
Towards robustness guarantees for feedback-
based optimization
Marcello Colombino
Joint work with John W. Simpson-Porco (U. Waterloo), and Andrey Bernstein (NREL)
April 11, 2019 / Autonomous Energy Systems Workshop

Towards robustness guarantees for feedback-based optimization

Feedback is traditionally associated with control and not with optimization

1/34

Example: autopilot

2/34

controller

system

disturbance

reference

y

u

w

I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

3/34

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

I robust: designed on a simple
linear model - works on real
plane

3/34

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

3/34

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

3/34

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

3/34

Example: autopilot

Feedback

I simple: use linear model with
a dozen states - undergrad
exercise

I robust: designed on a simple
linear model - works on real
plane

I the e�ect of the disturbance
is observed through the
output and corrected in real
time

Feedforward

I complex: would require
perfect model and incredible
computation

I fragile: small model
mismatch generates large
output deviations

I since the input sequence is
pre-computed all
disturbances need to be
known ahead of time

3/34

Established field

credit: G.Stein “Respect the unstable”

established machinery for control established tools to study performance
synthesis and robustness to model uncertainty

4/34

Feedback is becoming popular in optimization

...and many more...

5/34

Energy shift

6/34

Energy shift

6/34

Energy shift

6/34

Energy shift

Much of the action will happen at
the distribution level
I the distribution grid is designed

for loads not generators

I renewables create uncertainty in
e�ective load for transmission

I plenty of controllable devices
o�er an opportunity for corrective
action

7/34

I renewables create uncertainty in
e�ective load for transmission

I plenty of controllable devices
o�er an opportunity for corrective
action

Energy shift

Much of the action will happen at
the distribution level
I the distribution grid is designed

for loads not generators

7/34

I plenty of controllable devices
o�er an opportunity for corrective
action

Energy shift

Much of the action will happen at
the distribution level
I the distribution grid is designed

for loads not generators

I renewables create uncertainty in
e�ective load for transmission

7/34

Energy shift

Much of the action will happen at
the distribution level
I the distribution grid is designed

for loads not generators

I renewables create uncertainty in
e�ective load for transmission

I plenty of controllable devices
o�er an opportunity for corrective
action

7/34

I u = controllable power injections
I w = uncontrollable power

injections
I y = regulated variables (e.g

voltages, line powers, overall
power output at PCC)

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

8/34

I w = uncontrollable power
injections

I y = regulated variables (e.g
voltages, line powers, overall
power output at PCC)

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

I u = controllable power injections

8/34

I y = regulated variables (e.g
voltages, line powers, overall
power output at PCC)

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

I u = controllable power injections

I w = uncontrollable power
injections

8/34

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

I u = controllable power injections

I w = uncontrollable power
injections

I y = regulated variables (e.g
voltages, line powers, overall
power output at PCC)

8/34

hard because of the map ⇡(·, ·) and the dependence on unknown w.

u ?(w) = arg min
u2U

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

I u = controllable power injections

I w = uncontrollable power
injections

I y = regulated variables (e.g
voltages, line powers, overall
power output at PCC)

f (u) + g(y)

subject to: y = ⇡(u, w)

8/34

u ?(w) = arg min
u2U

Model
I nonlinear physical system (power

flow equations)

y = ⇡(u, w)

often in implicit form

I u = controllable power injections

I w = uncontrollable power
injections

I y = regulated variables (e.g
voltages, line powers, overall
power output at PCC)

f (u) + g(y)

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

8/34

u?
(w) = argmin

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat

I make assumptions on the
disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u,w) ⇡ ⇧u+ ⌅w

I solve a convex optimization
problem

min

u2U
f(u) + g(y)

subject to: y = ⇧u+ ⌅ŵ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1

= k(yk)

to steer the system to u?
(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

9/34

I simplify e.g. linearize the power
flow equations
⇡(u,w) ⇡ ⇧u+ ⌅w

I solve a convex optimization
problem

min

u2U
f(u) + g(y)

subject to: y = ⇧u+ ⌅ŵ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1

= k(yk)

to steer the system to u?
(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

9/34

I solve a convex optimization
problem

min

u2U
f(u) + g(y)

subject to: y = ⇧u+ ⌅ŵ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1

= k(yk)

to steer the system to u?
(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

9/34

The control hat
I use a simple model of the system

to come up with a control law

uk+1

= k(yk)

to steer the system to u?
(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

I solve a convex optimization
problem

min f (u) + g(y)
u2U

subject to: y = ⇧u + ⌅ w ˆ

(e.g. DC or linearized optimal
power flow)

9/34

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

I solve a convex optimization
problem

min f (u) + g(y)
u2U

subject to: y = ⇧u + ⌅ w ˆ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1 = k(yk)

to steer the system to u ?(w)

9/34

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

I solve a convex optimization
problem

min f (u) + g(y)
u2U

subject to: y = ⇧u + ⌅ w ˆ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1 = k(yk)

to steer the system to u ?(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

9/34

I warning! we are closing a loop,
we need to ensure stability

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

I solve a convex optimization
problem

min f (u) + g(y)
u2U

subject to: y = ⇧u + ⌅ w ˆ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1 = k(yk)

to steer the system to u ?(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

9/34

u ?(w) = arg min f (u) + g(y)
u2U

subject to: y = ⇡(u, w)

hard because of the map ⇡(·, ·) and the dependence on unknown w.

The optimization hat
I make assumptions on the

disturbance w

I simplify e.g. linearize the power
flow equations
⇡(u, w) ⇡ ⇧u + ⌅w

I solve a convex optimization
problem

min f (u) + g(y)
u2U

subject to: y = ⇧u + ⌅ w ˆ

(e.g. DC or linearized optimal
power flow)

The control hat
I use a simple model of the system

to come up with a control law

uk+1 = k(yk)

to steer the system to u ?(w)

I the e�ect of w is measured
through y (no need to make
assumptions)

I there are chances for distributed
computation

I warning! we are closing a loop,
we need to ensure stability

9/34

Pick a power-flow linearization

y ⇡ ⇧u+ ⌅w

�

Online approximate gradient

min f(u) + g(y)
u2U

subject to: y = ⇡(u, w)

Gradient descent
measured

z }| {

yk = ⇡(uk, w)
n ⇣ ⌘o

uk+1 = ProjU uk ⌧ rf(uk) + @⇡(uk, w)

T rg(yk)

10/34

Online approximate gradient

min f(u) + g(y)
u2U

subject to: y = ⇡(u, w)

Gradient descent
measured

z }| {

yk = ⇡(uk, w)
n ⇣ ⌘o

uk+1 = ProjU uk � ⌧ rf(uk) + @⇡(uk, w)

T rg(yk)

Pick a power-flow linearization

1.5

1.4

y = ⇧u + ⇧ww
1.3

1.2

1.1 y = ⇡(u, w) y ⇡ ⇧u + ⌅w
1

0.9

0.8

0.7
0

0.2
0.4

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5 · 10

�2

p [p.u.] q [p.u.]

v
[p
.u
.]

10/34

Online approximate gradient

min f(u) + g(y)
u2U

subject to: y = ⇡(u, w)

Approximate gradient descent
measured

z }| {

yk = ⇡(uk, w)
n ⇣ ⌘o

uk+1 = ProjU uk � ⌧ rf(uk) + ⇧T rg(yk)

Pick a power-flow linearization

1.5

1.4

y = ⇧u + ⇧ww
1.3

1.2

1.1 y = ⇡(u, w) y ⇡ ⇧u + ⌅w
1

0.9

0.8

0.7
0

0.2
0.4

0

5 · 10

�2
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p [p.u.] q [p.u.]

v
[p
.u
.]

10/34

Online approximate gradient

min f(u) + g(y)
u2U

subject to: y = ⇡(u, w)

Approximate gradient descent
measured

z }| {

yk = ⇡(uk, w)
n ⇣ ⌘o

uk+1 = ProjU uk � ⌧ rf(uk) + ⇧T rg(yk)
| {z }

k(yk)

Pick a power-flow linearization

1.5

1.4

y = ⇧u + ⇧ww
1.3

1.2

1.1 y = ⇡(u, w) y ⇡ ⇧u + ⌅w
1

0.9

0.8

0.7
0

0.2
0.4

0

5 · 10

�2
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p [p.u.] q [p.u.]

v
[p
.u
.]

10/34

Closed loop

y

k(y)
controller

system
disturbance

u

w

11/34

• radical cost improvement over volt-var (state of the art)
• very robust to model uncertainty (still stable and near-optimal for 40%

variation in line impedances)
• no need for measuring or knowing a-priori the disturbance w.

It works really well

12/34

• very robust to model uncertainty (still stable and near-optimal for 40%
variation in line impedances)

• no need for measuring or knowing a-priori the disturbance w.

It works really well

• radical cost improvement over volt-var (state of the art)

12/34

• no need for measuring or knowing a-priori the disturbance w.

It works really well

• radical cost improvement over volt-var (state of the art)
• very robust to model uncertainty (still stable and near-optimal for 40%

variation in line impedances)

12/34

It works really well

• radical cost improvement over volt-var (state of the art)
• very robust to model uncertainty (still stable and near-optimal for 40%

variation in line impedances)
• no need for measuring or knowing a-priori the disturbance w.

12/34

I feedback interconnection of two nonlinear systems - stability?
I there is plenty of freedom in choosing the linearization and the cost functions
I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)
I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

�

Approximate online gradient descent
measured

z }| {

yk = ⇡(uk, w)
n ⇣ ⌘o

uk+1 = ProjU uk ⌧ rf(uk) + ⇧T rg(yk)
| {z }

k(yk)

comments

13/34

I there is plenty of freedom in choosing the linearization and the cost functions
I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)
I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

�

Approximate online gradient descent

uk+1 = ProjU

z

yk

n

uk

measured
}| {

= ⇡(uk, w)

⌧
⇣

rf(uk) + ⇧T rg(yk)
⌘o

| {z

k(yk)
}

comments

I feedback interconnection of two nonlinear systems - stability?

13/34

I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)
I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

�

Approximate online gradient descent

uk+1 = ProjU

z

yk

n

uk

measured
}| {

= ⇡(uk, w)

⌧
⇣

rf(uk) + ⇧T rg(yk)
⌘o

| {z

k(yk)
}

comments

I feedback interconnection of two nonlinear systems - stability?

I there is plenty of freedom in choosing the linearization and the cost functions

13/34

I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

�

Approximate online gradient descent

uk+1 = ProjU

z

yk

n

uk

measured
}| {

= ⇡(uk, w)

⌧
⇣

rf(uk) + ⇧T rg(yk)
⌘o

| {z

k(yk)
}

comments

I feedback interconnection of two nonlinear systems - stability?

I there is plenty of freedom in choosing the linearization and the cost functions

I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)

13/34

�

Approximate online gradient descent

uk+1 = ProjU

z

yk

n

uk

measured
}| {

= ⇡(uk, w)

⌧
⇣

rf(uk) + ⇧T rg(yk)
⌘o

| {z

k(yk)
}

comments

I feedback interconnection of two nonlinear systems - stability?

I there is plenty of freedom in choosing the linearization and the cost functions

I diagonal ⇧ plus right cost function =) Volt Var control (state of the art)
I intuitively the quality of the approximation

⇧ ⇡ @⇡(uk, w)

should play an important role in stability - performance - robustness

13/34

Basic assumptions

min

u2U
f(u) + g(y)

subject to: y = ⇡(u,w)

Assumptions
I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable
I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins
I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations

14/34

I f(·), g(·) convex and di�erentiable
I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins
I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations

Basic assumptions

min
u2U

subject to:
f(u) + g(y)

y = ⇡(u, w)

Assumptions

I u, w live in compact sets U, W

14/34

I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins
I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

14/34

In the next 20-30 mins
I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

I ⇡(·, ·) continously di�erentiable w.r.t u.

14/34

I error bounds for distance to kkt points
I systematic methodology for choosing linear approximations that are (robustly)

stable by design
I demonstration on small feeder examples & interesting observations

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins

I tractable test for (robust) stability of the feedback interconnection

14/34

I systematic methodology for choosing linear approximations that are (robustly)
stable by design

I demonstration on small feeder examples & interesting observations

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins

I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points

14/34

I demonstration on small feeder examples & interesting observations

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins

I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points

I systematic methodology for choosing linear approximations that are (robustly)
stable by design

14/34

Basic assumptions

min f(u) + g(y)
u2U

subject to: y = ⇡(u,w)

Assumptions

I u,w live in compact sets U,W

I f(·), g(·) convex and di�erentiable

I ⇡(·, ·) continously di�erentiable w.r.t u.

In the next 20-30 mins

I tractable test for (robust) stability of the feedback interconnection

I error bounds for distance to kkt points

I systematic methodology for choosing linear approximations that are (robustly)
stable by design

I demonstration on small feeder examples & interesting observations

14/34

Monotonicity
Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw(u)
TP + P@Fw(u) ⇢P , 8u 2 U

Lipschitz-continuity
Given P 0, the map Fw(·) is L Lipschitz continuous w.r.t h·, ·iP if

@Fw(u)
TP@Fw(u) L2P , 8u 2 U

always true with our assumptions..

�

� �

�

� �

�

Stability

Approximate gradient
9

>

=

1 0

8

>

<

B

@

rg(⇡(uk , w)) C
A

}

rf(uk) + ⇧T uk+1 = ProjU uk ⌧
>

:

| {z

Fw (uk)

@Fw(uk) = @2f (uk) + ⇧T@2 g(yk)@⇡(uk, w)

>

;

15/34

Lipschitz-continuity
Given P 0, the map Fw(·) is L Lipschitz continuous w.r.t h·, ·iP if

@Fw(u)
TP@Fw(u) L2P , 8u 2 U

always true with our assumptions..

�

� �

�

� �

�

Stability

Approximate gradient
9

>

=

1 0

8

>

<

B

@

rg(⇡(uk , w)) C
A

}

rf(uk) + ⇧T uk+1 = ProjU uk ⌧
>

:

>

;

| {z

Fw (uk)

@Fw(uk) = @2f (uk) + ⇧T@2 g(yk)@⇡(uk, w)

Monotonicity

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U

15/34

�

� �

�

� �

�

Stability

Approximate gradient
9

>

=

1 0

8

>

<

B

@

rg(⇡(uk , w)) C
A

}

rf(uk) + ⇧T uk+1 = ProjU uk ⌧
>

:

>

;

| {z

Fw (uk)

@Fw(uk) = @2f (uk) + ⇧T@2 g(yk)@⇡(uk, w)

Monotonicity

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U

Lipschitz-continuity

Given P 0, the map Fw(·) is L Lipschitz continuous w.r.t h·, ·iP if

@Fw (u)
TP @Fw (u) L2P , 8u 2 U

always true with our assumptions..
15/34

• these properties depend on the Jacobian

@Fw(u) = @2f(u) +⇧

T@2g(y)@⇡(u,w)

• we need a test that guarantees that these properties are satisfied for all
operating points in U ⇥ W.

� �

�

Stability

Proposition [e.g Facchinei]
If Fw is ⇢ strongly monotone and L Lipschitz continuous, the iteration

uk+1 = ProjU {uk ⌧ Fw (uk)}

converges to a unique fixed point for ⌧ <
L
⇢
2

16/34

• we need a test that guarantees that these properties are satisfied for all
operating points in U ⇥ W.

� �

�

Stability

Proposition [e.g Facchinei]
If Fw is ⇢ strongly monotone and L Lipschitz continuous, the iteration

uk+1 = ProjU {uk ⌧Fw (uk)}

converges to a unique fixed point for ⌧ <
L
⇢
2

• these properties depend on the Jacobian

@Fw(u) = @2f (u) + ⇧T@2 g(y)@⇡(u, w)

16/34

� �

�

Stability

Proposition [e.g Facchinei]
If Fw is ⇢ strongly monotone and L Lipschitz continuous, the iteration

uk+1 = ProjU {uk ⌧Fw (uk)}

converges to a unique fixed point for ⌧ <
L
⇢
2

• these properties depend on the Jacobian

@Fw(u) = @2f (u) + ⇧T@2 g(y)@⇡(u, w)

• we need a test that guarantees that these properties are satisfied for all
operating points in U ⇥ W.

16/34

⇥

⇥

@Fw(u)U ⇥ W J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

w

17/34

⇥

@Fw(u)U ⇥ W J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

⇥

w

17/34

U ⇥ W J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

@Fw (u)

⇥

⇥

w

17/34

⇥

⇥

@Fw(u) J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

U ⇥ W

w

17/34

⇥

⇥

J
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

@Fw (u) U ⇥ W

w

17/34

⇥

⇥

@Fw(u)
C : U ⇥ W ! Rm

F

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw(u) 2 F .

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n

J U ⇥ W

w

17/34

⇥

⇥

@Fw(u)

We choose the set J such that:

• it is an over-approximation
• we can easily guarantee monotonicity for all “approximate gradient” maps

Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n C : U ⇥ W ! Rm

J U ⇥ W
F

w

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw (u) 2 F .

17/34

⇥

⇥

@Fw(u)

• we can easily guarantee monotonicity for all “approximate gradient” maps
Fw(u) 2 F

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n C : U ⇥ W ! Rm

J U ⇥ W
F

w

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw (u) 2 F .

We choose the set J such that:
• it is an over-approximation

17/34

⇥

⇥

@Fw(u)

Building a stability test

Over-approximate the set of possible Jacobians as a “nice” set
u

Rm⇥n C : U ⇥ W ! Rm

J U ⇥ W
F

w

F is the set of all continuous functions whose jacobian lies in J for all
operating points in U ⇥ W. J over-approximation =) Fw (u) 2 F .

We choose the set J such that:
• it is an over-approximation

• we can easily guarantee monotonicity for all “approximate gradient” maps
Fw (u) 2 F

17/34

Rm⇥n

J

Robustly ⇢-strongly-monotone i� for all J 2 J

JTP + PJ ⇢P

how easy this test is depends on the structure of J ...

� �

�

�

Building a stability test

Monotonicity

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U

18/34

how easy this test is depends on the structure of J ...

� �

�

�

Building a stability test

Monotonicity

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U

Robustly ⇢-strongly-monotone i� for all J 2 J

JTP + PJ ⇢P

Rm⇥n

J

18/34

� �

�

�

Building a stability test

Monotonicity

Given P 0, the map Fw(·) is ⇢ strongly monotone w.r.t h·, ·iP if and only if

@Fw (u)
TP + P @Fw (u) ⇢P , 8u 2 U

Robustly ⇢-strongly-monotone i� for all J 2 J

JTP + PJ ⇢P

Rm⇥n

J

how easy this test is depends on the structure of J ...

18/34

Numerical test for (robust) stability
Given P 0 and a constant ⇢ > 0, the following two statements are equivalent:

(i) the set Fpoly, is ⇢ strongly monotone w.r.t h·, ·iP on the set U ;
(ii) the following Matrix Inequality holds true

1

2

h

JT
i P + PJi

i

⇢P, i = 1, . . . , ⌫.

Can easily blow up in size...

�
�

�

Building a stability test

Example 1: polytopic uncertainty

J poly
:= co {Ji, i = 1, . . . , ⌫} .

poly poly F := {Fw | @Fw(u) ✓ J , 8u 2 U, 8w 2 W}.

19/34

Can easily blow up in size...

�
�

�

Building a stability test

Example 1: polytopic uncertainty

J poly
:= co {Ji, i = 1, . . . , ⌫} .

poly poly F := {Fw | @Fw(u) ✓ J , 8u 2 U, 8w 2 W}.

Numerical test for (robust) stability

Given P 0 and a constant ⇢ > 0, the following two statements are equivalent:
(i) the set Fpoly, is ⇢ strongly monotone w.r.t h·, ·iP on the set U ;
(ii) the following Matrix Inequality holds true

h i

1
JT
i P + PJi ⇢P, i = 1, . . . , ⌫.

2

19/34

�
�

�

Building a stability test

Example 1: polytopic uncertainty

J poly
:= co {Ji, i = 1, . . . , ⌫} .

poly poly F := {Fw | @Fw(u) ✓ J , 8u 2 U, 8w 2 W}.

Numerical test for (robust) stability

Given P 0 and a constant ⇢ > 0, the following two statements are equivalent:
(i) the set Fpoly, is ⇢ strongly monotone w.r.t h·, ·iP on the set U ;
(ii) the following Matrix Inequality holds true

h i

1
JT
i P + PJi ⇢P, i = 1, . . . , ⌫.

2

Can easily blow up in size...

19/34

The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

2 , p = q =)


q
p

T

⇥



q
p

0.

Example: norm bounded uncertainty
:= { : k k  }

2 , p = q

() kpk2  2kqk2 ()


q
p

T 

✓I
1

2 ✓I



q
p

0, 8✓ 0.

�

� � �

�
� �

�

�

� � �

� �

�

� � � �

� � �

�

�

�
�

� �

� �

Building a stability test

Example 2: LFT uncertainty

J lft 1

:= A + B (I D) C : 2 .

J lft is a Linear Fractional Transformation of a known set .

20/34

Example: norm bounded uncertainty
:= { : k k  }

2 , p = q

() kpk2  2kqk2 ()


q
p

T 

✓I
1

2 ✓I



q
p

0, 8✓ 0.

�

� � �

�
� �

�

�

� � �

� �

�

� � � �

� � �

�

�

�
�

� �

� �

Building a stability test

Example 2: LFT uncertainty

J lft 1

:= A+ B (I D) C : 2 .

J lft is a Linear Fractional Transformation of a known set .

The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

 T 

q q 2 , p = q =) ⇥ 0.
p p

20/34

2 , p = q

() kpk2  2kqk2 ()


q
p

T 

✓I
1

2 ✓I



q
p

0, 8✓ 0.

�

� � �

�
� �

�

�

� � �

� �

�

� � � �

� � �

�

�

�
�

� �

� �

Building a stability test

Example 2: LFT uncertainty

J lft 1

:= A+ B (I D) C : 2 .

J lft is a Linear Fractional Transformation of a known set .

The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

 T 

q q 2 , p = q =) ⇥ 0.
p p

Example: norm bounded uncertainty

:= { : k k  }

20/34

()


q
p

T 

✓I
1

2 ✓I



q
p

0, 8✓ 0.

�

� � �

�
� �

�

�

� � �

� �

�

� � � �

� � � �

�

�
�

� �

� �

Building a stability test

Example 2: LFT uncertainty

J lft 1

:= A+ B (I D) C : 2 .

J lft is a Linear Fractional Transformation of a known set .

The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

 T 

q q 2 , p = q =) ⇥ 0.
p p

Example: norm bounded uncertainty

:= { : k k  }

k2 2 k2 2 , p = q () kp  kq

20/34

�

� � �

�
� �

�

�

� � �

� �

�

� � � �

� � � �

�

�
�

� �

� �

Building a stability test

Example 2: LFT uncertainty

J lft 1

:= A+ B (I D) C : 2 .

J lft is a Linear Fractional Transformation of a known set .

The set is itself parametrized by a convex cone ⇥, i.e., for all ⇥ 2 ⇥

 T 

q q 2 , p = q =) ⇥ 0.
p p

Example: norm bounded uncertainty

:= { : k k  }

 T  

2

q ✓I q 2 , p = q () kpk2  kqk2 ()
1 0, 8✓ 0.

p 2 ✓I p

20/34

• convex in P,⇥ - easy to verify up to moderate size networks

�
�

�
� �

Building a stability test

Convex numerical test for robust stability

The set F lft, is ⇢ strongly monotone w.r.t h·, ·iP if there exist ⇥ 2 ⇥ such that
  T 

T A⇢ P + PA⇢ PB C D C D
⇥ < 0,

BTP 0 0 Is 0 Is

where A⇢ := A+ ⇢I

21/34

�
�

�
� �

Building a stability test

Convex numerical test for robust stability

The set F lft, is ⇢ strongly monotone w.r.t h·, ·iP if there exist ⇥ 2 ⇥ such that
  T 

T A⇢ P + PA⇢ PB C D C D
⇥ < 0,

BTP 0 0 Is 0 Is

where A⇢ := A+ ⇢I

• convex in P,⇥ - easy to verify up to moderate size networks

21/34

y = voltages, u = controllable p, q inj., w = uncontrollable p, q inj.

min

ui2Ui

uTHu+ hTu+ ⌘

m
X

i=1

max(0, yi yi, yi yi)
2

subject to : y = ⇡(u,w) power flow equations

�

� �

Example

Power-curtailment / Voltage regulation (E. Dall’Anese - OPF Pursuit)

- uncontrollable
loads at every bus

- PVs at every
square bus

1 - voltage sensors

at every bus
8 14

16 15 11 12 13

Goal: minimize curtailment and reduce voltage violations

2

3 4

5 6

7

9 10

17

18

19

20

21

22 23

24

25

26

27 28 29

30

31

32

33

34 35 36

22/34

min

ui2Ui

uTHu+ hTu+ ⌘

m
X

i=1

max(0, yi yi, yi yi)
2

subject to : y = ⇡(u,w) power flow equations

�

� �

Example

Power-curtailment / Voltage regulation (E. Dall’Anese - OPF Pursuit)

- uncontrollable
loads at every bus

- PVs at every
square bus

1 - voltage sensors

at every bus
8 14

16 15 11 12 13

Goal: minimize curtailment and reduce voltage violations

y = voltages, u = controllable p, q inj., w = uncontrollable p, q inj.

2

3 4

5 6

7

9 10

17

18

19

20

21

22 23

24

25

26

27 28 29

30

31

32

33

34 35 36

22/34

�

� �

2

3 4

5 6

7

9 10

17

18

19

20

21

22 23

24

25

26

27 28 29

30

31

32

33

34 35 36

Example

Power-curtailment / Voltage regulation (E. Dall’Anese - OPF Pursuit)

- uncontrollable
loads at every bus

- PVs at every
square bus

1 - voltage sensors

at every bus
8 14

16 15 11 12 13

Goal: minimize curtailment and reduce voltage violations

y = voltages, u = controllable p, q inj., w = uncontrollable p, q inj.
m
X

min u THu + hT u + ⌘ max(0, yi yi, yi yi)
2

ui2Ui
i=1

subject to : y = ⇡(u, w) power flow equations

22/34

Pick a power-flow linearization Feedback implementation

�

Example

Gradient descent

k
+ ⌘ @⇡(uk, w)

T sy,y ̄(y k) uk+1 = ProjU uk ⌧ Hu
| {z }

measured

9

>

=

1 0

8

>

<

B

@

C

A

>

:

>

;

23/34

Feedback implementation

Example

Gradient descent

k
+ ⌘ @⇡(uk, w)

T sy,y ̄(y kuk+1 = ProjU
>

:

uk � ⌧ Hu)

| {z }

measured

Pick a power-flow linearization
1.5

1.4

y = ⇧u + ⇧ww
1.3

1.2

v
[p
.u
.]

1

1.1 y = ⇡(u, w)

0.9

0.8

0
0.2

0.7

p [p.u.]
0.4

0
5 · 10

�2
0.1 0.15 0.2 0.25 0.3 0.35

q [p.u.]

0.4 0.45 0.5

9

>

=

1 0

8

>

<

B

@

C

A

>

;

23/34

Feedback implementation

Example

Gradient descent

k
+ ⌘ ⇧T k sy,y ̄(y uk+1 = ProjU

>

:

uk � ⌧ Hu)

| {z }

measured

Pick a power-flow linearization
1.5

1.4

y = ⇧u + ⇧ww
1.3

1.2

v
[p
.u
.]

1

1.1 y = ⇡(u, w)

0.9

0.8

0
0.2

0.7

p [p.u.]
0.4

0
5 · 10

�2
0.1 0.15 0.2 0.25 0.3 0.35

q [p.u.]

0.4 0.45 0.5

9

>

=

1 0

8

>

<

B

@

C

A

>

;

23/34

Example

Gradient descent
9

>

=

1 0

8

>

<

B

@

C

A

k
+ ⌘ ⇧T k sy,y ̄(y

>

:

uk � ⌧ uk+1 = ProjU Hu)

>

;

| {z }

measured

Pick a power-flow linearization Feedback implementation
1.5

online approx.
1.4

gradient
y = ⇧u + ⇧ww

1.3

y1 y2 y3 u2
1.2 u1

v
[p
.u
.]

1

1.1 y = ⇡(u, w)

0.9

0
0.2

0.7

0.8

p [p.u.]
0.4

0
5 · 10

�2
0.1 0.15 0.2 0.25 0.3 0.35

q [p.u.]

0.4 0.45 0.5

w1
physical system:

y = ⇡(u, w)

w2

23/34

• Q(y) 2 Q := { diagonal : 0 I} LFT representable
• find LFT representation for the set of possible power-flow Jacobians

@⇡(u,w)

• the “product” of LFT representable sets is LFT representable

� � � � �

How to assess stability

@Fw (u) = H + ⌘⇧TQ(y)@⇡(u, w)

u

Rm⇥n
@Fw(u)

J U ⇥ W

w

24/34

• find LFT representation for the set of possible power-flow Jacobians
@⇡(u,w)

• the “product” of LFT representable sets is LFT representable

� � � � �

How to assess stability

@Fw (u) = H + ⌘⇧TQ(y)@⇡(u, w)

u

w

Rm⇥n
@Fw(u)

U ⇥ W J

• Q(y) 2 Q := { diagonal : 0 I} LFT representable

24/34

• the “product” of LFT representable sets is LFT representable

� � � � �

How to assess stability

@Fw (u) = H + ⌘⇧TQ(y)@⇡(u, w)

u

w

Rm⇥n
@Fw(u)

U ⇥ W J

• Q(y) 2 Q := { diagonal : 0 I} LFT representable

• find LFT representation for the set of possible power-flow Jacobians
@⇡(u, w)

24/34

� � � � �

How to assess stability

@Fw (u) = H + ⌘⇧TQ(y)@⇡(u, w)

u

w

Rm⇥n
@Fw(u)

U ⇥ W J

• Q(y) 2 Q := { diagonal : 0 I} LFT representable

• find LFT representation for the set of possible power-flow Jacobians
@⇡(u, w)

• the “product” of LFT representable sets is LFT representable

24/34

� � �

Example (cont’d)
LFT representation for the power flow Jacobians

@⇡(u,w) = ⇧nom + ⇡(u,w), k ⇡(u,w)k 

Choose � by sampling

this step has the potential to be made more rigorous by exploiting the structure of
the power-flow Jacobian (e.g. relaxation methods [Misra, Molzhan, Krishnamurthy
18])

25/34

this step has the potential to be made more rigorous by exploiting the structure of
the power-flow Jacobian (e.g. relaxation methods [Misra, Molzhan, Krishnamurthy
18])

Example (cont’d)
LFT representation for the power flow Jacobians

@⇡(u, w) = ⇧nom +�⇡ (u, w), k�⇡ (u, w)k  �

Choose � by sampling

1.4
1.2
1

0.8
0.6

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

scenario n°

k⇧
n
o
m

 �
@
⇡
(u

n
,w

n
)k

25/34

Example (cont’d)
LFT representation for the power flow Jacobians

@⇡(u, w) = ⇧nom +�⇡ (u, w), k�⇡ (u, w)k  �

Choose � by sampling

1.4
1.2
1

0.8
0.6

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

scenario n °

this step has the potential to be made more rigorous by exploiting the structure of
the power-flow Jacobian (e.g. relaxation methods [Misra, Molzhan, Krishnamurthy
18])

k⇧
n
o
m

 �
@
⇡
(u

n
,w

n
)k

25/34

• @⇡(u,w) = ⇧nom + : k k  , LFT representable
• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A+B (I D)

1C : 2 .



A B

C D
=

2

4

H ⌘⇧T 0
⇧nom 0 Im
In 0 0

3

5 , ⇥ : semi-complicated

26/34

� � � � �

� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A+B (I D)

1C : 2 .



A B

C D
=

2

4

H ⌘⇧T 0
⇧nom 0 Im
In 0 0

3

5 , ⇥ : semi-complicated

26/34

� � � � �
� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• @⇡(u, w) = ⇧nom + : k k  , LFT representable

LFT representation of J

J := A+B (I D)

1C : 2 .



A B

C D
=

2

4

H ⌘⇧T 0
⇧nom 0 Im
In 0 0

3

5 , ⇥ : semi-complicated

26/34

� � � � �
� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• @⇡(u, w) = ⇧nom + : k k  , LFT representable

• the “product” of LFT representable sets is LFT representable



A B

C D
=

2

4

H ⌘⇧T 0
⇧nom 0 Im
In 0 0

3

5 ,

⇥ : semi-complicated

26/34

� � � � �
� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• @⇡(u, w) = ⇧nom + : k k  , LFT representable

• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A +B (I D) 1C : 2 .

⇥ : semi-complicated

� � � � �
� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• @⇡(u, w) = ⇧nom + : k k  , LFT representable

• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A +B (I D) 1C : 2 .



A
C

B
D

=

2

4

H
⇧nom

In

⌘ ⇧T

0
0

0
Im

0

3

5 ,

26/34

� � � � �
� � �

�

� � �

�
� �

�

How to assess stability

@Fw(u) = H +⇧

TQ(y)@⇡(u, w)

• Q(y) 2 Q := { diagonal : 0 I}, LFT representable

• @⇡(u, w) = ⇧nom + : k k  , LFT representable

• the “product” of LFT representable sets is LFT representable

LFT representation of J

J := A +B (I D) 1C : 2 .



A
C

B
D

=

2

4

H
⇧nom

In

⌘ ⇧T

0
0

0
Im

0

3

5 , ⇥ : semi-complicated

26/34

if the test succeeds, the online algorithm is provably stable

�

�
� �

How to assess stability

Stability test


T  T 

A⇢ P + PA⇢ PB C D C D
⇥ < 0

BTP 0 0 I 0 I

27/34

�

�
� �

How to assess stability

Stability test


T  T 

A⇢ P + PA⇢ PB C D C D
⇥ < 0 TP B 0 0 I 0 I

if the test succeeds, the online algorithm is provably stable

online approx.
gradient

y1 y2 y3
u1

u2

w1
w2

physical system:
y = ⇡(u, w)

27/34

• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

• test case with ieee test feeder
with high solar penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

Observations

• in preliminary testing we observe that feeders are rather benign (small J)

28/34

• online optimization methods outperform the state of the art (volt-var)

• test case with ieee test feeder
with high solar penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

Observations

• in preliminary testing we observe that feeders are rather benign (small J)
• we can prove stability most of the time for very large operating ranges

28/34

• test case with ieee test feeder
with high solar penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

Observations

• in preliminary testing we observe that feeders are rather benign (small J)
• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

28/34

• test case with ieee test feeder
with high solar penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

Observations

• in preliminary testing we observe that feeders are rather benign (small J)
• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

28/34

Observations

• in preliminary testing we observe that feeders are rather benign (small J)
• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

• test case with ieee 37 test
feeder with high solar
penetration

• real data (load, irradiance)
from Anatolia CA

• ⇠ 40% less curtailment than
Volt-Var

28/34

• ⇠ 40% less curtailment than
Volt-Var

Observations

• in preliminary testing we observe that feeders are rather benign (small J)
• we can prove stability most of the time for very large operating ranges
• online optimization methods outperform the state of the art (volt-var)

• test case with ieee 123 test
feeder with high solar
penetration

• real data (load, irradiance)
from Anatolia CA

28/34

�

� �

Performance

Proposition

If Fw(u) is ⇢ strongly monotone then the OAG algorithm converges to the unique
point ū(w)

? 1 ? ? kū(w) u (w)kP  k(⇧ @⇡(u , w))

T rg(⇡(u , w))kP
⇢

where u ? a KKT point of the original (non-convex) optimization problem

29/34

4 2 0 2 4

4

2

0

2

4

f(uk) + ⇧

T g(yk)

OAG

� �

�

�

� �

� �

�

�

� �

Inexact gradient can be helpful

f(uk) + �⇡(uk, w)

T g(yk)

4

2

0

2

4 GM

4 2 0 2 4

30/34

4 2 0 2 4

4

2

0

2

4

f(uk) + ⇧

T g(yk)

OAG

4 2 0 2 4

4

2

0

2

4

f(uk) + �⇡(uk, w)

T g(yk)

GM

� �

�

�

� �

� �

�

�

� �

� �

�

�

� �

� �

�

�

� �

Inexact gradient can be helpful

f(uk) + �⇡(uk, w)

T g(yk) f(uk) + ⇧T g(yk)

4
4

2
2

0
0

2
2

4
4

4 2 0 2 4
4 2 0 2 4

GM OAG

30/34

Design a provably robustly stable distributed algorithm

Area 1

Area 3
Area 2 12

3 4

56

7

8910

11 12 13

14

1516

17

18

19

20

21

2223

24

25

26

272829

30

31

32

33

34 3536

What about design?

31/34

What about design?

Design a provably robustly stable distributed algorithm

Area 1

Area 3
Area 2

27 28 29

30

31

32

33

34 35 36 26

20

10

2

3 4

5 6

7

8 9 14

17

18

19 21

22 23

24

25

16 15 11 13 12

1

31/34

We can use the LMI to design ⇧ & guarantee robust stability
min

⇧,⇥
k⇧ ˆ

⇧k

subject to ⇧ 2 ⇧


AT
⇢P + PA⇢ PB(⇧)

B(⇧)

TP 0



C D
0 Is

T

⇥



C D
0 Is

< 0

Synthesis of a linearization of the power flow equations with desired properties.

�

�

�
� �

What about design? (cont’d)
Structured ⇧ = distributed algorithm

3 2

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

7

7

7

7

7

7

7

7

5

6

6

6

6

6

6

6

6

4

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

⇧ := ⇧ =

K L M d d d d d d
$ % & d d d d d d
' () d d d d d d
* + , d d d d d d
d d d - . / d d d
d d d 0 1 2 d d d
d d d 3 4 5 d d d
d d d 6 7 8 d d d
d d d 9 : ; d d d
d d d d d d < = >
d d d d d d ? @ A
d d d d d d B C D
d d d d d d E F G
d d d d d d H I J

32/34

Synthesis of a linearization of the power flow equations with desired properties.

�

�

�
� �

What about design? (cont’d)
Structured ⇧ = distributed algorithm

2 3

8

>

>

>

>

>

>

>

>

<

⇧ := ⇧ =
>

>

>

>

>

>

>

>

:

6

6

6

6

6

6

6

6

4

K L M d d d d d d
$ % & d d d d d d
' () d d d d d d
* + , d d d d d d
d d d - . / d d d
d d d 0 1 2 d d d
d d d 3 4 5 d d d
d d d 6 7 8 d d d
d d d 9 : ; d d d
d d d d d d < = >
d d d d d d ? @ A
d d d d d d B C D
d d d d d d E F G
d d d d d d H I J

7

7

7

7

7

7

7

7

5

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

We can use the LMI to design ⇧ & guarantee robust stability

ˆ

min k⇧ ⇧k
⇧,⇥

subject to ⇧ 2 ⇧
 

⇢ P + PA⇢
T  T

A PB(⇧) C D C D
⇥ < 0 T B(⇧) P 0 0 I 0 Is s

32/34

�

�

�
� �

What about design? (cont’d)
Structured ⇧ = distributed algorithm

2 3

8

>

>

>

>

>

>

>

>

<

⇧ := ⇧ =
>

>

>

>

>

>

>

>

:

6

6

6

6

6

6

6

6

4

K L M d d d d d d
$ % & d d d d d d
' () d d d d d d
* + , d d d d d d
d d d - . / d d d
d d d 0 1 2 d d d
d d d 3 4 5 d d d
d d d 6 7 8 d d d
d d d 9 : ; d d d
d d d d d d < = >
d d d d d d ? @ A
d d d d d d B C D
d d d d d d E F G
d d d d d d H I J

7

7

7

7

7

7

7

7

5

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

We can use the LMI to design ⇧ & guarantee robust stability

ˆ

min k⇧ ⇧k
⇧,⇥

subject to ⇧ 2 ⇧
 

⇢ P + PA⇢
T  T

A PB(⇧) C D C D
⇥ < 0 T B(⇧) P 0 0 I 0 Is s

Synthesis of a linearization of the power flow equations with desired properties.
32/34

What about design? (cont’d)

Provably robustly stable distributed optimization algorithm

Area 1

Area 2
Area 3

1 2

3

5 6

8 9

11 12

14

15 16

17

18

19 21

22 23

24

25

26

27 28 29

30

31

32

33

34 35 36

20 4

7

10

13

33/34

What about design? (cont’d)

Provably robustly stable distributed optimization algorithm

Area 1

Area 2
Area 3

1 2

3 4

5 6

7

8 9 10

11 12 13

14

15 16

17

18

19

20

21

22 23

24

25

26

27 28 29

30

31

32

33

34 35 36

33/34

• robustly-stable by design algorithms with nice properties
• need of expert knowledge to best characterize uncertainty
• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

Thanks

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

34/34

• need of expert knowledge to best characterize uncertainty
• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

Thanks

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

• robustly-stable by design algorithms with nice properties

34/34

• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

Thanks

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

• robustly-stable by design algorithms with nice properties

• need of expert knowledge to best characterize uncertainty

34/34

• considering binary decisions (i.e. switching topology) can be challenging

Thanks

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

• robustly-stable by design algorithms with nice properties

• need of expert knowledge to best characterize uncertainty

• potential to expand the framework beyond linear models (e.g. LPV)

34/34

Thanks

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

• robustly-stable by design algorithms with nice properties

• need of expert knowledge to best characterize uncertainty

• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

34/34

Summary & outlook

• exploit established frameworks for analysis of stability and robustness of
feedback based optimization

• robustly-stable by design algorithms with nice properties

• need of expert knowledge to best characterize uncertainty

• potential to expand the framework beyond linear models (e.g. LPV)
• considering binary decisions (i.e. switching topology) can be challenging

Thanks

34/34

Questions?

Thank you

www.nrel.gov

NREL/PR-5D00-74797

This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This
work was supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views
expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S.
Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

http:www.nrel.gov

	Towards robustness guarantees forfeedback-based optimization
	Example:
	Established field
	Energy shift
	Online approximate gradient
	Closed loop
	Basic assumptions
	Stability
	What about design?
	Summary & outlook

