ(x) + c(x, u)

+ g(x, u) · ∇Qφθ (x)
(17)

The goal of policy evaluation is to create a data-driven
algorithm that, without using information on the system’s
model, computes a parameter θ∗ for which the Bellman error
is small: for example, minimizes ‖Eθ‖ in a given norm.
In [10], ideas from [34] are used to construct a convex
program for a related learning objective. In this paper, we
propose an off-policy RL algorithm: the value function for φ
is approximated while the actual input u of the system may
be entirely unrelated.

We choose a feedback law with “excitation”, of the form

u(t) = κ(x(t), ξ(t)) (18)

where κ and ξ are such that the resulting state trajectories
are bounded for each initial condition, and the joint process
(x,u, ξ) admits an ergodic steady state. The goal is to find
θ∗ that minimizes the mean square error:

‖Eθ‖2 := lim
T→∞

1

T

∫ T

0

[
Eθ(x(t), u(t))

]2
dt. (19)

Similarly to Section II-B, the first-order condition for
optimality is expressed as a root-finding problem. Collecting
together the definitions, we arrive at the following QSA
steepest descent algorithm:

d
dtθ(t) = −a(t)Eθ(t)(x(t), u(t))ζθ(t)(t)

ζθ(t) := ∇θEθ(x(t), u(t))
(20)

The vector process {ζθ(t)(t)} is analogous to the eligibility
vector defined in TD-learning [29], [30], [6].

Model-free realization. It appears from the definition (17)
that the nonlinear model must be known. A model-free
implementation is obtained on recognizing that for any
parameter θ, and any state-input pair (x(t), u(t)),

Eθ(x(t), u(t)) = −Qφθ(x(t), u(t)) +Qφθ(x(t))

+ c(x(t), u(t)) + d
dtQ

φθ(x(t))
(21)

(Approximate) Policy improvement algorithm (PIA): Given
a policy φ and approximation Qφθ

∗
for this policy, a new

policy is obtained via:

φ+(x) = arg min
u

Qφθ
∗
(x, u) (22)

This procedure is repeated to obtain a recursive algorithm.

B. Practical Implementation

Given a basis of functions {ψi : 1 ≤ i ≤ d}, consider the
linearly parameterized family

Qφθ(x, u) = d(x, u) + θTψ(x, u) , θ ∈ Rd. (23)

Note that the Bellman error is a linear function of θ whenever
this is true of Qφ,θ. Consequently, minimization of (19)
is a model-free linear regression problem, and the limit
exists for any stable input. Moreover, the steepest descent
algorithm (20) becomes linear. In fact, given (23), we define

ζ(t) := [ψ(x(t), φ(x(t)))− ψ(x(t), u(t))

+ d
dtψ(x(t), φ(x(t)))

]
b(t) := [c(x(t), u(t))− d(x(t), u(t)) + d(x(t), φ(x(t)))

+ d
dtd(x(t), φ(x(t)))

]
Then Eφ,θ(x(t), u(t)) = b(t) + ζ(t)>θ, and (20) becomes

d
dtθ(t) = −a(t)

[
ζ(t)> θ(t) + b(t)

]
ζ(t) (24)

The convergence of (24) may be very slow if the matrix

G := lim
t→∞

1

t

∫ t

0

ζ(τ)ζ(τ)>dτ (25)
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is poorly conditioned (i.e., has some eigenvalues close to
zero). Note that using G−1 as a matrix gain could solve
this problem. The integral (25) can be estimated from data.
This suggests an intuitive two-step procedure for the steepest
descent algorithm (24)

Ĝt =
1

t

∫ t

0

ζ(τ)ζ(τ)>dτ, 0 ≤ t ≤ T (26a)

d
dtθ(t) = −a(t)Ĝ−1T

[
ζ(t)> θ(t) + b(t)

]
ζ(t), t ≥ T (26b)

The results in Section IV suggest that this is indeed a good
idea in order to achieve the optimal convergence rate O(1/t).
To obtain this rate, the additional requirement is that a(t) =
g/(1 + t), with g > 1.

C. Numerical example

Consider the LQR problem in which g(x, u) = Ax+Bu,
and c(x, u) = x>Mx + u>Ru, with (A,B) controllable,
M ≥ 0 and R > 0. Given the known structure of the
problem, we know that the function Qφ associated with any
linear policy φ(x) = Kx, takes the form

Qφ =

[
x
u

]>([
M 0
0 R

]
+

[
A>P + PA+ P PB

B>P 0

])[
x
u

]
,

where P solves the Lyapunov equation A>P + PA +
K>RK + Q = 0 and therefore lies within the parametric
class (23) in which d(x, u) = c(x, u) and each ψi is a
quadratic function of (x, u). For example, for the special
case n = 2 and m = 1, we can take the quadratic basis

{ψ1, . . . , ψ6} = {x21, x22, x1x2, x1u, x2u, u2}.
The algorithm (26b) was used in conjunction with the ap-

proximate PIA update (22) to obtain a sequence of policies,
defined by state feedback, with φN (x) = KNx at iteration N
of the algorithm. The same input was used at each iteration:

u(t) = Kex(t) + ξ(t) (27)

with ξ(t) =
∑q
j=1 aj sin(ωjt+φj), and A−BKe Hurwitz.

The gain Ke need not be the same KN whose value function
we wish to approximate.

0 1 2 3 x102

100

0

100 SA QSA

t

θ(t)

(sec)

Fig. 3: Comparison of QSA and Stochastic Approximation (SA) for
policy evaluation. It is observed that QSA converges significantly
faster.

The algorithm was tested on the simple LQR example
where the system is a double integrator with friction:

ẋ =

[
0 −1
0 −0.1

]
x+

[
0
1

]
u, M = I, R = 10 I. (28)

In each experiment the input (27) was chosen for exploration,
with Ke = [−1,−2] and ξ in (27) the sum of 24 sinusoids

with frequency sampled uniformly between 0 and 50 rad/s,
and phases sampled uniformly.

Figure 3 shows the evolution of the QSA algorithm for the
evaluation of the policy K = [−1, 0]. The QSA algorithm
is compared with the related SA algorithm in which ξ is
“white noise” instead of a deterministic signal (formalized
as an SDE). For implementation, both (26) and the linear
system (28) were discretized with forward Euler discretiza-
tion; time-step of 0.01s.

A plot of normalized policy error as a function of iteration
N is shown in Figure 4.

1 2 3 4 5 6
0

5

10 1

K
KN −K

N

Fig. 4: Iterations of the policy improvement algorithm (PIA) (22)
where each evaluation is performed by the model-free algo-
rithm (26). The sequence of gain approximations obtained from
the QSA PIA algorithm converge to the optimal gain K?.

IV. CONVERGENCE ANALYSIS

The extension of stability and convergence results from
the classical stochastic model (2) to the deterministic analog
(4) requires some specialized analysis since the standard
methods are not directly applicable. In particular, the first
step in [2] and other references is to write (2) in the form,

θn+1 = θn + an
(
f(θn) +Mn

)
,

where M is a martingale difference sequence (or a pertur-
bation of such a sequence). This is possible when ξ is i.i.d.,
or for certain Markov ξ in (2). A similar transformation is
not possible for any class of deterministic ξ.

A. Assumptions for convergence

As in standard analysis of SA, the starting point is a
temporal transformation: substitute in (4) the new time
variable given by

u = g(t) :=

∫ t

0

a(r) dr, t ≥ 0.

The time-scaled process is then defined by

χ̂(u) := θ(g−1(u)). (29)

For example, if a(r) = (1 + r)−1, then

u = log(1 + t) and ξ(g−1(u))) = ξ(eu − 1). (30)

The chain rule of differentiation gives
d
duθ(g

−1(u)) = f(θ(g−1(u)), ξ(g−1(u))).

That is, the time-scaled process solves the ODE,
d
du
χ̂(u) = f(χ̂(u), ξ(g−1(u))). (31)

The two processes θ and χ̂ differ only in time scale, and
hence, proving convergence of one proves that of the other.
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For the remainder of this section we will deal exclusively
with χ̂; it is on the ‘right’ time scale for comparison with
χ, the solution of (3).
Assumptions:
(A1) The system described by equation (3) has a globally
asymptotically stable equilibrium at θ∗.
(A2) There exists a continuous function V : Rd → R+

and a constant c0 > 0 such that, for any initial condition
χ(0) of (3), and any 0 ≤ T ≤ 1, the following bounds
hold whenever ‖χ(s)‖ > c0,

V (χ(s+ T ))− V (χ(s)) ≤ −T‖χ(s)‖.
(A3) There exists a constant b0 < ∞, such that for all
θ ∈ Rd, T > 0,∥∥∥∥∥ 1

T

∫ T

0

f(θ, ξ(t)) dt− f̄(θ)

∥∥∥∥∥ ≤ b0
T

(1 + ‖θ‖)

(A4) There exists a constant L < ∞ such that the func-
tions V , f̄ and f satisfy the following Lipschitz conditions:

‖V (θ′)− V (θ)‖ ≤ L‖θ′ − θ‖,
‖f̄(θ′)− f̄(θ)‖ ≤ L‖θ′ − θ‖,

‖f(θ′, ξ)− f(θ, ξ)‖ ≤ L‖θ′ − θ‖, θ′, θ ∈ Rd , ξ ∈ Rm

(A5) The process a is non-negative and monotonically
decreasing, and as t→∞,

a(t) ↓ 0,

∫ t

0

a(r) dr →∞.

Assumption (A1) determines uniquely the possible limit
point of the algorithm. Assumption (A2) ensures that there is
a Lyapunov function V with a strictly negative drift whenever
χ escapes a ball of radius c0. This assumption is used
to establish boundedness of the trajectory χ̂. Assumptions
(A3) and (A4) are technical requirements essential to the
proofs: (A3) is only slightly stronger than ergodicity of ξ
as given by (5), while (A4) is necessary to control the
growth of the respective functions. The process a in (A5)
is a continuous time counterpart of the standard step size
schedules in stochastic approximation, except that we impose
monotonicity in place of square integrability.
Verifying (A2) for a linear system. Consider the ODE (3) in
which f(x) = Ax with A a Hurwitz d× d matrix. There is
a quadratic function V2(x) = xTPx satisfying the Lyapunov
equation PA+ ATP = −I , with P > 0. The function V =
k
√
V2, where the constant k > 0 is chosen suitably large, is

a Lipschitz solution to (A2) for some finite c0.

B. Convergence

The following is our main convergence result. The proof
sketch is provided below; see the extended version [32] for
the full proof.

Theorem 4.1: Under Assumptions (A1)–(A5), the solution
to (4) converges to θ∗ for each initial condition.

Define χu(w), w ≥ u, to be the unique solution to (3)
‘starting’ at χ̂(u):

d
dw
χu(w) = f̄(χu(w)), w ≥ u, χu(u) = χ̂(u). (32)

The following result is required to prove Theorem 4.1.
Lemma 4.2: Under the assumptions of Theorem 4.1, for

any T > 0, as u→∞,

sup
v∈[0,T ]

∥∥∥∫ u+v

u

[
f(χ̂(w), ξ(g−1(w)))− f̄(χ̂(w))

]
dw
∥∥∥→ 0

and supv∈[0,T ] ‖χ̂(u+ v)− χu(u+ v)‖ → 0.
The proof of Lemma 4.2 is contained in [32]; the second
limit is similar to Lemma 1 in Chapter 2 of [2].

Proof Sketch of Theorem 4.1: The first step in the proof
is to establish ultimate boundedness of χ̂(u): there exists
b <∞ such that for each θ ∈ Rd, there is a Tθ such that

‖χ̂(u)‖ ≤ b for all u ≥ Tθ , χ̂(0) = θ

The (lengthy) proof is contained in [32].
Thus, for u ≥ Tθ, ‖χu(u)‖ = ‖χ̂(u)‖ ≤ b. By the

definition of global asymptotic convergence, for every ε > 0,
there exists a τε > 0, independent of the value χu(u), such
that ‖χu(u+v)−θ∗‖ < ε for all v ≥ τε. Lemma 4.2 gives,

lim sup
u→∞

‖χ̂(u+τε)− θ∗‖

≤ lim sup
u→∞

‖χ̂(u+ τε)− χu(u+ τε)‖

+ lim sup
u→∞

‖χu(u+ τε)− θ∗‖ ≤ ε.

Since ε is arbitrary, we have the desired limit.

C. Variance

Let θ̃(t):=θ(t)−θ∗ and ν(t) = (t+1)θ̃(t). This section is
devoted to providing conditions under which ν is bounded,
and there is a well defined covariance:

Σθ := lim
T→∞

1

T

∫ T

0

ν(t)ν(t)T dt. (33)

Analysis requires additional assumptions on the “noise”
process. It is also assumed that the model is linear and
stable:
(A6) The function f is linear, f(θ, ξ) = Aθ + ξ, the gain
is a(t) = 1/(t+ 1), and
(i) A is Hurwitz, and each eigenvalue λ(A) satisfies
Re(λ) < −1.

(ii) The function of time ξ is bounded, along with its
partial integrals, denoted

ξI(t) =

∫ t

0

ξ(r) dr, ξII(t) =

∫ t

0

ξI(r) dr.

Assumption (A6) implies that f(θ) = Aθ, so that θ∗ = 0.
The linearity assumption is typical in much of the literature
on variance for stochastic approximation [11], [5], [2]. As in
the SA literature, it is likely that the results of this section
can be extended to nonlinear models via a Taylor-series
approximation.

A typical example of Assumption (A6ii) is the case where
the entries of ξ can be expressed as a sum of sinusoids:

ξ(t) =
K∑
i=1

vi sin(φi + ωit) (34)

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
6



for fixed vectors {vi}, phases {φi}, and frequencies {ωi}.
Theorem 4.3 below implies that ‖ν(t) − ξI(t)‖ → 0, as

t→∞. Consequently, the error covariance exists whenever
there is a covariance for ξI :

Σθ = ΣξI := lim
T→∞

1

T

∫ T

0

ξI(t)ξI(t)
T
dt.

This is easily computed for the special case (34).
Let Ā := I +A and fix a constant εS satisfying 0 < εS <

−Re(λ̄) for each eigenvalue λ̄ of Ā; this is possible due
to Assumption (A6i). Associated with the ODE d

dtx(t) =
(1 + t)−1Āx(t) is the state transition matrix:

S(t; r) = exp
(

log
[ 1 + t

1 + r

]
Ā
)
, r, t ≥ 0. (35)

It is easily shown that it satisfies the defining properties

S(t; t) = I , d
dtS(t; r) =

1

t+ 1
ĀS(t; r) , r, t ≥ 0. (36)

Theorem 4.3: Suppose Assumptions (A1)–(A6) hold.
Then, for each initial condition θ(0),

θ̃(t) =
1

t+ 1

[
ξI(t)+S(t; 0)θ̃(0)

]
+O

( 1

(t+ 1)1+δS

)
, (37)

where δS = min(εS , 1), and the final error term is indepen-
dent of the initial condition θ̃(0). Consequently, the scaled
error process satisfies the bound

ν(t) = ξI(t) +O
(1 + ‖θ̃(0)‖

(t+ 1)δS

)
. (38)

The remarkable coupling bound (38) follows from (37)
and Lemma 4.4 below. Coupling is illustrated here using
the simple integration experiment of Section II-A. The rep-
resentation (9) must be modified to fit the assumptions of
the theorem. First, denote by ξ0 a periodic function of time
whose sample paths define the uniform distribution on [0, 1]:
for any continuous function c,

lim
T→∞

1

T

∫ T

0

c(ξ0(t)) dt =

∫ 1

0

c(x) dx.

Introduce a gain g > 0, and consider the error equation,

d
dt θ̃(t) =

g

t+ 1
[y(ξ0(t))− θ∗ − θ̃(t)] (39)

The assumptions of the theorem are satisfied with A = −g
and ξ(t) = g[y(ξ0(t))− θ∗].

Figures 1 and 2 illustrate the qualitative conclusion of
Theorem 4.3: that it is useful to choose g > 1 in (39), so
that Assumption (A6i) is satisfied.

Coupling is illustrated in Fig. 5. The scaled errors g−1ν
are compared since ξ grows linearly with g: we expect
g−1ν(t) ≈

∫ t
0
(y(ξ0(r))−θ∗) for large t. The initial condition

was set to θ(0) = 10 in each experiment.
The figure shows results using ten gains, approximately

equally spaced on a logarithmic scale. The smallest gain is
g = 1.5, and all other gains satisfy g ≥ 2. Theorem 4.3
asserts that |ν(t)− ξI(t)| = O

(
[1 + t]−δS

)
, where δS < 0.5

for g = 1.5, and δS = 1 for g ≥ 2. The scaled errors

g
−
1
ν
(t
)

t

g = 1.5

g = 2.7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

95 96 97 98 99 100

0

1

Fig. 5: Evolution of ν(t) = (1 + t)θ̃(t) using Quasi Monte-Carlo
estimates for a range of gains.

{g−1ν(t) : 95 ≤ t ≤ 100} are nearly indistinguishable when
g ≥ 2. The slower convergence for g = 2.7 is probably due
to the term S(t; 0)θ̃(0) appearing in (37).

Results using gains g ≤ 1 are omitted. As expected, ν is
unbounded for g < 1. For g = 1 the approximation (38) fails
since ν(t) evolves near ν(0) for the entire run.

The proof of Theorem 4.3 leverages the following aux-
iliary results. Let ν̃(t) = ν(t) − ξI(t), t ≥ 0, denote the
“second-order” error process.

Lemma 4.4: The scaled error processes solve the respec-
tive linear differential equations

d
dtν(t) =

1

t+ 1
Āν(t) + ξ(t)

d
dt ν̃(t) =

1

t+ 1
Āν̃(t) +

1

t+ 1
ĀξI(t)

(40)

The ODE for the second-order error admits the solution

ν̃(t) = S(t, 0)θ̃(0) +

∫ t

0

1

r + 1
S(t; r)ĀξI(r) dr (41)

where S is defined in (35). Under the eigenvalue assumptions
in (A6), there exists bS <∞ such that

‖S(t; r)‖2 ≤ bS
[ 1 + t

1 + r

]−εS
where ‖S(t; r)‖2 denotes the maximal singular value.

Proof: The representation follows from the state tran-
sition matrix interpretation (36). The bound on ‖S(t; r)‖2
easily follows.

The proof of the next result is contained in [32].
Lemma 4.5: For t ≥ 0,∫ t

0

1

1 + r
S(t; r)ĀξI(r) dr

=
1

1 + t
ĀξII(t)− S(t; 0)ĀξII(0)

+

∫ t

0

1

(1 + r)2
S(t; r)[I + Ā]ĀξII(r) dr .

(42)

There exists bν <∞ such that∫ t

0

1

(1 + r)2
‖S(t; r)‖ dr ≤ bν

1

(1 + t)δS
, t ≥ 0 . (43)

Proof of Theorem 4.3: Lemmas 4.4 and 4.5 give

ν̃(t) = S(t, 0)θ̃(0) + Eν̃(t)

Eν̃(t) =
1

t+ 1
ĀξII(t)− S(t; 0)ĀξII(0)

+

∫ t

0

1

(1 + r)2
S(t; r)[I + Ā]ĀξII(r) dr .

The two lemmas imply that ‖Eν̃(t)‖ ≤ O
(
(1 + t)−δS

)
.
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V. CONCLUSION

While QSA can result in significant improvement in
convergence rate, the results of Section IV demonstrate that
QSA algorithms must be implemented with care. If the gain
does not satisfy the assumptions of Theorem 4.3 then the
rate of convergence can be slower than obtained in an i.i.d.
or Markovian setting.

There are many interesting topics for future research:
(i) Further work is required to extend Theorem 4.3 to the
nonlinear algorithm.
(ii) Constant-gain algorithms are amenable to analysis
using similar techniques.
(iii) Analysis of convergence under local stability assump-
tions (to local attractors) can be performed using tools
similar to those used in the standard SA literature.
(iv) We are most interested in applications to control and
optimization:
(a) On-line learning applications, in which the function f
itself varies with time. That is, (4) is replaced by

d
dtθ(t) = aft(θ(t), ξ(t)) ,

Analysis will be far simpler than in a traditional SA setting.
(b) Applications to decentralized control using reinforce-
ment learning techniques. In the LQR setting, the archi-
tecture for Q-learning or fixed-policy Q-learning might be
informed by recent computational techniques for control
synthesis [35].
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