

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Energy Exchange Pre-Conference Workshop: Distributed Energy Technologies for Resilience and Cost Savings

August 19, 2019, Colorado Convention Center

Session 4: 3:30-5:30 Room 303

Experts in the Room

Rachel Shepherd FEMP, Program Lead Federal distributed energy projects <u>rachel.shepherd@ee.doe.gov</u>

Emma Elgqvist NREL, Engineer Solar PV + Storage economics <u>emma.elgqvist@nrel.gov</u>

Andy Walker NREL, Principal Engineer Solar PV andy.walker@nrel.gov

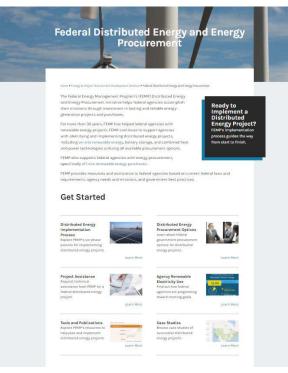
Alicen Kandt NREL, Senior Engineer Federal distributed energy projects alicen.kandt@nrel.gov

Doug Gagne NREL, Engineer Federal Project Financing <u>doug.gagne@nrel.gov</u>

Keith McAllister Kestava Energy LLC, Manager CHP <u>keith@kestavaevergy.com</u>

Bill Becker NREL, Engineer CHP <u>william.becker@nrel.gov</u>

Kathleen Krah NREL, Engineer Solar PV + storage economics kathleen.krah@nrel.gov


Chuck Kurnik NREL, Senior Engineer Microgrids <u>chuck.kurnik@nrel.gov</u>

Kevin DeGroat Antares Group, Project Director Federal project reporting <u>kdegroat@antaresgroupinc.com</u>

Intro and icebreaker	15 minutes		
Technical presentations	45 minutes		
Solar photovoltaics (PV) + storage			
Combined heat and power (CHP)			
Microgrids			
REopt Lite	20 minutes		
Q&A with panel of experts	30 minutes		

FEMP's Distributed Energy Program

FEMP's Distributed Energy (DE) Program facilitates the implementation of costeffective, on-site renewable energy, energy storage, and combined heat and power technologies for federal agencies.

FEMP's Distributed Energy Program Website

https://www.energy.gov/eere/femp/federaldistributed-energy-and-energy-procurement

FEMP's Distributed Energy Program

The U.S. Department of Energy (DOE) Federal Energy Manageme Program's (FEMP) Distributed Energy Program facilitates the implem tion of cost-effective, on-site renew able energy and energy storage technologies for federal agencies.

Background

Launched by FEMP in 1986 to support federal agencies implementing renew able energy projects-primarily in remote locations that were using diesel generators for their power supplies-the Distributed Energy Program has evolved to support agencies based on current federal requirements, agency needs and mission, and government best practices related to distributed energy. Between fiscal years 2008 and 2016

on-site renewable energy generation at federal sites increased by more than 400%, resulting in energy and cost savings, job growth, and increased site

Project Assistance

performance issues.

Resources and Tools

FEMP's Distributed Energy Program

acilitates project assistance and coordi-

nation through all phases of the project implementation process for agencies

pursuing on-site renewable energy and

ergy storage projects. Project as

includes screenings, feasibility studie

and project validation, procurement docu

ment development and proposal review,

operation and maintenance planning, and

develop and maintain trainings, tools

and best practices documents. These

resources promote workforce develop

ment of federal staff to decrease proj

risks and increase the speed of project

REopt Lite: Web tool to optimize

solar PV and storage for cost

ESPC ESA Toolkit: Resources

and templates for energy saving

energy sales agreements (ESAs

performance contract (ESPC)

nergy.gov/node/2697114

Procurement Specifications

savings and resilience.

https://reopt.nrel.gov

execution.

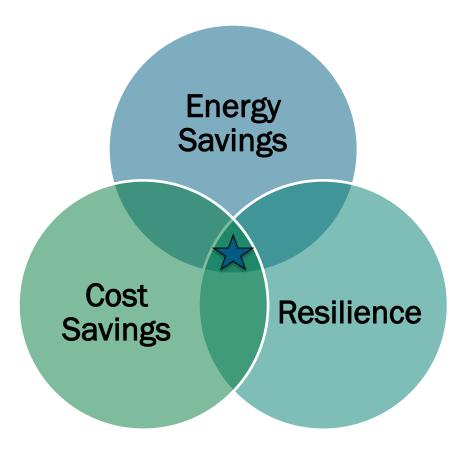
Key Resource

FEMP's Six-Phase Process for Implementing Distributed Energy Projects Templates for On-Site Solar PV echnical specifications for on-site solar PV systems Phase 2 Phase 3 Phase 1 Project Team Formation Project Validation FEMP Assistance: Contact Rachel Shepherd at chel.shepherd@ee.doe.go or visit www4.eere.er Procurement Construction and Performance Federal Reporting

FEMP's Distributed Energy Program provides assistance to federal agencies through all of hases of the distributed energy project implementation process

For more information, visit: energy.gov/eere/femp D0E/G0-102018-5103 - August 2018

FEMP's Distributed Energy **Program Factsheet**


https://www.energy.gov/sites/prod/file s/2018/08/f54/femp dep 0.pdf

	Proces	s for Planning	g and Implementing	g
	Fede	ral Distribute	ed Energy Projects	
			$1 \text{ b} < \Lambda / \Lambda$	
	AN XI			
		r Planning and Implamenting Federal Distributed I	Energy Projects helps federal agencies plan and implement	
	federal distrib		helps lederal agencies plan and implement ilte electric and thermal renewable energy and	
-	into a series o	of steps. By following FEMP's distribu	comprised of six phases. Each phase is divided Ited energy project process, agencies can	
		plement projects that are technically and support agency needs and miss	y sound, reduce energy costs for the federal ions.	
	Proces	ss Phases		
_				
	⊙ Phase 1: Pr	roject Identification	O Phase 2: Project Team Formation	
) Phase 3: P	roject Validation	O Phase 4: Procurement	
) Phase 5: C	construction and Performance	O Phase 6: Federal Reporting	
	Key Re	esources		
		P Technical stance Portal		nfo Reso
				- >
	agencies t assistance	on allows federal to request technical e on federal distributed	FEMP's catalog of on-demand Fed courses, live webinars, and onsite Infe workshops.	eri Irmat
	energy pro	ojects.		-
•		Distril	unte el Ensister	
	<u>FEMP's</u>	<u>s distric</u>	outed Energ	Y
	Implemen	tation P	Process Wel	osite
I	FEMP's	s Distrib	outed Energe Process Wel	

https://www.energy.gov/eere/femp/process-planning-andimplementing-federal-distributed-energy-projects

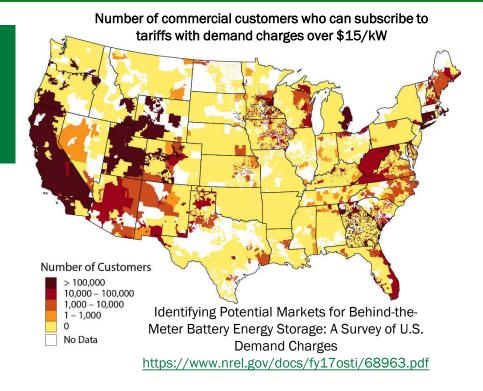
Why Distributed Energy for Resilience

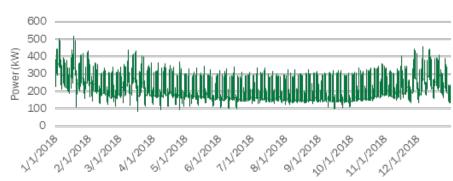
- Distributed energy resources (DERs) include renewable energy (RE) technologies, storage, and combined heat and power (CHP)
- DERs can provide revenue streams and savings while grid connected
 - Savings may allow for the incorporation of additional microgrid components
- When integrated into a microgrid, DERs can increase survival time during a grid outage when fuel supplies are limited

FEMP's PV Performance Initiative

- Federal PV capacity has increased tenfold in the last eight years
 - Maximizing return on these 20+ year investments requires assets are performing as expected or better
- FEMP is seeking federal sites in FY20 interested in evaluating the performance of its on-site PV systems
- Key output of initiative include performance ratio of system
 - Individualized report for site
 - Anonymized summary of federal projects
- Email <u>rachel.shepherd@ee.doe.gov</u>

Site Data for Evaluation						
Energy delivered	Hourly (or over specific time period)					
System	Date & location installed					
description	System size					
	Tilt & azimuth					
	Tracking option					
	Panel make & model					


PV panels damaged by hailstorm. Photo by Andy Walker


Future Offering: Utility Rate Analysis Assistance

Express interest now in future utility rate analysis support by contacting Tracy Niro; <u>tracy.niro@ee.doe.gov</u>.

- Utility rate options are becoming increasingly more complex
- Understanding your rate options can help lower utility costs
- Federal agencies may want to review their electricity rate for several reasons:
 - Your site may qualify for multiple rates—which is optimal?
 - Your forecasting increased or decreased load at your site—which rate is optimal?
 - You're considering an energy project at your site—how will it impact your utility costs?

2018 Load Data - Office Building

To Receive IACET-Certified CEUs for a Webinar

To receive IACET-certified CEUs, attendees must:

- Attend the training in full (no exceptions).
 - If you are sharing a web connection during the training, you must send an email to Elena Meehan and indicate who was on the connection, who showed as connected (will reflect in the WebEx roster), and for how long.
- Complete an assessment demonstrating knowledge of course learning objectives within six weeks of the training. A minimum of 80% correct answers are required.
- Complete an evaluation of the training event within six weeks of the training.

To access the webinar assessment and evaluation, visit https://www.wbdg.org/continuing-education/femp-courses/fempws081920191

• If you do not have a Whole Building Design Guide account created, you will be required to create one.

Note: As per webinar instructions provided before the event, please include your full name and email address to verify event attendance for CEU certification and award.

For logistical questions related to the webinar or evaluation, email Elena Meehan at <u>elena.meehan@ee.doe.gov</u>.

Related Energy Exchange Technical Sessions

Track / Session	Title	Date	Time	Room
T13-S01	Making the Business Case for Resilience Projects	Tuesday, August 20	10:30 a.m12:00 p.m.	502
T06-S02	Grid Load and Plant Management for Resilience and Efficiency	Tuesday, August 20	2:00 p.m3:30 p.m.	407
T04-S03	Using Combined Heat and Power for Efficient Resilience	Tuesday, August 20	4:00 p.m5:30 p.m.	403
T04-S04	Integrating Renewables and Non-Renewables for Resilience	Wednesday, August 21	8:30 a.m10:00 a.m.	403
T02-S05	Measuring Success in Resilience	Wednesday, August 21	10:30 a.m12:00 p.m.	401
T03-S06	Designing Resilient Microgrids	Wednesday, August 21	2:00 p.m3:30 p.m.	303
T03-S07	Incorporating Onsite Generation Design using Comprehensive Energy Strategy	Wednesday, August 21	4:00 p.m5:30 p.m.	303
T07-S08	O&M for Renewable and Distributed Power	Thursday, August 22	8:30 a.m9:30 a.m.	507
T13-S09	Perspectives on Valuing Resilience	Thursday, August 22	10:00 a.m11:00 a.m.	502

Icebreaker: Three Questions to Ask Your Neighbor

- Who are you?
 - Name
 - Agency/Organization
 - Role
- How many times have you been to Energy Exchange?
- What is the most fun thing you did (or will be doing) this summer?
- What is the strangest energy-related issue you have encountered?

Save Your Questions for the End (and Write Them Down)!

- We will have a 30-minute Q&A session with a panel of experts
- As you are listening to these presentations, please write down any questions and comments you have
- There is pen and paper on each table, write down your questions, and place them in the bucket
- Your question can be general or very specific
- You can put your name on your question, but you don't have to

Solar PV + Battery Storage

Solar PV and Battery Storage Overview

- Federal agencies have long history of implementing grid-connected solar PV projects for cost savings
 - Value stream is well understood: Electricity is generated when the sun is shining, and lowers utility electricity purchases
- Opportunities for grid-connected battery storage are emerging, and more complicated
 - Value stream is more complicated: there are multiple ways to provide savings, but they depend on how the battery is operated
- When configured to do so, PV + storage can provide back-up power in the event on an outage
 - This requires additional equipment at added cost

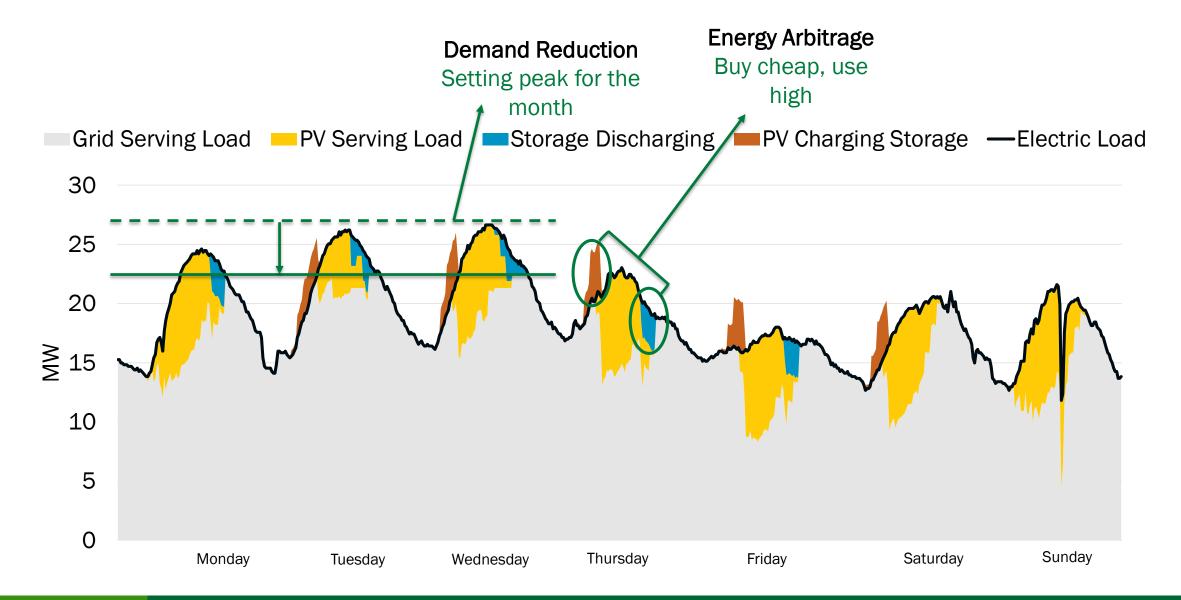
Quiz tip: a typical solar PV system requires modification to provide backup generation during an extend outage

Installation of one of the 3,632 solar modules on NREL's parking garage. The garage can produce up to 1.15 megawatts Photo by Dennis Schroeder / NREL 21487

NREL and Raytheon, perform system level testing on the Miramar ZnBr Flow Battery Photo by Dennis Schroeder / NREL 32582

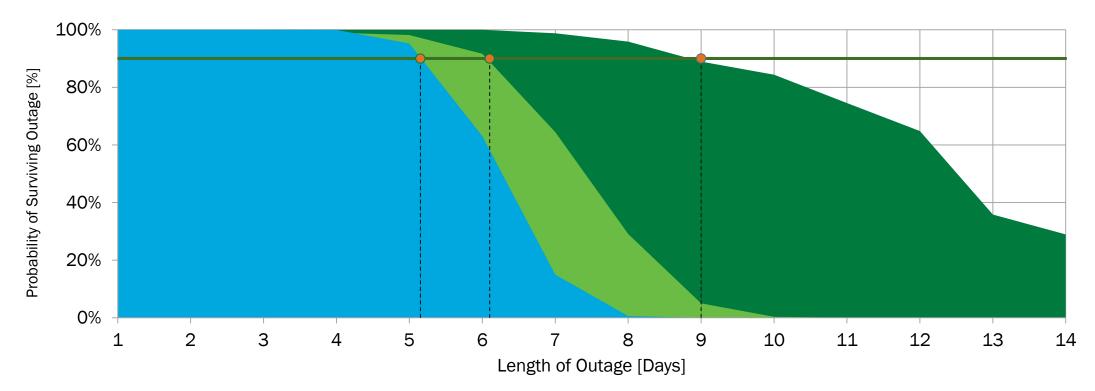
Range of PV + Storage Use Cases

	Off Grid PV + Storage	Grid Connected PV + Storage		PV + storage for Large-scale Power Generation		
Purpose	Providing continuous power in lieu of utility	Lowering cost of utility purchases	Lowering cost of utility purchases Providing power during grid outage	Large-scale generation for off-site sale		
Why/Where it works	 Remote sites with high fuel costs Low grid reliability 	 High demand charges TOU rates Ancillary service markets 	 High demand charges TOU rates Ancillary service markets Resilience requirements 	 Deregulated market Interested offtaker large land-availability 		
Primary Power Supply	DERs (typically including generators)	Grid + DERs	Grid + DERs	Grid only		
Back-up	None	None	DERs	Typically none but could be possible		


Quiz tip: solar PV plus batteries can be cost-competitive when compared to back-up diesel generators, but it depends on the location and application

Value Streams by Use Case

Value Stream	Description			Large Scale
Fuel Offset	Offset fuel cost in off-grid remote locations	Х		
Demand charge reduction	Use stored energy to reduce demand charges on utility bills		X	
Energy Arbitrage	Energy time-of-use shift (from on-peak to off-peak hours or selling during high cost and charging during low cost)		x	Х
Demand response	Utility programs that pay customers to lower demand during system peaks		X	
Frequency regulation and capacity markets	Stabilize frequency on moment-to-moment basis or supply spinning, non-spinning reserves (ISO/RTO)		х	Х
Voltage support	Insert or absorb reactive power to maintain voltage ranges on distribution or transmission system			Х
T&D Upgrade Deferral	Deferring the need for transmission or distribution system upgrades, e.g. via system peak shaving			Х
Resiliency / Back-up power	Using battery to sustain a critical load during grid outages		X	


Quiz tip: During normal grid connected operations, battery storage has the potential to provide demand charge reduction and time-of-use energy arbitrage, and enable participation in demand response programs

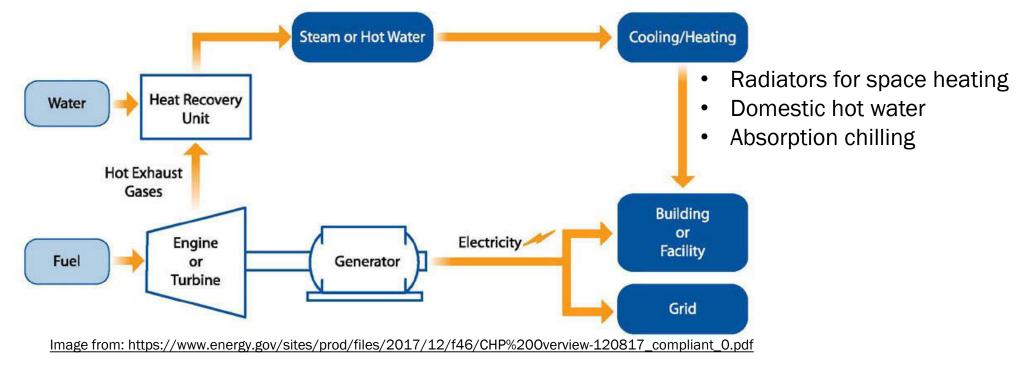
Example of Demand Reduction and Energy Arbitrage

Surviving Outage vs. Cost Savings

	<u>Generator</u>	<u>Solar PV</u>	<u>Storage</u>	Lifecycle Cost	<u>Outage</u>
1. Base case	2.5 MW			\$20 million	5 days
2. Lowest cost solution	2.5 MW	625 kW	175 kWh	\$18.5 million	6 days
3. Proposed system	2.5 MW	2 MW	500 kWh	\$19.9 million	9 days

In a case study at a military base, NREL evaluated thousands of random grid outages and durations throughout the year and compared number of hours the site could survive with a diesel generator and fixed fuel supply vs. generator augmented with PV and battery.

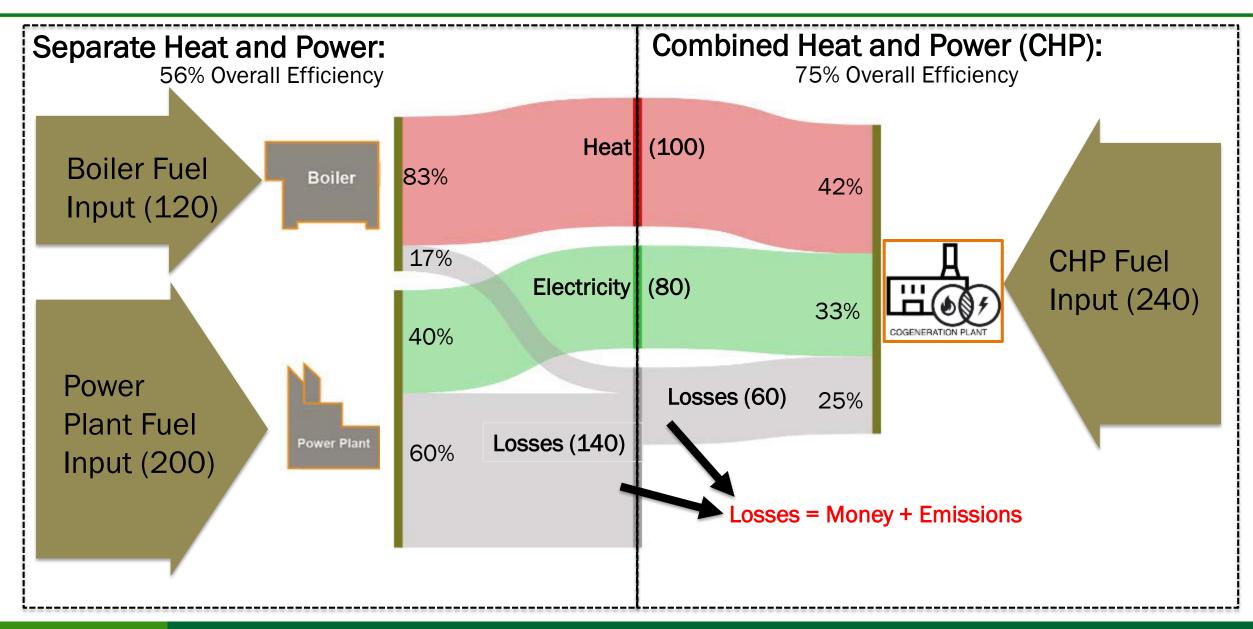
Microgrid Ready PV


- If there are future microgrid plans at a site, consider microgrid ready PV
- Microgrid ready PV: the practice of including low or no-cost measures when installing a PV system that will facilitate the integration of that PV system into a microgrid at a later point
- Microgrid ready PV includes:
 - Inverters capable of operating in both grid-interactive and microgrid modes
 - Inverters capable of responding to commands from a microgrid controller
 - Reserved space near the PV system for microgrid and equipment expansions
- Check out FEMP's factsheet on <u>Microgrid-Ready Solar PV Planning for</u> <u>Resiliency</u> (<u>https://www.nrel.gov/docs/fy18osti/70122.pdf</u>)</u>

Quiz tip: Microgrid ready PV includes inverters capable of operating in both grid-interactive and microgrid modes, inverters capable of responding to commands from a microgrid controller, and reserving space near the PV system for microgrid and equipment expansions

Combined Heat and Power (CHP)

What Is CHP?


CHP* is the coincident generation of electricity and usable thermal energy -Typically located near the load/building, so that thermal energy can be directly used

*CHP is also called "cogeneration" – these are synonymous terms

Quiz tip: CHP stands for Combined Heat and Power

Why COMBINED heat and power instead of SEPARATE?

If you answer "yes," improves CHP viability

- Do you have a year-round, baseload need for electricity and heat?
- Do you have high electricity prices?
- Do you have space-heating radiators compatible with hot water?
- Is there a significant loss of revenue due to grid outages?
- Are there critical loads which must be served during a grid outage?

Quiz tip: The economics of CHP improve if there is a year-round need for both electricity and heat (e.g., laundry, food service, absorption cooling, etc.) at a federal site with a central heating system.

Common Applications for CHP

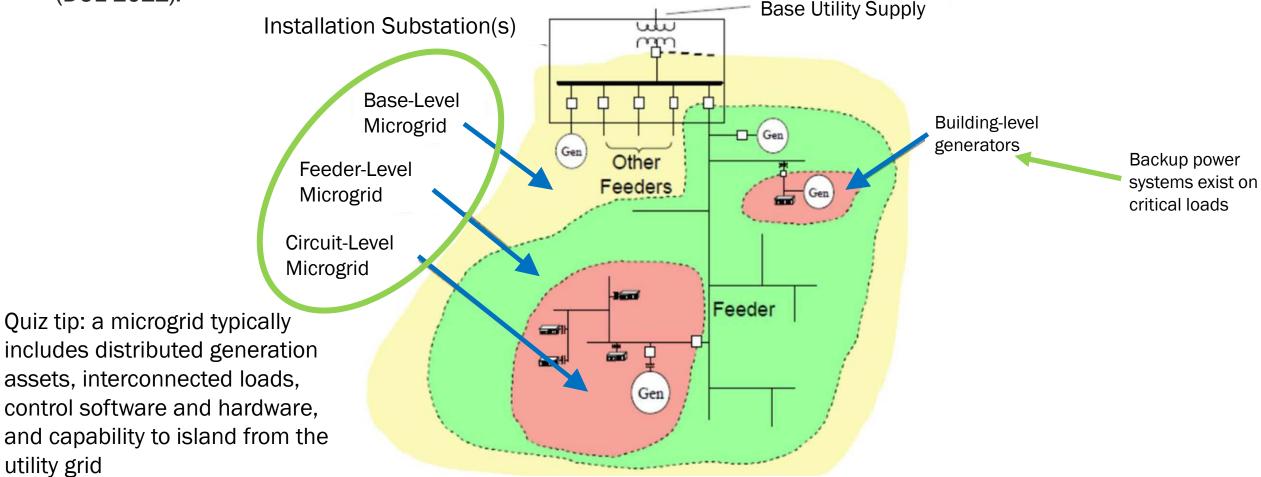
- Colder climates, remote communities
- Buildings which have hot water distribution systems currently supplied by a boiler
- Use of absorption chilling in the summer (heat-driven cooling)
- Common fuels (% by count, not by capacity):
 - Natural gas (~70%)
 - Biomass digester gas (~10%)
- Common building types (% by count, not by capacity):
 - Multi-family residential (~10%)
 - Schools (~8%)
 - Hospitals (~5%)
 - Food processing (~5%)

Existing CHP installations:

CHP Costs and Benefits

- CHP has *high-initial capital cost*, and modest operating and maintenance (0&M) costs
- CHP should be sized to operate most of the year at a high-capacity factor (>75%) to produce energy savings to justify initial investment
- CHP typically increases on-site natural gas consumption (fuel for CHP), but lower grid-electricity purchases result in a *net savings*
- CHP typically *lowers overall emissions* created by the site (with site-tosource ratios for electricity), even though on-site emissions likely increases

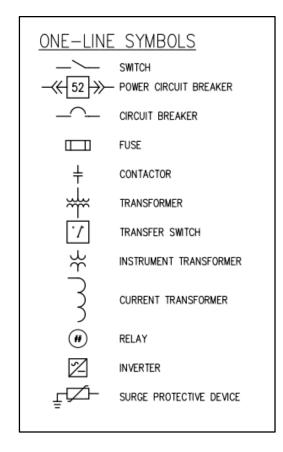
CHP for Resilience


- CHP provides on-site electricity generation which can provide back-up power during a grid-outage, and thermal loads can still be met
- The natural gas supply (fuel for CHP) is much more reliable (less "outages") than the electric grid
- For highly critical back-up needs that anticipate the natural gas supply could be interrupted, dual-fuel prime-movers are available
 - A backup diesel or propane storage tank on-site would enable the prime-mover to continue operation

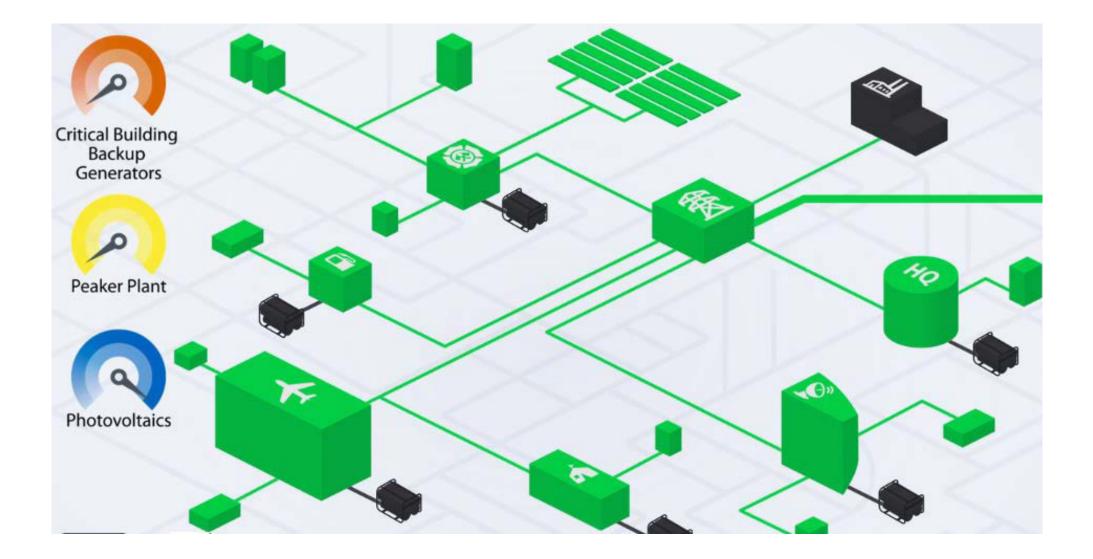
Microgrids

What Is a Microgrid?

Microgrid – DOE Definition


A group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid, and can operate in both grid-connected or island-mode (DOE 2011).

utility grid


Components of a Microgrid

- Distributed generation assets
- Energy storage
- Interconnected loads
- Conductors
- Switching devices to island from the utility grid
 - Disconnect Switch
 - Transfer Switches (automatic or manual)
- Protection Devices
 - Protective Relays/Circuit Breakers
 - Recloser
 - Fuses
- Power Factor Correction
 - Voltage Regulator
 - Capacitor
- Microgrid Control Software and Hardware
 - This is an often-overlooked cost component of a microgrid
 - This can be a significant portion of the overall microgrid's cost, especially for smaller microgrid systems

Quiz tip: microgrid costs that are often overlooked include the microgrid control software and hardware

Unplanned Utility Outage: Transition to Microgrid Operations

Basic

- Grid-level generators that can island •
 groups of loads from grid
 - Connected generators can parallel
 - Manual operation of all switching and generation

Intermediate

Grid-level generators that can remotely island loads from grid

- System is half-automated, but still requires manual load shedding
- Generators can be remotely controlled once loads are shed

Advanced

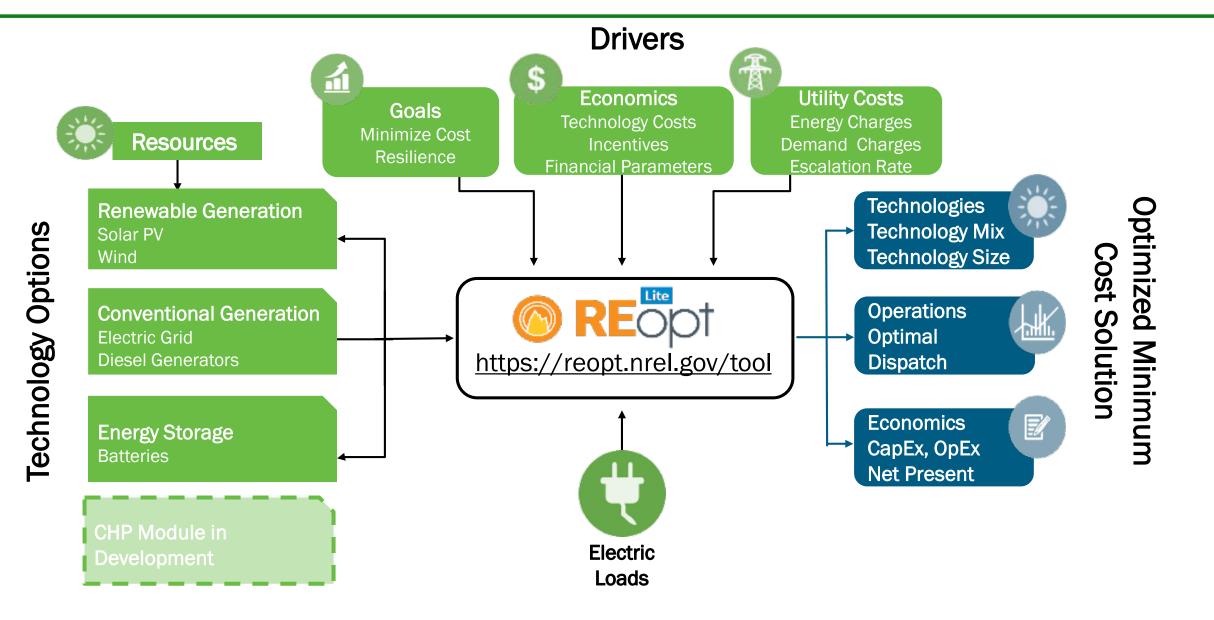
- Full Smart Microgrid capability
 - Entire installation can be islanded
 - Central control of load shedding
 - Central control of generator output

Quiz tip: a microgrid is <u>not</u> a recommended solution at all federal sites

Do You Need a Microgrid?

Whether an agency pursues a microgrid is typically based on two factors:

- **1.** The agency has a need for increased resilience:
 - Are there critical site functions that could result in significant risk to loss of life or equipment if disrupted?
 - Examples: hospitals, flight operations, laboratory tests, emergency shelters
 - Is your utility power unreliable?


2. The cost and economic benefits of the microgrid:

- Is the improvement in resilience worth the added cost?
 - Microgrids are generally very expensive, because each site is different and requires tailored analysis, engineering, and equipment.
- Can the microgrid provide savings during normal operations?
 - Microgrids can provide a variety of financial benefits, including: Peak shaving, energy price arbitrage, demand response, RECs, capacity market payments, among others.

Quiz tip: microgrids are *not* always cost effective and recommended for every site

REopt Lite Overview and Exercise

REopt Lite: Free Web Tool to Optimize Economic & Resilience Benefits of DERs

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

REopt Lite Exercise

- Using your laptop (preferred), tablet, or cell, go to the REopt Lite webtool: <u>https://reopt.nrel.gov/tool/</u>
 - Choose your focus: select "financial"
 - Enter your site data (see information sheet on your table)
 - Write down your results
- WiFi information provided
- Each table has a different set of inputs and should expect different outputs
- You can work together with someone at you table, or alone
- If you get stuck, raise your hand
- We will go through the results at the end

Results

L	ocation	Electric rate structure	Net metering	Building/ load type	PV size	Battery size	NPV [\$]	1-hr outage Surviva- bility	12-hr outage Surviva- bility
1 [Denver	Flat	2,000 kW	Large office	0 kW	0 kW / 0 kWh	\$0	0%	0%
2 [Denver	Demand	2,000 kW	Large office	2,000 kW	18 kW / 24 kWh	\$ 189k	30%	~0%
3 [Denver	Flat	2,000 kW	Midrise apartment	0 kW	0 kW / 0 kWh	\$0	0%	0%
4 [Denver	Demand	2,000 kW	Midrise apartment	41 kW	0 kW / 0 kWh	\$ 1k	24%	0%
5 3	San Diego	Flat	10,000 kW	Large office	4,654 kW	0 kW / 0 kWh	\$ 3,339k	39%	1%
6 3	San Diego	Demand	10,000 kW	Large office	4,654 kW	137 kW / 181 kWh	\$3,864k	49%	2%
7 5	San Diego	Flat	10,000 kW	Midrise apartment	174 kW	0 kW / 0 kWh	\$ 124k	39%	~0%
8 3	San Diego	Demand	10,000 kW	Midrise apartment	174 kW	1 kW / 2 kWh	\$ 130k	40%	~0%

Load Profile, Solar Resource, & Utility Rate Comparison

Load Profile & Solar Resource Comparison (1 week)

[\$/kW]

\$0

\$15

\$0

\$18

Resources

- REopt Lite: <u>https://reopt.nrel.gov/tool</u>
 - Tool
 - Help manual
 - Send tool feedback & ask a question: <u>reopt@nrel.gov</u>
- REopt Website (full model)
 - Analysis services
 - Case studies

Q&A Session

Experts in the Room

Rachel Shepherd FEMP, Program Lead Federal distributed energy projects rachel.shepherd@ee.doe.gov

Emma Elgqvist NREL, Engineer Solar PV + Storage economics <u>emma.elgqvist@nrel.gov</u>

Andy Walker NREL, Principal Engineer Solar PV andy.walker@nrel.gov

Alicen Kandt NREL, Senior Engineer Federal distributed energy projects <u>alicen.kandt@nrel.gov</u>

Doug Gagne NREL, Engineer Federal Project Financing doug.gagne@nrel.gov

Keith McAllister Kestava Energy LLC, Manager CHP <u>keith@kestavaevergy.com</u>

Bill Becker NREL, Engineer CHP <u>william.becker@nrel.gov</u>

Kathleen Krah NREL, Engineer Solar PV + storage economics <u>kathleen.krah@nrel.gov</u>

Chuck Kurnik NREL, Senior Engineer Microgrids <u>chuck.kurnik@nrel.gov</u>

Kevin DeGroat Antares Group, Project Director Federal project reporting <u>kdegroat@antaresgroupinc.com</u>

Submit a Request: https://www7.eere.energy.gov/femp/assistance/

End Of Presentation

Emma.Elgqvist@nrel.gov

NREL/PR-5D00-74625

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the presentation for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.