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Towards robustness guarantees for feedback-based optimization

Feedback is traditionally associated with control and not with optimization
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Example: autopilot

Feedback

» simple: use linear model with

Feedforward

» complex: would require

a dozen states - undergrad
exercise

robust: designed on a simple
linear model - works on real
plane

the effect of the disturbance
is observed through the
output and corrected in real
time

perfect model and incredible
computation

» fragile: small model

mismatch generates large
output deviations

since the input sequence is
pre-computed all
disturbances need to be
known ahead of time
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Feedback is becoming popular in optimization
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Real-Time Optimal Power Flow

Yujie Tang, Student Member, IEEE, Krishnamurthy Dvijotham, and Steven Low, Fellow, IEEE

Abstract—Future power networks are expected to incorporate
a large number of distributed energy resources, which introduce
randomness and fluctuations as well as fast control capabilities.
But traditional optimal power flow methods are only appropriate
for applications that operate on a slow timescale. In this paper, we
build on recent work to develop a real-time algorithm for AC opti-
mal power flow, based on quasi-Newton methods. The algorithm
uses second-order information to provide suboptimal solutions
on a fast timescale, and can be shown to track the optimal
power flow solution when the estimated second-order information
is sufficiently_accuratc, We glso give 3 specific

a continuous-time approach based on gradient dynamics for
loss minimization; (2] proposed a distributed feedback algo-
rithm for optimal reactive power flow that exploits real-time
measurements, based on dual ascent method; (3] developed a
fast VAR controller and analyzed its stability; [4] proposed
an online OPF algorithm for distribution networks based on
projected gradient descent and showed its convergence to
the global optimum under c conditions; [5] designed
a_composable framework for_real-time control of distribu-

&

Real-Time Feedback-Based Optimization of
Distribution Grids: A Unified Approach

Andrey Bernstein and Emiliano Dall’ Anese*
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...and many more...
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Energy shift

Much of the action will happen at
the distribution level

» the distribution grid is designed
for loads not generators

» renewables create uncertainty in
effective load for transmission

» plenty of controllable devices
offer an opportunity for corrective
action
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u*(w) = arg min
ueU

subject to:

Model

» nonlinear physical system (power
flow equations)

y = 7(u, w)
often in implicit form
» u = controllable power injections
» w = uncontrollable power
injections
» y = regulated variables (e.g

voltages, line powers, overall
power output at PCC)

F(u) + g(v)
y = (u, )

hard because of the map = (-, -) and the dependence on unknown w.

8/34



u*(w) =argmin  f(u) + g(y)
weld
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

9/34



u*(w) =argmin  f(u) +g(y)
uelU
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown
The optimization hat

» make assumptions on the
disturbance

9/34



u*(w) =argmin  f(u) +g(y)
uelU
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat

» make assumptions on the
disturbance

» simplify e.g. linearize the power
flow equations
m(u, w) ~dHu + E

9/34



u*(w) =argmin  f(u)+ g(y)
weld
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat

» make assumptions on the
disturbance

» simplify e.g. linearize the power
flow equations
m(u, w) ~dHu + E

» solve a convex optimization
problem

min  f(u) +g(y)

ueU
subjectto: y=Tu+ =

(e.g. DC or linearized optimal
power flow)

9/34



u"(w) =argmin  f(u)+g(y)
ueU
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat The control hat
> make assumptions on the » use a simple model of the system
disturbance to come up with a control law
» simplify e.g. linearize the power up1 = k(yx)
flow equations
m(u, w) ~dHu + E to steer the system to w*(w)

» solve a convex optimization
problem

min  f(u) +g(y)

ueU
subjectto: y=Tu+ =

(e.g. DC or linearized optimal
power flow)

9/34



u"(w) =argmin  f(u)+g(y)
ueU
subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat The control hat

» use a simple model of the system

» make assumptions on the '
to come up with a control law

disturbance

» simplify e.g. linearize the power urs1 = k(yr)
flow equations
m(u, w) ~dHu + E to steer the system to u* (w)
» solve a convex optimization » the effect of w is measured
problem through v (no need to make
assumptions)

min  f(u) +g(y)

ueU
subjectto: y=Tu+ =

(e.g. DC or linearized optimal
power flow)

9/34



u*(w) =argmin  f(u) + g(y)
ueU

subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat The control hat
> make assumptions on the » use a simple model of the system
disturbance to come up with a control law
» simplify e.g. linearize the power urs1 = k(yr)
flow equations
m(u, w) ~dHu + E to steer the system to u* (w)
» solve a convex optimization » the effect of w is measured
problem through v (no need to make
) assumptions)
) weu Fw) +9(v) » there are chances for distributed
subjectto:  y=1Ilu+E computation

(e.g. DC or linearized optimal
power flow)

9/34



u*(w) =argmin  f(u) + g(y)
ueU

subjectto:  y = m(u,w)

hard because of the map = (-, -) and the dependence on unknown

The optimization hat The control hat

> make assumptions on the » use a simple model of the system
disturbance to come up with a control law

> simplify e.g. linearize the power urs1 = k(yr)
flow equations
m(u, w) ~dHu + E to steer the system to w*(w)

» solve a convex optimization » the effect of w is measured
problem through v (no need to make

assumptions)

;3161&1 fu) +9(y) » there are chances for distributed

subjectto: y=Tlu+Z computation
» warning! we are closing a loop,

(e.g. DC or linearized optimal ) «
we need to ensure stability

power flow)
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Online approximate gradient
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Online approximate gradient

min f(u) +g()

subjectto:  y = w(u,w)

Approximate gradient descent

measured

Uk = m(u, )}

ug+1 = Projy, {uk, —T (}7f(uk) + HTVQ(UA')) }}
} k(yk) }

Pick a power-flow linearization

y~Hu+ =
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It works really well

OAG Feedback Optimization

vl [pu]

1.06

1.04

Iv| [pu]

8 9 10 11 12 1 2 3 4 5
Aug 29, 2012

® radical cost improvement over volt-var (state of the art)

® very robust to model uncertainty (still stable and near-optimal for 40%
variation in line impedances)

® no need for measuring or knowing a-priori the disturbance w.
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Approximate online gradient descent

measured

y}- = 7T(71,k, 1/')}

ug+1 = Projy, {uk T (}7f(11k) + HTVg(yk)) }}
} k(yr) }

comments
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Approximate online gradient descent

measured

Uk = 7r(7}/c, )

up+1 = Projy, {’}k T (}7][(7%) + HTVQ(?/A')) }}
} k(;w\.} }

comments

» feedback interconnection of two nonlinear systems - stability?

» there is plenty of freedom in choosing the linearization and the cost functions
» diagonal II plus right cost function — Volt Var control (state of the art)

» intuitively the quality of the approximation

I z43’7‘-(2”‘77 )

should play an important role in stability - performance - robustness
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min - f (u) +9g(y)

subjectto:  y = m(u,w)

Assumptions

» wu,w live in compact sets U,
> f(-),g(-) convex and differentiable
» = (-,-) continously differentiable w.r.t w.

In the next 20-30 mins

» tractable test for (robust) stability of the feedback interconnection
» error bounds for distance to kkt points

» systematic methodology for choosing linear approximations that are (robustly)
stable by design

» demonstration on small feeder examples & interesting observations
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Stability
Approximate gradient

L3 |
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Stability
Approximate gradient

L3 |
g1 = Projy, { dx 7 | Vf(ur) + I Vg(r(ug, w))

} ¥ Fo(uy) }

OF ., (ux) = 0° f (ux) + II" 82 g (ys) O (s, )

Monotonicity

Given P 0,the map F.,(-) is p strongly monotone w.r.t (-,-) » if and only if

OF,(u)" P + POF,(u) pP, Vued

Lipschitz-continuity
Given P 0,the map F,,(-) is L Lipschitz continuous w.r.t (-, -) p if
OF,(u)  POF,(u) L?P, VYuecd

always true with our assumptions..
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Stability

Proposition [e.g Facchinei]

If £, is p strongly monotone and L Lipschitz continuous, the iteration
up+1 = Projy {ur  7F.(uk)}

converges to a unique fixed point for 7 < £

¢ these properties depend on the Jacobian

OF, (u) = 8 f(u) + 11" g(y)dm (u, 1)

* we need a test that guarantees that these properties are satisfied for all
operating points in U x
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Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set

A A Rmxn A C : U X = Rm

=

» »
> >

Y

F is the set of all continuous functions whose jacobian lies in 7 for all
operating points in U x W. 7 over-approximation = F,, (u) €<F.
We choose the set .7 such that:
® it is an over-approximation
® we can easily guarantee monotonicity for all “approximate gradient” maps
F.(u) €&F
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Building a stability test

Monotonicity
Given P 0,the map F,,(-) is p strongly monotone w.r.t (-, -) » if and only if

OF,(u)"P + POF,(u) pP, VYued

A RmMXn

Robustly p-strongly-monotone iff for all J €<%

JTP+PJ  pP

>
>

how easy this test is depends on the structure of .7 ...
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T :=co{Js,i=1,...,v}.

FPY = (F, |OF, (u) CF*Y Vu ed, Vuw e}

Numerical test for (robust) stability

Given P 0 and a constant p > 0, the following two statements are equivalent:
(i) the set FPY is p strongly monotone w.rt (-,-)» on the set if;
(i) the following Matrix Inequality holds true

%[JJP+PJ,}} pP, i=1,... v

Can easily blow up in size...
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Building a stability test

Example 2: LFT uncertainty
J%= A+B (I D ) 'C: e«
J"™is a Linear Fractional Transformation of a known set

The set s itself parametrized by a convex cone O, i.e., for all © €0

€, p= q:{gT@t}) 0.

Example: norm bounded uncertainty
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Building a stability test

Convex numerical test for robust stability

The set F™, is p strongly monotone w.rt (-, -)  if there exist © €@ such that

ATP+ PA, PB P? DT@[Q D

B'P 0 0 I. o 1,70

where A, := A+ pI
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Building a stability test

Convex numerical test for robust stability

The set F™, is p strongly monotone w.rt (-, -)  if there exist © €@ such that

ATP+ PA, PB P? DT@P? D

B'P 0 0 I. o 1,70

where A, := A+ pI

® convex in P, © - easy to verify up to moderate size networks
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Example

Power-curtailment / Voltage regulation (E. DallAnese - OPF Pursuit)

- uncontrollable
loads at every bus

- PVs at every
square bus

- voltage sensors
at every bus

Goal: minimize curtailment and reduce voltage violations
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Example

Power-curtailment / Voltage regulation (E. DallAnese - OPF Pursuit)

- uncontrollable
loads at every bus

- PVs at every
square bus

- voltage sensors
at every bus

Goal: minimize curtailment and reduce voltage violations

y = voltages, wu = controllable p, g inj.,

m
: T T — 2
u Hu h u 07 i Yiy Yi i
ul}lemi u Hu+h u +7]§ 1}max( Yi Yi,Yi  Ti)

subject to:  y = 7w(u,w) power flow equations
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Example

Gradient descent

uk+1 = Projy, ik 7 | Hu® + 50 (us, w)" sg,g(yk) %

measured }
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Example

Gradient descent

ur+1 = Projy ik —7 | Hu" + 011" sy5(4") %

} measured }
Pick a power-flow linearization Feedback implementation

online approx.
gradient

y =Iu+1I1,

u2

physical system:
04 0D 5.102 01 05 02 025 03 035 04 045 05
y = m(u,w)
q [pu]
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How to assess stability

OF.(u) = H + " Q(y)dm(u, )

u

A OF ., (u) A RmMXn
7

R

Y
Y
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How to assess stability
OF,(u) = H +nI1" Q(y)dr (u, 1)

u

A OF (u) A R
— /_\ J
g \%

® Q(y) €< :={ diagonal : 0 I} LFT representable

Y
Y
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U x
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¢ find LFT representation for the set of possible power-flow Jacobians
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Example (cont’d)

LFT representation for the power flow Jacobians

Or(u,w) =Ihom + =(uw,w), || =(u,w)| <
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Example (cont’d)

LFT representation for the power flow Jacobians

O (u, w) = nom + Ax(u, w), ||Ax(u,w)|| <~y

Choose ~ by sampling

b4 "

6
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

[IMhom — O (un, wr)||

scenario n®
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Example (cont’d)

LFT representation for the power flow Jacobians

O (u, w) = nom + Ax(u, w), ||Ax(u,w)|| <~y

Choose ~ by sampling

= ”

6
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

[Mhom — O (un, wn)||

scenario n®

this step has the potential to be made more rigorous by exploiting the structure of
the power-flow Jacobian (e.g. relaxation methods [Misra, Molzhan, Krishnamurthy
18])
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How to assess stability

OF,(u) = H + HTQ(y)aﬂ(u, )

® Q(y) €< g :={ diagonal : 0 I}, LFT representable
® Om(u,w) =TIlhom+ : ||[¢]| <4 LFT representable
¢ the “product” of LFT representable sets is LFT representable

LFT representation of 7
J:i= A+B (I D ) 'C: e«

iz }H g 0
[}7‘7 = IThom 0 Im
I, 0 0

}

,  ©: semi-complicated
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How to assess stability

Stability test

T T
e 7 [ 2TofE 7
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How to assess stability
Stability test

WP+PA, PB [¢ D' _[¥ D
BTP o o 1 %o 17"

if the test succeeds, the online algorithm is provably stable

online approx.

W1

physical system:
y = 7(u,w)
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Observations

¢ in preliminary testing we observe that feeders are rather benign (small [7)
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Observations

¢ in preliminary testing we observe that feeders are rather benign (small [7)
® we can prove stability most of the time for very large operating ranges
¢ online optimization methods outperform the state of the art (volt-var)

OAG Feedback Optimization

¢ test case with ieee 37 test
feeder with high solar
penetration

® real data (load, irradiance)
from Anatolia CA

® ~«40% less curtailment than
Volt-Var

8 9 10 11 12 1 2 3 4 5 6
Aug 29, 2012
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Observations

vl [pau]

u

P

v

¢ in preliminary testing we observe that feeders are rather benign (small [7)
® we can prove stability most of the time for very large operating ranges
¢ online optimization methods outperform the state of the art (volt-var)

No control

YA B
0.95 ;uﬂvm.ﬁ‘f"f":“"m
A T N
09+
10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00
Aug 29, 2012
Control
= T T T
0.95
0.9+

10:00 11:00 12:00 1:00 2:00 3:00 4:00 500 6:00 7:00 8:00
Aug 29, 2012

® test case with ieee 123 test
feeder with high solar
penetration

® real data (load, irradiance)
from Anatolia CA
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Performance

Proposition
If F..(u)is p strongly monotone then the OAG algorithm converges to the unique
point @(w)

la(w)  u( )HPS%II(H on(u*, w)) Vg(m(u*,w))|p

where v* a KKT point of the original (non-convex) optimization problem
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Inexact gradient can be helpful

S ) + 0 (we, )T g(yr)

-

4 —GM
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Inexact gradient can be helpful

Flur) + 0 (we, )™ g(yr) flur) +I0 g(yr)
4l —GM 4%T — OAG
2| 9|
0], ol
2| Ak 2|
4 N\ g 4 N
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What about design?
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What about design?

Design a provably robustly stable distributed algorithm
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What about design? (cont’d)

distributed algorithm

Structured II

A —~

w***$*$$$
B R R R R R R
EEEE T
FEEFODEXRFFEEFR
FEREFRIINRFREREH
FREFIUNREFH L HR
KOQUBHFFHFEFRRBRERF
FOAERRREBFREFEE
PO E LR L T X
L 1
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What about design? (cont’d)

Structured II = distributed algorithm

r LR
} }t”@*****‘* }
T T T
8k E R R R
T Y IEY
B E % oo e & &
m=dh=|ess/vxass|l}
= R EEE RS
o md B E
% % % % &
B % % B B B
};*****
} %% % % % }
L 5% % % a

We can use the LMI to design II & guarantee robust stability
min |[IT  IT||«
1,0

subject to Il edH

WpP+pPA, PBI) [ D' [ D .
B(I)'P 0 0 I, 0 I, 7
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What about design? (cont’d)

Structured II = distributed algorithm

r LR
} F—mr*acawc*aé }
T T T
8k E R R R
T Y IEY
B &R oo e & E
m=dh=|ess/vxass|l}
= R EEE RS
o md B E
% % % % &
B % % B B B
};*****
} %% % % % }
L 5% % % a

We can use the LMI to design II & guarantee robust stability

min |[IT  IT||«
1,0

subject to Il edH

A P+ PA, PB(II) ¢ D" @7 D
B(IN)'P 0 [o I {o L, 7

s

Synthesis of a linearization of the power flow equations with desired properties.
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What about design? (cont’d)

Provably robustly stable distributed optimization algorithm
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What about design? (cont’d)

Provably robustly stable distributed optimization algorithm

OAG Distributed Feedback Optimization

his

8 9 10 11 12 1 2 3 4 5 6
Aug 29, 2012

No control

8§ 9 10 11 12 1 2 3 4 5 6
Aug 29, 2012
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Summary & outlook

® exploit established frameworks for analysis of stability and robustness of
feedback based optimization
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® considering binary decisions (i.e. switching topology) can be challenging

Thanks

©INREL

Transforming ENERGY
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Questions?



Thank you

www.nrel.gov
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