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Global transportation demand by fuel @
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Gasoline demand peaks in 2020—
2030 and then declines, despite
significant growth in vehicle miles
traveled.

Diesel demand grows 30% to
meet trucking and marine needs

Jet fuel, natural gas, biofuels and
electricity grow significantly

Exxon Mobil 2017 The Outlook for Energy A View to 2040 u
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Cornell / UCSD

Identify differences in combustion
characteristics of diesel/biofuel blends
vs petroleum-based fuels

Univ. Michigan

Develop engine combustion model to
simulate key parameters while reducing
computational expense 80%

Univ. Michigan - Dearborn
Use a miniature ignition screening RCM to

study ignition properties and combustion
characteristics of alternative fuels.

Univ. Alabama

Examine combustion properties of biofuels
and blends using advanced diagnostics
under realistic ACl engine cenditions.

Leveraging expertise and facilities from
9 National Labs and 13 universities

LSU / TAMU / U Conn.

Develop method to characterize alternative
fuel candidates and associated models and
metrics for predicted engine performance

I MIT / Univ. Central Florida

Develop detailed kinetic models for several
biofuels using an advanced computational
approach

Yale

Measure sooting tendencies of various
biofuels and develop emission indices
relevant to real engines

Univ. Central Florida

Generate fuel characterization data related
to fuel spray atomization, flame topology,
ete, and compatibility for prioritized fuels




Technical Approach is Fuel Property-Based

Establish fuel
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Smoke Point as Emissions Quality Index
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Yield Sooting Index (YSI)

Accurate, modern, low-volume measurement

Flame conditions:
Nonpremixed, doped, methane/N, flame

Soot diagnostic:
Color ratio pyrometry
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Development of a unified YSI metric
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Quantitative Structure-Property Relationship (QSPR)

Models for YSI Prediction

Input molecules are decomposed
into individual carbon-type
fragments
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Bayesian linear regression is used
to find the YSI contributions from
each atom type

YSI Contribution
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The final YSI /predlctlon is a sum of each carbon in the molecule  prediction
Das and Stlohneta mb. and Flame 2018



Regressed model is accurate across several orders of

magnitude

Prediction errors after
cross-validation

10* o
10° =
=3
o
k3]
102 -
a
%)
>
10" 4
100 T IIlllIlI L IlIIIllI T llllllll T lIlllIlI
10° 10’ 102 10° 10*

YSI (Measured)

Das and St John et al. Comb. and Flame 2018

A

[¢]
/\/\/ILOH NN /\/T
1 2 3

25420 26.1+2.0 26.4 £3.2
hexanoic acid hexanal hexan-2-one
O
AN /\/\/\OH /\/Y
OH
4 5 6
29.3+25 30.7+2.9 342+28
1-methoxypentane hexan-1-ol hexan-2-ol
AN /\)(OH /\/k
7 8 9
345+23 37.5+21 39.3+1.8
hexane 2-methylpentan-2-ol 2-methylpentane
<:> W
10 11 12
422+26 42723 453+2.6
cyclohexane hex-1-ene 2,2-dimethylbutane
13 14 15
463 £25 47873 51.3+9.8
hex-2-ene pentane pent-2-ene
\
S~ =" =<j
16 17 18
57.5+4.0 64.0+25 76.9+9.7
hex-1-yne hex-2-yne methylidenecyclopentane

0.0

105.4 +18.0 176.9 £ 14.1
benzene toluene
21 C;:Zg
228.8+10.3 314.3 £51.0

ethylbenzene

Cf/
23 24C§:>

prop-1-en-2-ylbenzene

317.5+259 402.7 £45.3

ethynylbenzene tetralin

525.4 £27.9 657.6 + 38.5
naphthalene biphenyl

®



Model offers insights into the connection between molecular ::

structure and sooting tendenc

Molecules with identical carbon types will have the

same predicted YSI, but can differ experimentally

13 Molecules with identical fragments
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By looking at the functional groups that give rise to
these differences, we can infer more detailed
kinetics of soot particle formation

Das and St John et al. Comb. and Flame 2018



Model offers insights into the connection between molecular @

structure and sooting tendenc
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Measured and predicted YSI of methylcyclohexene isomers

and cyclohexene

©

Cyclohexene C) | 45.6+2.0 71.1£5.7
1-methyl-1-cyclohexene é 62.0+ 3.0 90.5+11.0
3-methyl-1-cyclohexene b 85.0+£4.0 74.6 £ 9.8
4-methyl-1-cyclohexene @ 61.0+ 3.0 74.6 £ 9.8

Kim et al. Proc. Comb. Inst. 2019



Hypothesis of 3 isomers

Soot precursor Retro-Diels-Alder
- —_— m& + ”
1-methyl-1-cyclohexene isoprene
62.0
3-methyl-1-cyclohexene 1,3-pentadiene
85.0
~
- — +
YSI . )
4-methyl-1-cyclohexene butadiene propene

Kim et al. Proc. Comb. Inst. 2019 61.0



Flow Reactor Setup

Syringe tip to reactor exit = 24.5” (62.2cm) Reaction Zone

Fuel: 10 pL/min

Syringe —— To
GC/MS

Furnace heated Zone = 28"
Reactor length = 29.5”

Temperature 850 - 1100 K (25 K increments) ; N
StOiChiometriC air'tO'fueI d):l Phote Credit: Robert McCormick
Analyzed using two gas chromatographic and mass spectrum (GC/MS) systems

16
Gina Fioroni and Bob McCormick (NREL) Kim et al. Proc. Comb. Inst. 2019 [



Reactants and product concentrations in Flow Reactor @
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Retro-DA products
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3-methyl-

1-cyclohexene
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1-methyl-

1-cyclohexene
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4-methyl-

1-cyclohexene
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Potential performance advantage for oxygenates

* Oxygenated aromatics can be produced OH E>
readily from biomass, and may reduce PM @/"” @A on
formation (relative to non-oxygenates) in 3007 v (5
some cases o

* Characterizing these advantages will be & 2007 ©
required to drive conversion and separations g i
processes 1007

* Slight differences in aromatic side-chains lead
to drastic differences in soot formation 0-

* Understanding the mechanism of these
differences will help tune conversion
pathways for beneficial oxygenates
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Bond dissociation energies determine combustion pathways ()

Bond-Dissociation-Energy (BDE)
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Developing a BDE database

504,529 BDEs,
— 320,376 unique BDEs
39,163 parent molecules
— 249,685 gaussian
calculations

1000 molecules reserved
for validation and test
sets

Some quality checks on
data:
— Bond lengths must be

less than 0.4A +
Y(covalent radius)

—  Checks for gaussian
convergence
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Model Structure

BDE is a property of each bond

Model learns numerical
representation for bond

environment, uses this to predict

bond strength

Based only on 2D inputs (connectivity)
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Prediction Results

«  Vast majority of new molecules have BDEs predicted within 2 kcal/mol
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Performance on larger molecules
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Predicting YSI through decomposition products

Leave-One-Out
Cross-Validation
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YSI Fuel Property Prediction Tool
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Conclusions and Future Works

Develop YSI prediction tool and provide screening tool with Web app
(https://ysipred.herokuapp.com)

Small structural features can impact combustion processes and importance of relative
stability of the first radical intermediates via retro-DA

Expand skeletal soot precursor mechanisms with Flow reactor, PIMS

Deployment of graph neural-network based predictions to online tool
- Cetane Number, YSI, other properties

Development of suitable outlier detection method
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