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Towards robustness guarantees for feedback-based optimization

Feedback is traditionally associated with control and not with optimization
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Example: autopilot 
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I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time
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a dozen states - undergrad 
exercise 
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Established field 

credit: G.Stein “Respect the unstable” 

established machinery for control established tools to study performance 
synthesis and robustness to model uncertainty 
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Feedback is becoming popular in optimization 

...and many more... 
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Energy shift

Much of the action will happen at
the distribution level
I the distribution grid is designed

for loads not generators

I renewables create uncertainty in
e�ective load for transmission

I plenty of controllable devices
o�er an opportunity for corrective
action
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I u = controllable power injections
I w = uncontrollable power

injections
I y = regulated variables (e.g

voltages, line powers, overall
power output at PCC)

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

Model 
I nonlinear physical system (power 

flow equations) 

y = ⇡(u, w) 

often in implicit form 
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u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat

I make assumptions on the
disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u,w) ⇡ ⇧u+ ⌅w

I solve a convex optimization
problem

min

u2U
f(u) + g(y)

subject to: y = ⇧u+ ⌅ŵ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1

= k(yk)

to steer the system to u?
(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability
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Pick a power-flow linearization

y ⇡ ⇧u+ ⌅w

�

Online approximate gradient 

min f(u) +  g(y) 
u2U 

subject to: y = ⇡(u, w) 

Gradient descent 
measured 

z }| { 

yk = ⇡(uk, w) 
n ⇣ ⌘o 

uk+1 = ProjU uk ⌧ rf(uk) +  @⇡(uk, w)

T rg(yk ) 
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Closed loop 
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k(y) 
controller 

system 
disturbance 

u 
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• radical cost improvement over volt-var (state of the art)
• very robust to model uncertainty (still stable and near-optimal for 40%

variation in line impedances)
• no need for measuring or knowing a-priori the disturbance w.

It works really well 
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I feedback interconnection of two nonlinear systems - stability?
I there is plenty of freedom in choosing the linearization and the cost functions
I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)
I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

�

Approximate online gradient descent 
measured 

z }| { 
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n ⇣ ⌘o 
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Basic assumptions

min

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

Assumptions
I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable
I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins
I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations
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Monotonicity
Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw(u)
TP + P@Fw(u) ⇢P , 8u 2 U

Lipschitz-continuity
Given P 0, the map Fw(·) is L Lipschitz continuous w.r.t h·, ·iP if

@Fw(u)
TP@Fw(u) L2P , 8u 2 U

always true with our assumptions..

�

� �

�

� �

�

Stability 

Approximate gradient 
9 

>

= 

1 0 

8 

>

< 

B

@

rg(⇡(uk , w)) C
A 

} 

rf(uk) +  ⇧T uk+1 = ProjU uk ⌧ 
>

: 

| {z

Fw (uk ) 

@Fw(uk) =  @2f (uk ) +  ⇧T@2 g(yk)@⇡(uk, w) 

>

; 
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• these properties depend on the Jacobian

@Fw(u) = @2f(u) +⇧

T@2g(y)@⇡(u,w)

• we need a test that guarantees that these properties are satisfied for all
operating points in U ⇥ W.

� �

�

Stability 

Proposition [e.g Facchinei] 
If Fw is ⇢ strongly monotone and L Lipschitz continuous, the iteration 

uk+1 = ProjU {uk ⌧ Fw (uk )} 

converges to a unique fixed point for ⌧ < 
L
⇢ 
2 
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⇥

⇥

@Fw(u)U ⇥ W J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test 

Over-approximate the set of possible Jacobians as a “nice” set 
u 

Rm⇥n 

w 
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Rm⇥n

J

Robustly ⇢-strongly-monotone i� for all J 2 J

JTP + PJ ⇢P

how easy this test is depends on the structure of J ...

� �

�

�

Building a stability test 

Monotonicity 

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if 

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U 
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Numerical test for (robust) stability
Given P 0 and a constant ⇢ > 0, the following two statements are equivalent:

(i) the set Fpoly, is ⇢ strongly monotone w.r.t h·, ·iP on the set U ;
(ii) the following Matrix Inequality holds true

1

2

h

JT
i P + PJi

i

⇢P, i = 1, . . . , ⌫.

Can easily blow up in size...

�
�

�

Building a stability test 

Example 1: polytopic uncertainty 

J poly 
:= co {Ji, i  = 1, . . . , ⌫} . 

poly poly F := {Fw | @Fw(u) ✓ J , 8u 2 U, 8w 2 W}. 
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The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

2 , p = q =)


q
p

T

⇥



q
p

0.

Example: norm bounded uncertainty
:= { : k k  }

2 , p = q

() kpk2  2kqk2 ()


q
p

T 

✓I
1

2 ✓I



q
p

0, 8✓ 0.

�

� � �

�
� �

 

�

�

� � �

� �

�

� � � �
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�

�

�
�

� �

� �

Building a stability test 

Example 2: LFT uncertainty 

J lft 1

:= A + B (I D ) C : 2 . 

J lft is a Linear Fractional Transformation of a known set . 
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• convex in P,⇥ - easy to verify up to moderate size networks

�
�

�
� �

Building a stability test 

Convex numerical test for robust stability 

The set F lft, is ⇢ strongly monotone w.r.t h·, ·iP if there exist ⇥ 2 ⇥ such that 
  T  

T A⇢ P + PA⇢ PB C D  C D  
⇥ < 0, 

BTP 0 0 Is 0 Is 

where A⇢ := A+ ⇢I 
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y = voltages, u = controllable p, q inj., w = uncontrollable p, q inj.

min

ui2Ui

uTHu+ hTu+ ⌘

m
X

i=1

max(0, yi yi, yi yi)
2

subject to : y = ⇡(u,w) power flow equations

�

� �
 

 

Example 

Power-curtailment / Voltage regulation (E. Dall’Anese - OPF Pursuit) 

- uncontrollable 
loads at every bus 

- PVs at every 
square bus 

1 - voltage sensors

at every bus 
8 14 

16 15 11 12 13 

Goal: minimize curtailment and reduce voltage violations 
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Pick a power-flow linearization Feedback implementation

�

Example 

Gradient descent 

k 
+ ⌘ @⇡(uk, w)

T sy,y ̄(y k) uk+1 = ProjU uk ⌧ Hu 
| {z }

measured 

9 

>

= 

1 0 

8 

>

< 

B

@

C

A 

>

: 

>

; 
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• Q(y) 2 Q := { diagonal : 0 I} LFT representable
• find LFT representation for the set of possible power-flow Jacobians

@⇡(u,w)

• the “product” of LFT representable sets is LFT representable

� � � � �

How to assess stability 

@Fw (u) = H + ⌘⇧TQ(y)@⇡(u, w) 

u 

Rm⇥n 
@Fw(u) 

J U ⇥ W 

w 
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� � �

Example (cont’d)
LFT representation for the power flow Jacobians

@⇡(u,w) = ⇧nom + ⇡(u,w), k ⇡(u,w)k 

Choose � by sampling

this step has the potential to be made more rigorous by exploiting the structure of
the power-flow Jacobian (e.g. relaxation methods [Misra, Molzhan, Krishnamurthy
18])
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• @⇡(u,w) = ⇧nom + : k k  , LFT representable
• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A+B (I D )

1C : 2 .



A B

C D
=

2

4

H ⌘⇧T 0
⇧nom 0 Im
In 0 0

3

5 , ⇥ : semi-complicated
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if the test succeeds, the online algorithm is provably stable

�

�
� �

How to assess stability 

Stability test 
 

T  T  

A⇢ P + PA⇢ PB C D  C D  
⇥ < 0 

BTP 0 0 I 0 I 
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How to assess stability 

Stability test 
 

T  T  

A⇢ P + PA⇢ PB C D  C D  
⇥ < 0 TP B 0 0 I 0 I 

if the test succeeds, the online algorithm is provably stable 

online approx. 
gradient 

y1 y2 y3 
u1 

u2 

w1 
w2 

physical system: 
y = ⇡(u, w) 
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• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

• test case with ieee test feeder
with high solar penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

Observations 

• in preliminary testing we observe that feeders are rather benign (small J ) 
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�

� �

Performance 

Proposition 

If Fw(u) is ⇢ strongly monotone then the OAG algorithm converges to the unique 
point ū(w) 

? 1 ? ? kū(w) u (w)kP  k(⇧ @⇡(u , w))

T rg(⇡(u , w))kP 
⇢ 

where u ? a KKT point of the original (non-convex) optimization problem 
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Design a provably robustly stable distributed algorithm
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We can use the LMI to design ⇧ & guarantee robust stability
min

⇧,⇥
k⇧ ˆ

⇧k

subject to ⇧ 2 ⇧


AT
⇢P + PA⇢ PB(⇧)

B(⇧)

TP 0



C D
0 Is

T

⇥



C D
0 Is

< 0

Synthesis of a linearization of the power flow equations with desired properties.

�

�

�
� �

What about design? (cont’d) 
Structured ⇧ = distributed algorithm 
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Synthesis of a linearization of the power flow equations with desired properties.
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What about design? (cont’d) 
Structured ⇧ = distributed algorithm 
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We can use the LMI to design ⇧ & guarantee robust stability 

ˆ

min k⇧ ⇧k 
⇧,⇥ 

subject to ⇧ 2 ⇧ 
  

⇢ P + PA⇢ 
T  T 

A PB(⇧) C D  C D  
⇥ < 0 T B(⇧) P 0 0 I 0 Is s 
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What about design? (cont’d) 
Structured ⇧ = distributed algorithm 
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Synthesis of a linearization of the power flow equations with desired properties. 
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What about design? (cont’d) 

Provably robustly stable distributed optimization algorithm 

Area 1 

Area 2 
Area 3 

1 2 

3 

5 6 

8 9 

11 12 

14 

15 16 

17 

18 

19 21 

22 23 

24 

25 

26 

27 28 29 

30 

31 

32 

33 

34 35 36 

20 4 

7 

10 

13 

33/34 



What about design? (cont’d) 
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• robustly-stable by design algorithms with nice properties
• need of expert knowledge to best characterize uncertainty
• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

Thanks

Summary & outlook 

• exploit established frameworks for analysis of stability and robustness of 
feedback based optimization 
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Questions? 
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