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Novel Technique for Developing Linearized Convex
System Models from Experimentally Derived Data

Aadil Latif, Richard Bryce, Adarsh Nagarajan
National Renewable Energy Laboratory

Golden, Colorado, United States of America

Abstract—This paper presents a novel technique for generating
a convex system model from an experimentally derived data
set which features variance among repeated measurements. The
convex system model developed as a test case characterizes the
dynamic system losses of a vanadium redox flow battery as a
function of the active power output and the battery state of
charge. The technique hinges on a pre-cleaning via clustering
procedure which precedes the formation of a planar convex
hull comprised of triangular simplices. The clustering procedure
efficiently reduces the experimental data set while mitigating
variance among repeated measurements and removes outliers.
Ultimately, the lower evelope of the planar convex hull serves as
the desired convex system model. The proposed technique reduces
systematic model error which is otherwise present when directly
developing a planar convex hull model based on an unreduced
data set.

Index Terms—clustering, system model, convex hull, piece-wise
linear models, DB-scan, vanadium redox flow battery

I. INTRODUCTION

Modeling systems which feature convex interdependence
between variables is commonplace in power systems engineer-
ing. Further, linearization of the convex space enables tractable
solutions to optimization problems and is a common extension
of the premise [1]. Such modeling efforts, when based on
experimental data which is naturally riddled with measurement
error and variance within repeated measurements, can be a
tedious and error prone. This is particularly true when the
underlying relationship between the variables to be modelled
is not known a priori, this fitting a metamodel via a least-
squares method is not a perspicuous endevour [2]. Moreover,
generating a set of linearized constraint equations which rea-
sonably represents such a metamodel introduces further model
error. Thus, a modeling technique for reducing the impact of
the measurement noise while simultaneously yielding a set of
linear constraints bounding a convex space is desirable.

Although a number of approaches exist in literature for de-
velopment of nonlinear models that capture system dynamics
with various degress of fidelity, the implementation of these
models within optimization frameworks may not be tractable
or even possible in some cases [3].

Most system dynamic models in reality are nonlinear, but
not necessariliy convex . In practical implementations many
of these non-convex functions are approximated as convex
functions with reasonable accuracy [4], [5]. Economic dis-
patch of generation units in power systems domain is one
such example. Cost function of generation units has typically

been approximated as a quadratic function for optimization
problems. In reality however, steam valve operation in thermal
turbines makes the cost function highly non-linear and non-
convex. Quadratic approximation makes the problem tractable
for optimization solvers [6].

Piece-wise linear models have a number theoretically un-
favourable properties such as discontinuity and undifferentia-
bility, however, they are directly applicable in mix integer
linear programming (MILP) problems which makes them
useful in practical applications [7]. Herein, such a technique is
developed and validated against a set of experimental data of
the dynamic losses of a vanadium redox flow battery (VRFB)
as a function of the active power output and the state of
charge (SOC) of the system. The intent is to develop a storage
system loss model that can in the future be embedded into
ReOpt; A MILP framework based techno-economic analysis
tool developed and maintained by National Renewable Energy
Lab [8].

II. DATA AND METHODS

The data set used in this work has been sourced from
cycle testing a utility scale redox flow battery system as
it operates within a dsitribution network. In this work, all
recorded measurements have been scaled by respective peak
values to protect manufacturer’s proprietary information. The
storage system was charged and discharged at various levels
of state of charge and active power over a period of three days,
such that most of the state space was sampled. In this study
various components of system losses have been summed and
are referred to as ’total system losses’ here after. Although
in this paper storage system loss model development is the
chosen use case, the proposed model development method is
extendable to any data set that is predominantly convex. Figure
1 shows surface plot of scaled total system losses measured
at various levels of active power and state-of-charge.

A. Formation of the convex hull

The convex hull C is formed by enveloping a given set G
containing all measurement points, pi ≡ (Pm, Sm, Lm) using
Equation 1. Pm, Sm, Lm are measured active power, state of
charge and total system losses for the flow battery respectively.
Next lower envelope of the convex hull is identified and
used to define a piece-wise linear model for total system
loss estimation. Algorithm 1 presents pseudo code algorithm
developed and used for this purpose.
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Fig. 1: Surface plot for total system losses measured for
battery operated at various levels of active power and state-of-
charge. Projection on the Z axis shows regions sampled during
experimental run.

C ≡ H(G) =


|G|∑
i=1

αipi

∣∣∣∣(∀i : αi ≥ 0) ∧
|G|∑
i=1

αi = 1

 (1)

For noisy experimental data sets convex hull forms on the
extremities and may be heavily distorted by outliers. Thus

Convex hull 

(noisy data)

Outlier 

Clusters 

identified

Predictor

R
es

p
o

n
se

Convex hull 

(reduced data)
Cluster 

centroid

Fig. 2: The illustration shows why outlier and natural variance
in measured data systematic under estimation if not cleaned.

using the formulated convex hull model would consequently
result in systematic under estimation of system losses. In
this work, a clustering based method has been proposed to
mitigate errors associated with data noise and outliers. Figure
2 illustrates this problem using simple diagram.

Algorithm 1: Pseudo code for calculation of system
losses from the convex hull model
Input: C,Pm, Sm

Output: Le // Estimated system losses
1 pDmin = empty list;
2 Losses = empty list;
3 Dmin = inf;
4 // Identify the planes that contain

Pm, Sm

5 for each hyperplane habc = a.P + b.S + c.L+ d = 0
forming convex hull C do

6 Identify triplet (pa, pb, pc) that bound the
hyperplane habc ;

7 Calculate K; projection of hyperplane habc onto
L = 0 plane bounded by triplet (pa, pB , pc) ;

8 if (Pm, Sm) lies within the region K then
9 Calculate losses l using the hyperplane habc;

10 Append l to Losses
11 if length of list ′Losses′ > 0 then
12 Le = min (Losses) // Return the loss

value corresponding to the lower
envelope of the hull

13 else
14 // If Pm, Sm lie outside the hull C
15 for each hyperplane habc forming hull C do
16 Identify triplet (pa, pb, pc) that bound the

hyperplane habc ;
17 if pDmin in triplet that bounds habc then
18 // Identify point closest to

measured values Pm and Sm

19 for each point px in triplet do
20 Calculate distance D between [Pm, Sm]

and the project of point px on L = 0
axis;

21 if D < Dmin then
22 Dmin = D;
23 pDmin = px
24 // Extrapolate to estimate losses

Le using hyperplanes
intersecting at the closest
point pDmin

25 for each hyperplane habc forming hull C do
26 if pDmin in triplet that bounds habc then
27 Calculate losses l using the hyperplane

habc;
28 Append l to Losses
29 remove outliers from Losses;
30 Le = avg(Losses)
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B. Clustering for outlier detection and data reduction

DBSCAN is a density based clustering algorithm which un-
like k-means, does not require number of clusters as an input.
It however, requires tuning of two parameters ε and nmin.
Parameter ε defines maximum allowable distance between two
points to be considered neighbors. For a neighbourhood to be
considered a cluster, it should contain at least nmin points
[9], [10]. When working with noisy data sets, such as the
case here, one big advantage of using DBSCAN clustering
algorithm is that it is able to detect outliers and disregard
them when forming clusters.
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Fig. 3: silhouette plot for clusters formed using DBSCAN
algorithm

Number of clusters (k) formed is dependent on values
chosen for input parameters ε and nmin. Although no exact
method exists to identify optimal values for the input param-
eters, silhouette plot is one method that is commonly used to
fine tune parameters ε and nmin [11]. Silhouette score si is
an indicator of how far a point is from a boundary between
two clusters and ranges for -1 to 1 and is calculated using
Equation 2.

si =
bi − ai

max (ai, bi)
i ∈ (1, 2, ..., k) (2)

Where ai is the average distance of any data point i and all
other data points within the same cluster and bi is the average
distance of any data point i and all data points with the cluster
closest to the cluster than contains i. Values close to 1 indicate

that the point if far from the decision boundary, while, values
close to -1 indicate that a point may not belong to the right
cluster.
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Fig. 4: The plot shows the impact of varying the the value
parameter ε while fixing the value of parameter nmin to 3 on
the silhouette scores.

In this work, a parametric study was performed and with
value of ε varying from 0.25% to 10% and nmin incrementally
changing from 1 to 5 points. A number of parameters average
such as silhouette score, number of scores less than zero and
variance winth the score etc. were used to identify values
of parameters ε and nmin (Figure 4). In this study the
values chosen as 4.25 and 3 respectively. Figure 3 shows
the silhouette plot for these values. The number of clusters
identified within the data set is 141 and the average silhouette
score is 0.89. Figure 5 shows clusters identified within the
measured data set projected onto a 2d plot. Black dots in
the figure indicate outliers, while colored dots indicate unique
clusters identified within the data set.
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Fig. 5: Clusters form using DB-scan. Zoomed region shows
that the algorithm does well identify unique clusters within
noisy experimental data

Next, centroid of each cluster Vi is calculated using Equa-
tion 3, where Ni is the total number of points in the ith cluster
and i ∈ (1, 2, ..., k) . Calculation of center of mass of each
cluster allows mitigation of natural variance in experimental
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data sets that originates from measurement error as well as
variation in small variations in system state.

M(Vi) =

Ni∑
j=1

pj
Ni

; (3)

where p1, p2, ..., pNi
∈ Vi and pi = (Pm, Sm, Lm)

In the final step a new convex hull H(M(V )) is formed
around cluster centroids using Equation 1. Lower envelope of
the hull is used as piece-wise linear model for estimation of
system losses for a given value of active power and state of
chart.

III. MODEL VALIDATION

To demonstrate how the pre-cleaning via clustering pro-
cedure improves model accuracy, the linearized convex loss
models both before and after cleaning is evaluated using two
classes of analysis; residual analysis and global metrics. The
residual analysis involes characterizing the first four moments
of the distribution of the residuals of each model realtive to
the measured data including the mean, variance, skewness and
kurtosis. The global metrics include the root mean squared
error (RMSE) and the coefficient of determination (R2 score).
RMSE quantifies the difference between measured and esti-
mated values for total system losses and has been calculated
using Equation 4.

RMSE(−→y ) =
n∑

i=1

√
yi − ŷi
n

(4)

The R2 score gauges how well the variance in the dependent
variable is predicted from that of the independent variables.
R2 score is calculated using Equation 5.

R2score(−→y ) =
∑n

i=1

√
yi − ŷi∑n

i=1

√
yi − yi

× 100% (5)

A. Residual analysis

The cumulative probability density of the residuals for each
model are compared in Figure 6. Further, the distributions of
the residuals for each model are compared in Figure 7 and the
first four moments of the distributions are summarized in Table
I. In this test case, both models systematically underestimate
the total system losses as evidenced by the negative mean
residual values, though the pre-cleaning via clustering proce-
dure significantly reduces this mean bias error. The clustering
procedure also reduces the variance of the residuals, but has
little impact on the skewness of the distribution of residuals.
The relatively large kurtosis associated with the distribution of
residuals after the clustering procedure was applied indicates
that the distribution is more ”heavily-tailed”, meaning that the
distribution is more localized or ”peaked” near the mean value.
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Fig. 6: Cumulative probability density plot of residuals of the
convex hull models based on the noisy data and the reduced
data set.

-80

-60

-40

-20

0

20

R
es

id
ua

ls
 [

kW
]

1.21.00.80.60.40.20.0-0.2Convex hull for noisy data Convex hull for reduced data

Fig. 7: Box and whisker plots of residuals of each model
relative to the measured data.

TABLE I: The first four moments of the distribution of the
residuals

Evaluation metric Convex hull model
for noisy data

Convex hull model
for reduced data

mean -25.279 -11.472
variance 604.914 466.690
skewness -1.176 -1.989
kurtosis 0.247 3.160

B. Global accuracy metrics

The global accuracy metrics show that the clustering proce-
dure results in a model which better predicts the total system
losses of the flow battery. By reducing the clusters to rep-
resentative centroids, the complexity of the developed piece-
wise linear model can be reduced. In this study, reduction of
more than 27% in the number of hyperplanes that form the
convex hull is seen (Table II). This reduces the complexity of
the MILP implementations that makes use of the developed
model.
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One final observation that is worth a mention is that
although measurement data set is predominantly convex, there
are concave regions within the data. This is evident from
Figure 1. At low values of active power a gap between the
formed hull and the surface that is formed for the measured
values is clearly visible. While the battery is operating within
this region, model will systematically underestimated total
system losses. This also explains the long tail in the cumulative
probability plot in Figure 6.

TABLE II: Addition metrics use to to compare the developed
models

Evaluation metric Convex hull model
for noisy data

Convex hull model
for reduced data

R2 score [%] 90.1 95.3
Number of hyperplanes 190 138
Number of vertices 97 71

IV. CONCLUSIONS

In this paper, a novel method for developing piece-wise lin-
ear model using a convex hull is presented. The method makes
use clustering techniques to remove outliers and mitigate
measurement noise. Lower envelope of the convex hull formed
using centroids of identified clusters has been used to define
the piece-wise linear model. The algorithm is also capable of
extrapolating outside defined region and estimating values for
states that lie out the region enclosed by the hull. The proposed
method has been compared to a convex hull model defined
using the noisy data set directly. Comparison of results from
the two models show that the proposed algorithm improves
model accuracy significantly. In future work, efficacy of the
proposed extrapolation method will be looked into in greater
detail. Also, concave sub-regions with the measurement data
set lead to systematic under estimation. the proposed method
does not does not cater to this problem. Other methods such
Delaunay triangulation that are capable of forming a non-
convex hulls may useful to mitigate this issue. This will be
also investigated in future work.
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