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ADJOINT SENSITIVITY OF FARMS TO THE FORECASTING VARIABLES OF WRF-SOLAR  

Jaemo Yang1, Manajit Sengupta1, Yu Xie1, Pedro A. Jimenez2, Ju-Hye Kim2 
1National Renewable Energy Laboratory, Golden, CO, USA 

2National Center for Atmospheric Research, Boulder, CO, USA 

ABSTRACT: This study presents the development and application of an adjoint model for investigating the sensitivity of solar 
radiation to forecasted variables from Weather Research and Forecasting-Solar (WRF-Solar). The first part of this study focuses 
on developing an adjoint model for the Fast All-sky Model for Solar Applications (FARMS) to investigate the input variables 
having the highest sensitivity to global horizontal irradiance, direct normal irradiance, and diffuse horizontal irradiance, which 
are the output variables. The applicability and usefulness of the adjoint sensitivity approach are demonstrated by conducting a 
sensitivity analysis under various scenarios defined by low, medium, and high values for the input variables. This preliminary 
study uses elasticity values to understand the sensitivity of solar radiation to the input variables (e.g., solar zenith angle, 
Ångström turbidity coefficient, and cloud optical depth) of FARMS. This presentation will illustrate the implemented 
methodology and the obtained sensitivity results for FARMS as well as future research steps that will lead to the development 
of high-quality probabilistic solar forecasts. 

Keywords: WRF-Solar, Sensitivity analysis, FARMS, Adjoint/Tangent linear model 

 
1 INTRODUCTION 

The contribution of solar energy to the electric grid has 
been rapidly increasing during the last few years, and 
integration has become a major source of concern for system 
operators. A key challenge in integrating solar generation is 
accurately predicting the confidence in a forecast of solar 
power. This can be achieved by creating an ensemble of 
forecasts through the optimized perturbation of initial 
conditions and generating a probabilistic forecast using the 
ensemble members. 
 For solar forecasting technologies, the Weather 
Research and Forecasting-Solar (WRF-Solar) model [1] was 
developed by the National Center for Atmospheric Research 
and its partners to better model the processes that impact 
solar irradiance on the ground. WRF-Solar is the only 
publicly available model worldwide that has been developed 
to provide accurate solar forecasts through significant 
improvements in the representation of aerosols, cloud 
formation, and radiative transfer calculations compared to 
the baseline WRF model. 
 WRF-Solar can now form the basis for developing 
probabilistic forecasts for the solar energy community. Prior 
to developing the probabilistic solar prediction using WRF-
Solar, we need to identify the WRF-Solar modules that 
directly impact cloud formation and dissipation and develop 
an adjoint model (ADM) [2] of the target module. This 
enables an estimation of the sensitivity of the model output 
with respect to inputs without requiring thousands of runs to 
perturb each input individually. The comprehensive analysis 
from the adjoint modeling effort will contribute to 
optimizing the ensemble prediction through a down-
selection of variables that are relevant for the WRF-Solar 
ensemble. 
 In this study, we built an ADM for the Fast All-sky 
Radiation Model for Solar Applications (FARMS) [3], 
which is one component of WRF-Solar for calculating global 
horizontal irradiance (GHI), direct normal irradiance (DNI), 
and diffuse horizontal irradiance (DHI). We then analyzed 
the sensitivity of FARMS to the forecasting variables under 
various scenarios. 

2 METHODOLOGY 

2.1 Theory of Adjoint 

The ADM is derived from the tangent linear model 
(TLM), which is derived from the forward model (FWM). 
The FWM is defined as follows: 

𝐘𝐘 = 𝑀𝑀(𝐗𝐗) (1) 

where 𝑀𝑀 is the nonlinear model, 𝐗𝐗 is the matrix of the input 
variables of model 𝑀𝑀 , and 𝐘𝐘 is the column vector of the 
output variables of model 𝑀𝑀. The tangent linear operator (𝐋𝐋), 
which gives the derivates of the FWM (1) with respect to the 
independent varaibles, is given as: 

𝐋𝐋 =
∂𝐘𝐘
∂𝐗𝐗 

(2) 

 The TLM of (1) can be expressed as: 

d𝐘𝐘 = 𝐋𝐋d𝐗𝐗 (3) 

where d𝐗𝐗 and d𝐘𝐘 are the input and output of the TLM (3). If 
〈  , 〉 is a scalar product and 𝐀𝐀 is a linear operator, the adjoint 
of 𝐀𝐀 can be mathematically defined as the operator of  𝐀𝐀𝐓𝐓 
statisfying: 

〈𝐀𝐀𝐗𝐗,𝐘𝐘〉 = 〈𝐗𝐗,𝐀𝐀𝐓𝐓𝐘𝐘〉 (4) 

 For the sensitivity study, any differentiable function, 
R(Y), can be used to define a response function comprising 
output variable Y. Changes in the state of the model output 
entail changes to the value of a response function: 

d𝑅𝑅 = 〈
∂𝑅𝑅
∂𝐘𝐘 , d𝐘𝐘〉 = 〈

∂𝑅𝑅
∂𝐘𝐘 ,𝐋𝐋d𝐗𝐗〉 = 〈𝐋𝐋𝐓𝐓

∂𝑅𝑅
∂𝐘𝐘 , d𝐗𝐗〉 (5) 

 If we use the definition of the differential for input 
variable 𝐗𝐗 and response function 𝑅𝑅: 
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d𝑅𝑅 = 〈
∂𝑅𝑅
∂𝐗𝐗 , d𝐗𝐗〉 (6) 

 Finally, the relationship between the input and output 
variables for the response function 𝑅𝑅 can be expressed as: 

∂𝑅𝑅
∂𝐗𝐗 = 𝐋𝐋𝐓𝐓

∂𝑅𝑅
∂𝐘𝐘 

(7) 

In (7), the output of the ADM is the gradient of a response 
function 𝑅𝑅 with respect to the model input. In this study, the 
GHI, DNI, and DHI are used as the response function instead 
of any errors or averaged forecasts; therfore, the d(GHI), 
d(DNI), and d(DHI) are analyzed with respect to the input 
variables for FARMS. 

2.2 The Transformation of Algorithms in Fortran  

 The Transformation of Algorithms in Fortran (TAF) [4], 
[5] is a tool for automatic differentiation. TAF is a source-
to-source transformation tool for functions written in 
Fortran-90/95 or FORTRAN-77. The TAF software package 
enables a sensitivity analysis of complex functions that have 
been coded into Fortran. TAF generates an adjoint code of 
forward models that evaluates the derivative of the output 
variables with respect to the input variables, thereby 
providing the capability to analyze the sensitivity of the 
input variables to the output. For this study, TAF is used to 
produce the adjoint code of FARMS and analyze the 
sensitivity of the input variables to the output variables, 
which are related to solar radiation. 

2.3 Validation of Tangent Linear and Adjoint Codes 

 The validation of the ADM and TLM should be strictly 
verified after the the AD and TL codes are built by TAF. A 
consistency of TLM with its FWM needs to be verified with 
a linearity test fisrt because the ADM is a concomitant of the 
TLM. Then the accuracy of the ADM is checked by an 
adjointness test verifying a consitency of ADM with TLM. 
 The linearity test compares the ratio of the derivative of 
the forecast variables with respect to the model state 
variables in the FWM and the solutions from TLM [6], [7]. 
(8) is used for correctness check for TLM. The ratio will be 
1 if the tangent linear code is correctly developed. 

Φ(𝜆𝜆) =
‖𝑓𝑓(𝐱𝐱 + 𝜆𝜆𝜆𝜆_𝐱𝐱) − 𝑓𝑓(𝐱𝐱))‖

‖𝜆𝜆_𝑓𝑓(𝐱𝐱, 𝜆𝜆 𝜆𝜆_𝐱𝐱)‖ , lim
𝜆𝜆→0

Φ(𝜆𝜆) = 1 

 

(8) 

In (x), the f(x), g_f(x, g_x), and a_f(x, a_x) denote an FWM, 
a TLM, and an ADM, respectively, where x, g_x, and a_x 
are the column vectors of the model-state variables, 
perturbations of the state variables, and the adjoint of the 
state variables, respectively. 
 Using the adjointness relationship, the correctness of the 
adjoint code was tested by: 

〈𝜆𝜆_𝑓𝑓(x,𝜆𝜆_𝐱𝐱),𝜆𝜆_𝑓𝑓(𝐱𝐱,𝜆𝜆_𝐱𝐱)〉
= 〈𝑎𝑎_𝑓𝑓[x,𝜆𝜆_𝑓𝑓(𝐱𝐱,𝜆𝜆_𝑥𝑥)],𝜆𝜆_𝐱𝐱〉 

 

(9) 

 In FARMS, 13 input variables—including surface 
pressure, surface albedo, asymmetry factor of aerosol, solar 
zenith angle, aerosol optical depth, Ångström wavelength 
exponent, total precipitable water, cloud optical depth, and 
cloud effective radius—are used to implement the linearity 
and adjointness tests. First, the linearity test is performend 
for each FARMS input variable with sequentially reduced 
perturbations. Figure 1 shows the results of the linearity (6 
input variables) and adjointness tests for FARMS. The 
results show that the FARMS TLM approximates well the 
derivative of the FWM solution because the TLM solutions 
are going to 1 as the perturbations decreased and approach 
zero. In addition, when we perturb all 13 variables at once, 
the FARMS TLM approximates well the derivative of the 
nonlinear model solution, which means that the tangent 
linear code was correctly developed by the TAF. In the 
adjointess test results, the numbers of the left-hand side and 
right-hand side are exactly the same within a machine 
precision accuracy. This indicates that an AD code was 
developed correctly with the TL code. 

 
Figure 1. Results of tangent linear and adjointness tests 
for the FARMS module. 

2.4 Scenario Analysis 

The sensitivity study is implemented by using various 
FARMS scenarios representing clear-sky and cloudy-sky 
conditions. The adjoint version of the FARMS code is 
developed first. Next, reasonable values representing the 
three levels (low, medium, and high) are assigned to the 
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input variables. Table 1 lists the physical inputs of FARMS 
and the conditions for clear skies and cloudy skies (water/ice 
cloud). For clear-sky conditions, the surface pressure, 
albedo, asymmetry factor of aerosol, cosine value of solar 
zenith angle (referred to as cosz), Ångström turbidity 
coefficient, and precipitable water vapor are adjusted for the 
three levels indicating low-medium-high values. For cloudy 
conditions, the input variables are surface pressure, albedo, 
cosine value of solar zenith angle, precipitable water vapor, 
cloud optical depth, and cloud effective radius. The leveled 
input values for the clear- and cloudy-sky conditions are also 
presented in Table 1. Last, the FARMS adjoint code is run 
for 729 cases with the three levels (low, medium, high), and 
individual scenarios that contain 243 cases are analyzed (i.e., 
all cases when albedo is high) (see Fig. 2). 

2.5 Elasticity for Scaling in Analysis of Sensitivity  

 One challenge in analyzing sensitivities is that 
independent variables of the models have different units. 
Especially for the comparisons of sensitivities for various 
input variables, the interpretation of the sensitivity results is 
complicated by issue of scale. Therefore, elasticity [8] is a 
reasonable method to estimate the effect of a proportional 
change in output variable related to a rate of proportional 
change in input variable. The elasticity is defined as follows: 
where x and y are input and output variables, respectively. 
The elasticity, which is dimensionless, is used to estimate the 
sensitivity of the output variables with respect to the input 
variables for FARMS. For example, if the elasticity of the 
albedo is 0.5 for DHI, this means that a 1% increase in 
albedo will cause a 0.5% increase in DHI. 

Table 1. FARMS input variables and conditions for clear 
and cloudy skies. The three levels are low (L), medium 
(M), and high (H). 

Input 
variable Clear sky 

Cloudy sky 
Water 
cloud 

Ice  
cloud 

Surface 
pressure 

(Pa) 

L: 98000 
M: 101300 
H: 108000 

L: 98000 
M: 101300 
H: 108000 

L: 98000 
M: 101300 
H: 108000 

Albedo 
L: 0.2 
M: 0.5 
H: 0.8 

L: 0.2 
M: 0.5 
H: 0.8 

L: 0.2 
M: 0.5 
H: 0.8 

Asymmetry 
factor of 
aerosol 

L: 0.7 
M: 0.8 
H: 0.95 

0 0 

Solarangle 
(cosz, radian) 

L: 0.2 
M: 0.6 
H: 0.9 

L: 0.2 
M: 0.6 
H: 0.9 

L: 0.2 
M: 0.6 
H: 0.9 

Ångström 
turbidity 

coefficient 

L: 0.1 
M: 0.3 
H: 0.6 

0 0 

Ångström 
wavelength 
exponent 

1 0 0 

Precipitable 
water vapor 

(mm) 

L: 5 
M: 10 
H: 30 

L: 5 
M: 10 
H: 30 

L: 5 
M: 10 
H: 30 

Cloud optical 
depth for vapor 0 

L: 0.5 
M: 3.0 
H: 10.0 

0 

Input 
variable Clear sky 

Cloudy sky 
Water 
cloud 

Ice  
cloud 

Cloud optical 
depth for ice 0 0 

L: 0.5 
M: 3.0 
H: 10.0 

Cloud optical 
depth for snow 0 0 0 

Cloud effective 
radius for vapor 

(m) 
0 

L: 5.00E-06 
M: 1.50E-05 
H: 3.00E-05 

0 

Cloud effective 
radius for ice 

(m) 
0 0 

L: 1.00E-05 
M: 3.00E-05 
H: 6.00E-05 

Cloud effective 
radius for snow 

(m) 
0 0 0 

 
Figure 2. Schematic showing the scenarios with low, 
medium, and high levels for the input variables. 

Elasticity =
x
y ×

∂y
∂x 

(10) 

3 RESULTS  

 For FARMS, the sensitivities of the input variables to the 
output variables are analyzed with elasticity values. Again, the 
input variables are surface pressure, albedo, asymmetry factor 
of aerosol (clear sky), cosz, Ångström turbidity coefficient 
(clear sky), precipitable water vapor, cloud optical depth 
(cloudy sky), and cloud effective radius (cloudy sky); and the 
output variables are GHI, DNI, and DHI. The elasticity values 
are calculated for all 243 cases for one scenario. 
 Figure 3 shows an example of the variation of elasticity for 
GHI under clear-sky conditions with respect to the Ångström 
turbidity coefficient (referred to as beta). Most elasticity values 
are negative because physically beta influences the extinction of 
the solar radiation reaching the surface under clear-sky 
conditions. In Fig. 3, GHI is more sensitive to beta when the 
asymmetry factor of aerosol is low compared to the medium-
high scenarios of the asymmetry factor of aerosol. Also, beta 
shows an increase in the sensitivity range in scenarios of cosz 
when the value of cosz increases. Under all conditions of low-
medium-high surface pressure and precipitable water vapor, 
beta exhibits similar and consistent elasticity characteristics (i.e., 
almost identical sensitivities). 
 Figure 4 exhibits an average of elasticity calculated over 
243 cases for each input variable and each scenario (clear-
sky condition). As expected, cosz shows the largest elasticity 
value for GHI, DNI, and DHI under all scenarios. In clear-
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sky conditions, the beta is very sensitive to DNI because 
atmospheric turbidity mainly causes attenuation of solar 
radiation that reaches the surface. 

 
Figure 3. Elasticity (scaled sensitivity) of GHI with 
respect to Ångström turbidity coefficient for each 
scenario. Each box-whisker plot includes 243 elasticity 
values, calculated for individual scenarios (bar: median, 
box: interquartile range, whiskers: range, and error 
bars: minimum and maximum). 

 
Figure 4. Average of elasticity calculated over 243 cases 
for each input variable and each scenario. Note that this 
figure shows the results of GHI, DNI, and DHI for the 
clear-sky condition. 

 
Figure 5. Average of elasticity for GHI, DNI, and DHI 
calculated over all scenarios for each input variable. 

 The input variables that demonstrate the highest 
sensitivities for the output variables for FARMS are 
identified in Fig. 5. Figure 5 shows an averaged elasticity for 
all scenarios for GHI, DNI, and DHI for the clear-/cloudy-
sky conditions. With the exception of cosz, the albedo and 
beta exhibit the highest sensitivities for GHI and DNI 
individually under clear-sky conditions. For DHI under the 
same conditions, the sensitivity and elasticity of the albedo 
and beta are almost identical and comparable to cosz. Under 
cloudy-sky conditions, the results of the output variables of 
FARMS are very similar for water and ice clouds. The 
notable sensitivities of cosz and tau (cloud optical depth) for 
DNI are attributed to the transmittance of the cloud for direct 
incident radiation and scattering by the cloud for direct 
outgoing radiation, which are mainly governed by cosz and 
tau. For GHI and DHI, the tau and albedo are more sensitive 
compared to the other input variables, with the exception for 
cosz.  

4 SUMMARY 

 In this work, we presented a sensitivity analysis 
framework for WRF-Solar modules that will subsequently 
be used to determine the set of input variables that have the 
highest impact on the accuracy of the prediction of solar 
radiation. The sensitivity analysis that enables the selection 
of ensemble members for probabilistic solar forecasting is 
based on adjoint modeling. As an initial step toward 
developing the framework for probabilistic forecasts using 
an ensemble based WRF-Solar, FARMS is selected, and the 
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adjoint model of FARMS is developed to identify the input 
variables with lower/higher order sensitivities. In addition, 
the sensitivity analysis is conducted using various scenarios 
that include low, medium, and high levels of input variables 
for FARMS. The method developed in this study will be 
used to optimize WRF-Solar ensembles so that this model 
can be used operationally for solar forecasting for grid 
operations. 
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