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What happens if

I f is time-varying?
Application examples: time-varying optimization, time-varying
load-flow.

I the iteration is distributed and computed asynchronously?
Application examples: distributed optimization, multi-area
load-flow.

I only approximate map f̃ is available?
Application examples: optimization with approximate
gradient, feedback-based optimization.

Iterative Algorithms 

Iterative algorithms expressed in the generic form: 

(k+1) x = f (x(k)), k = 1, 2, . . . 

∗ Convergence to a fixed point x = f (x ∗) hinges on conditions on f 
such as 

I contraction map 

I an α-averaged operator 

I paracontraction map 

I . . . 
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Related Work 

I Bertsekas, Mathematical Programming, 1983 [Asynchronous, 
stationary] 

I Frommer and Szyld, Journal of Computational and Applied 
Mathematics, 2000 [Asynchronous, common fixed point] 

I Fullmer et al, CDC 2016, 2017 [Asynchronous, 
paracontractions, common fixed point] 

I Simonetto, arxiv, 2017. [Time-varying, synchronous] 

I This talk is based on: Bernstein and Dall’Anese, arxiv, CDC 
2018. 



A running (or online) algorithm:

x(t+1) = f (t)(x(t)) ,
I performs one iteration at every time step

Tracking question: kx(t) − x(∗,t)k ≤?

Time-Varying Setting 

Given a sequence of mappings f (t) : Rm → Rm, a batch solution 
given by the iteration 

(k+1,t) x = f (t)(x(k,t)), k = 1, 2, . . . 
(k,t) → x(∗,t) x as k →∞. 

I t is the time index 

I k is the iteration index 
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Online algorithm to track {x (∗,t)}:

x(t+1) = f̃ (t)(x(t)), t = 1, 2, . . .

where approximate maps {f̃ (t) : D → D} satisfy:

kf (t)(x)− f̃ (t)(x)k ≤ e
(t)
f ≤ ef , ∀x ∈ D. (1)

Online Algorithm 

Assumption 
{f (t)} are self-maps on a common set D ⊆ Rm and contractions 
with common coefficient L < 1. 

Therefore, there exists a sequence of unique fixed points {x (∗,t)}. 
Define: 

σ(t) (∗,t+1) − x:= kx (∗,t)k ≤ σ. 
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Tracking Result 

Theorem 
For each t, it holds that 

t � � X 
(t) − x (1) − x(∗,1)k + Lτ −1 (t−τ ) 

+ σ(t−τ ) kx (∗,t)k ≤ Lt kx e . f 
τ =1 

In particular, 

+ σ 
lim sup kx(t) − x(∗,t)k ≤ 

ef 
. 

t→∞ 1 − L 



Distributed online algorithm:

x
(t+1)
i = f̃

(t)
i

�
{x(t)j }j∈Ni∪{i}

�
, i ∈ N .

Distributed Setting 

A network of agents with dependency graph G = (N , A) 
I N := {1, . . . , N} is the set of agents 

I A is the set of directed edges, which represent information 
exchanges that are required in order to perform iteration 

Ni := {j ∈ N : (j , i) ∈ A} 
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If D
(t)
i ,j < t, then x̃

(t)
j is an outdated copy of the variable associated

with agent j .

Assumption

Let
Td := max

i∈N ,j∈Ni

sup
t≥1

n
t − D

(t)
i ,j

o
denote the worst-case communication delay, and assume that Td is
bounded; that is, Td <∞.

Asynchronous Computation � � 
(t+1) (t) (t) (t) 

xi = f̃i xi , {x̃j }j∈Ni , i ∈ N , 

where 
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(t) 
for some D ∈ {1, . . . , t}. i ,j 
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Result for ` ∞ Contractions 

Theorem 
The tracking error kx(t) − x(∗,t)k∞ can be asymptotically bounded 
as: 

ef + σ(1 + LTd ) (t) − x(∗,t)k∞ ≤ lim sup kx . 
t→∞ 1 − L 



Result for ` 2 Contractions 

Theorem 
Let X 

(t) 
Nd := sup max I{D < t} ∈ [0, m − 1] (2) i ,j i∈N t≥1 j∈Ni 

denote the maximum number of variables that are outdated at any 
given time step at any node. If, in addition, L < √ 1 , then 

Nd +1 

√ 
ef + σ(1 + L Nd + 1Td ) (t) − x(∗,t)k2 ≤ lim sup kx √ . (3) 

t→∞ 1 − L Nd + 1 



Applications 

I Time-varying optimization with feedback 

I Multi-area load-flow in power network 



Online gradient descent:

x(t+1) := projX (t)

n
x(t) − α

�
rg (t)(x(t)) + ηx(t)

�o
| {z }

f (t)(x(t))

,

f (t)(·) is Lipschitz in `2 norm with constant
L := max{|1− αη|, |1− α(M + η)|}

Time-Varying Optimization with Feedback 

Consider regularized time-varying optimization 

min g (t)(x) + 
η kxk2 

2 
x∈X (t) 2 

I X (t) convex set 

I g (t)(x) convex, with M-Lipschitz gradient, but not necessarily 
strongly convex 
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To satisfy the condition

L := max{|1− αη|, |1− α(M + η)|} < 1√
Nd + 1

,

the regularization parameter have to be lower bounded as

η >

√
Nd + 1− 1

2
M. (4)

Time-Varying Optimization with Feedback 

Online gradient descent with feedback: n o 
(t+1) (t) − αˆ(t) x := projX (t) x g , | {z } 

f̃ (t)(x(t)) 

(t)(x (t)where ĝ(t) is an estimate or measurement of rg (t)) + ηx . 
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Time-varying load-flow: tracking the solutions of

v = h(v, s(t))| {z }
f (t)(v)

, t ∈ N.

I was recently shown that the map h(·, s) is a contraction and
self-map in the `∞ norm, on some (proper) subset D of R2n

Multi-Area Load Flow 

The load-flow problem of power network with n PQ-buses and one 
slack bus, cast as a fixed-point problem: 

v = h(v, s) 

I v ∈ R2n collects the voltage phasors 

I s ∈ R2n collects the active and reactive power injections 
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Multi-Area Load Flow

3
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Iteration index
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v1 = h1(v1, s
(t)
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s21︷ ︸︸ ︷
g2(v2, v12))
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(t)
2 ,
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v3 = h2(v3, v23, s
(t)
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Feedback-based load flow mappings:

f̃
(t)
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(t)
1 , s

(t)
21 )

f̃
(t)
2 (v1, v2) := h2(v2, v12, s

(t)
2 , s

(t)
32 )

f̃
(t)
3 (v2, v3) := h3(v3, v23, s
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For α ∈ (0, 1], define the α-averaged mapping as:

gα(x) := (1− α)x+ αf (x)

Running Mann-Krasnosel’skĭı iteration:

x(t+1) = g (t)
αt

(x(t)) = (1− αt)x
(t) + αt f

(t)(x(t))

Theorem

1

T

TX
t=1

αt(1− αt)kx(t) − f (t)(x(t))k2 ≤ 1

T
kx1 − x?1k2+ r

Preview of Results for Averaged Operators1 

Let f : Rm → Rm be a non-expansive mapping: 

kf (x) − f (x 0)k ≤ kx − x 0k, ∀x, x 0 ∈ Rm . 

1Dall’Anese, Simonetto, and Bernstein, submitted to LCSS and CDC 2019 



Running Mann-Krasnosel’skĭı iteration:
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Conclusion 

I Algorithmic framework for tracking fixed points of 
time-varying contraction mappings 

I Tracking results for asynchronous implementation 
I Future directions: 

I larger class of mappings 
I a more general asynchronous setting with non-homogeneous 

update rates. 
I local contraction, corresponding to tracking solutions of 

non-convex optimization 
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