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Global transportation demand by fuel
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• Gasoline demand peaks in 2020–
2030 and then declines, despite 
significant growth in vehicle miles 
traveled.

• Diesel demand grows 30% to 
meet trucking and marine needs

• Jet fuel, natural gas, biofuels and 
electricity grow significantly

Exxon Mobil 2017 The Outlook for Energy A View to 2040
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Co-Optima Technical Challenges



Project Partners
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Leveraging expertise and facilities from 
9 National Labs and 13 universities



Aimed at establishing critical relationships
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Technical Approach is Fuel Property-Based 
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Rigorous  
candidate 
screening 
process

* ASSERT (Technoeconomic analysis team) and MT (market transformation team)



Smoke Point as Emissions Quality Index

7
Gill RJ, Olson DB. Combustion Science and Technology. 1984;40(5-6):307-315

• Smoke point is a well-known property that 
describes a compound’s tendency to form soot 
when burned

• Many correlations with molecular structure exist

• Easily extended to mixtures: TSI (Threshold 
Sooting Index) is linear with mole %

• Difficult to measure for some compounds (low 
dynamic range)

• Requires a lot (~10 – 50 mL) of sample 



Yield Sooting Index (YSI)
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Accurate, modern, low-volume measurement

Flame conditions:
Nonpremixed, doped, methane/N2 flame

Soot diagnostic:
Color ratio pyrometry

Dhrubajyoti D. Das, Charles S. McEnally, Lisa D. Pfefferle (Yale), Yuan Xuan (PennState)

Strongly correlated with TSI



Development of a unified YSI metric

Diagram of the experimental apparatus
(Yale University)
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Das and St John et al. Comb. and Flame 2018



Quantitative Structure-Property Relationship (QSPR)
Models for YSI Prediction

Input molecules are decomposed 
into individual carbon-type 
fragments

Bayesian linear regression is used 
to find the YSI contributions from 
each atom type

The final YSI prediction is a sum of each carbon in the molecule 10
Das and St John et al. Comb. and Flame 2018



Regressed model is accurate across several orders of 
magnitude

11
Das and St John et al. Comb. and Flame 2018

Prediction errors after 
cross-validation



Molecules with identical carbon types will have the 
same predicted YSI, but can differ experimentally

By looking at the functional groups that give rise to 
these differences, we can infer more detailed 
kinetics of soot particle formation

12
Das and St John et al. Comb. and Flame 2018

Model offers insights into the connection between molecular 
structure and sooting tendency
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Das and St John et al. Comb. and Flame 2018



Measured and predicted YSI of methylcyclohexene isomers 
and cyclohexene

Compound YSI
(measured)

YSI
(predicted)

Cyclohexene 45.6 ± 2.0 71.1 ± 5.7

1-methyl-1-cyclohexene 62.0 ± 3.0 90.5 ± 11.0

3-methyl-1-cyclohexene 85.0 ± 4.0 74.6 ± 9.8

4-methyl-1-cyclohexene 61.0 ± 3.0 74.6 ± 9.8

14
Kim et al. Proc. Comb. Inst. 2019



Hypothesis of 3 isomers

1-methyl-1-cyclohexene

3-methyl-1-cyclohexene

4-methyl-1-cyclohexene

isoprene

1,3-pentadiene

butadiene propene

Retro-Diels-Alder

62.0

85.0

61.0

YSI
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Soot precursor

Kim et al. Proc. Comb. Inst. 2019



Flow Reactor Setup

Temperature 850 - 1100 K (25 K increments)
Stoichiometric air-to-fuel ɸ=1
Analyzed using two gas chromatographic and mass spectrum (GC/MS) systems

Gina Fioroni and Bob McCormick (NREL)
16

Kim et al. Proc. Comb. Inst. 2019



Reactants and product concentrations in Flow Reactor

Gina Fioroni and 
Bob McCormick (NREL)

Retro-DA products

aromatics products

17
Kim et al. Proc. Comb. Inst. 2019



3-methyl-
1-cyclohexene

retro-DA

retro-DA (step-wise)

∆G in G4 (kcal/mol)
18

Kim et al. Proc. Comb. Inst. 2019
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1-methyl-
1-cyclohexene

retro-DA (step-wise)

retro-DA

∆G in G4 (kcal/mol)

Kim et al. Proc. Comb. Inst. 2019
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4-methyl-
1-cyclohexene

retro-DA (step-wise)

retro-DA

∆G in G4 (kcal/mol)

Kim et al. Proc. Comb. Inst. 2019



Potential performance advantage for oxygenates
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• Oxygenated aromatics can be produced 
readily from biomass, and may reduce PM 
formation (relative to non-oxygenates) in 
some cases

• Characterizing these advantages will be 
required to drive conversion and separations 
processes

• Slight differences in aromatic side-chains lead 
to drastic differences in soot formation

• Understanding the mechanism of these 
differences will help tune conversion 
pathways for beneficial oxygenates

21



Bond dissociation energies determine combustion pathways
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Bond-Dissociation-Energy (BDE)

YSI values
BDE are G4, barriers and thermodynamic energy are using B3LYP/6-31G(2df,p) in kcal/mol @1200K



Developing a BDE database
• 504,529 BDEs,

– 320,376 unique BDEs
• 39,163 parent molecules

– 249,685 gaussian 
calculations

• 1000 molecules reserved 
for validation and test 
sets

• Some quality checks on 
data:

– Bond lengths must be 
less than 0.4Å + 
Σ(covalent radius)

– Checks for gaussian 
convergence

Type Count

C-H 312,771

C-C 93,636

C-O 29,706

C-N 27,072

H-N 26,151

H-O 11,726

N-O 1,620

N-N 1,542

O-O 305

23



Model Structure

• BDE is a property of each bond
– Model learns numerical 

representation for bond 
environment, uses this to predict 
bond strength

• Based only on 2D inputs (connectivity)

24



Prediction Results

• Vast majority of new molecules have BDEs predicted within 2 kcal/mol

25



Performance on larger molecules
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Predicting YSI through decomposition products

(REGRESSED)(Measured)

Break 
weakest
bond

27

YSI 42.7meas. 32.1pred.10.7pred.

YSI 25.6 meas. 15.6pred.10.7pred.



YSI Fuel Property Prediction Tool

28Collaboration with Derek Vardon (HPF)Collaboration with Derek Vardon (HPF)



Conclusions and Future Works

29

• Develop YSI prediction tool and provide screening tool with Web app 
(https://ysipred.herokuapp.com)

• Small structural features can impact combustion processes and importance of relative 
stability of the first radical intermediates via retro-DA

• Expand skeletal soot precursor mechanisms with Flow reactor, PIMS

• Deployment of graph neural-network based predictions to online tool
- Cetane Number, YSI, other properties

• Development of suitable outlier detection method
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