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3Why Hawaii?

• Highest distributed PV capacity of any state 
(as percentage of load)

• ~50% of peak load
• High electricity costs for geographic 

reasons
• Historical PV incentives

• First state to mandate a 100% renewables 
goal (100% by 2045)

• Distributed PV will play a major role due 
to land constraints

• Peak island-wide inverter penetrations of 
50%-80% in 2018 (depending on island)

Total peak load is 
about 1600 MW

Figure Credit: 
Hawaiian 
Electric 
Companies



4Why Hawaii?

• Hawaii’s Rule 14H (DER interconnection) has led the way in smart inverter functionality 
adoption in the U.S. (along with California’s Rule 21)

• Hawaii required some advanced functionality even before it could be tested and 
certified under UL 1471 SA

• Advanced inverter functions currently required in Hawaii:
• Voltage and frequency ride-through
• Transient overvoltage mitigation (self-certification)
• Volt-var control
• Frequency-watt control
• Soft-start
• Ramp-rate control
• Volt-watt (currently optional; under discussion for blanket activation)
• Remote upgrade capability

• So far, no requirement for communications between utility and inverter
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2010

Many feeders 
> 1% 
Gross 

daytime 
minimum 

load (GDML*) 

2011

Many feeders 
> 15% 
GDML

2013

Many feeders 
> 100% 
GDML 

2016

Many feeders 
> 250%
GDML 

Distribution PV Penetration (Oahu Example)

*GDML = The minimum feeder load the utility would see during daylight hours if PV were not present
Slide courtesy of Adam Warren, NREL.  (Modified)



6System-Wide PV Penetration (Oahu Example)

Figure Credit:
Hawaiian Electric Companies



7System-Wide PV Penetration (Maui Example)

Figure Credit:
Hawaiian Electric Companies



8Future Expected Renewables and PV

Total renewable penetration: 
≡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑘𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
Total distributed PV

Figure Credits:
Hawaiian Electric Companies
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10Selected Technical Challenges

Existing and past challenges
• Steady-state voltage issues
• Islanding and transient voltage issues (GFOV/TOV, LROV/TrOV)
• Deterioration of frequency response (reduction of inertia, PFR, regulation)
• Lack of visibility and controllability of DER and grid-edge conditions
• Extremely difficult to change settings of legacy inverter fleet (due to logistical, cost, 

and policy challenges)
• …

Emerging and future challenges
• Operation of very low inertia grids with 80-100% inverter-based generation at times
• Balancing load and variable generation across multiple timescales
• Control of thousands of individual customer-owned DERs
• Cybersecurity of DERs (manufacturer communications; possible future 

utility/aggregator comms)
• …



11Solutions: Voltage and Frequency Ride-through

• Activating relatively wide voltage and frequency ride-through capabilities was step 
#1 towards successfully operating a grid with high levels of PV

• “Legacy” inverters that don’t have ride-through capability (or can’t easily have ride-
through enabled) are an ongoing system stability problem

• Lesson learned: require voltage and frequency ride-through capability and 
relatively wide trip settings early to avoid future problems when more DERs 
come online

• This required compromises between transmission and distribution planners

• By working with Enphase, Hawaiian Electric was able to retroactively widen voltage 
and frequency trip settings for many legacy DERs  

• This was a major effort and would be even harder in a market not dominated by 
one manufacturer  

• Would not have been possible without Enphase’s communication solution, 
which many other inverter manufacturers may not have



12Solutions: Establishing Trust in Smart Inverters
• In 2015 and 2016, HECO and NREL tested 

advanced functionality of several inverters:
• V and F ride-through
• Ramp rate control and soft start
• Fixed power factor
• Volt-var and volt-watt

• Tests conducted at NREL’s ESIF*:
• Baseline tests to characterize inverter 

responses (pre UL1741 SA)
• Power HIL tests to validate inverter behavior 

while connected to a real-time simulation of 
HECO’s system

• Conclusions:
• Inverters largely performed as expected
• Anomalous behavior was reported to 

manufacturers and fixed (firmware upgrade)
• Smart inverter functions generally benefit 

grid operations

Example power HIL test of two inverters at fixed 
PF of 0.95 (absorbing) in volt-watt control mode 

https://www.nrel.gov/docs/fy17osti/67485.pdf

*ESIF = Energy Systems Integration Facility, DOE’s flagship lab for smart grid and related testing.
**HIL = Hardware-in-the-loop: A computer simulation running in real-time linked to actual hardware.

https://www.nrel.gov/docs/fy17osti/67485.pdf


13Solutions: LROV

• As feeders began backfeeding substations, load 
rejection overvoltage became a concern

• SolarCity, HECO, and NREL collaborated to test 
several inverters’ load rejection responses

• FIGII* developed consensus test procedure to 
quantify LROV response

• NREL evaluated load rejection response of five 
inverters in ESIF lab

• Typically, inverters disconnected very quickly, 
avoiding potentially damaging overvoltage

Outcomes:
• HECO required all inverters be tested for LROV 

prior to interconnection, and increased feeder PV 
limit from 120% of GDML to 250% of GDML

• LROV test now incorporated into draft IEEE 
1547.1 (and so will become part UL 1741 in 2020)

Example LROV test waveform at 10:1 
generation:load ratio

http://www.nrel.gov/docs/fy15osti/63510.pdf

*Forum on Inverter Grid Integration Issues, an industry group (formerly ITFEG)

http://www.nrel.gov/docs/fy15osti/63510.pdf


14Solutions: GFOV

• As high-PV feeders began backfeeding substations, 
ground fault overvoltage became a concern

• SolarCity, HECO, and NREL collaborated to test 
several inverters’ ground fault responses

• FIGII developed consensus test procedure to 
quantify GFOV response

• NREL evaluated three inverters in ESIF lab
Findings:
• Inverters do not maintain line-line voltages and 

typically disconnect quickly, avoiding potentially 
damaging overvoltage, but may remain connected 
briefly when fault is masked by transformer

• Where a GFOV may occur in a location that could 
be islanded with balanced real and reactive power, 
minimal wye-connected load, and no zero-
sequence continuity to the DER location, an 
analysis may be needed to evaluate the possibility 
of damage to surge arrestors

Example GFOV test waveforms with fault 
masked by D:Y transformer

http://www.nrel.gov/docs/fy15osti/64173.pdf
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See IEEE C62.92.6 for GFOV with inverters

http://www.nrel.gov/docs/fy15osti/64173.pdf
https://standards.ieee.org/standard/C62_92_6-2017.html


15Solutions: Unintentional Islanding

• With rollout of ride-through (V and f) and other smart 
inverter functions, possible conflicts with inverter anti-
islanding controls became a concern

• HECO, NREL and SolarCity tested the effects of ride-
through, volt-var, and frequency-watt on three inverters’ 
anti-islanding performance 

• Tests included cases with multiple inverters connected at 
multiple neighboring locations on the same feeder

Outcomes
• No islands were found to extend beyond 0.7 seconds
• Volt-var and frequency-watt control had no statistically 

significant impact on island duration
• Ride-through tended to extend island duration by ~75 ms
• HECO relies on inverter anti-islanding in almost all cases. 

HECO recloser time settings are long enough to minimize 
the chance of out-of-phase reclosure

Example multi-inverter island test 
waveforms

https://www.nrel.gov/docs/fy16osti/66732.pdf
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17Case Study: Volt-Var and Volt-Watt Control

• PV at unity PF causes steady-state overvoltage issues 
in some locations

• Currently impractical to actively control thousands of 
individual PV systems

• Near-term solution: autonomous inverter responses 
• Fixed power factor operation
• Volt-var control
• Volt-watt control

• HECO initially required PV systems operate at 0.95 PF 
(absorbing vars)

• NREL, HECO, and industry collaborators expected 
volt-var control be more beneficial (to all) than fixed PF

• NREL and HECO conducted several studies
• Detailed time-series simulation
• Field pilot study
• Lab testing at ESIF
• Objective: Quantify impacts on utility and on 

customers (i.e. curtailment?)



18Case Study: Volt-Var and Volt-Watt Control

Detailed feeder simulations:
• NREL and HECO performed detailed quasi-static 

time-series analysis of two HECO feeders to 
evaluate 0.95 PF, volt-var control, and volt-watt 
control

• Accurate analysis of volt-var and volt-watt 
requires modeling of secondary circuits

• Volt-var was found to result in fewer voltage 
violations, fewer tap-changer operations, reduced 
losses, and less PV curtailment than fixed PF of 
0.95

• PV energy curtailment due to volt-var and volt-watt 
was near zero in almost all cases, with a few 
outliers 

• Also simulated cases with self-supply PV-battery 
systems.

• Lower voltages
• HECO now requires volt-var for all new DERs

Example weekly simulation of feeder with 
6.8 MW of distributed PV 

https://www.nrel.gov/docs/fy17osti/68681.pdf
https://www.nrel.gov/docs/fy19osti/72298.pdf
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https://www.nrel.gov/docs/fy17osti/68681.pdf
https://www.nrel.gov/docs/fy19osti/72298.pdf


19Case Study: Volt-Var and Volt-Watt Control

Pilot study:
• NREL and HECO installed monitoring, sensors, 

and communications to about 30 PV locations 
expected to have high voltage

Findings
• Voltages were typically lower than expected 

• Limited information available in planning 
studies leads to conservative assumptions

• PV energy curtailment due to volt-var and volt-watt 
was typically zero or near-zero

• Curtailment of >1% identified in two cases
• One location mitigated through 

conventional (wires) solution
• Other location has ~1.1% curtailment. 

Mitigation needed?
• Large-scale deployment of sensing for accurate 

curtailment estimates is cost-prohibitive for 
residential-scale PV

Estimating PV curtailment due to volt-var 
and volt-watt using plane-of-array irradiance 
data during an unusual high-voltage period
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20Case Study: Volt-Var and Volt-Watt Control

Conclusions:
• Volt-var and volt-watt control are useful tools for mitigating high customer voltages due to behind-

the-meter PV
• Volt-var curtailment impacts on PV production are typically near-zero (at least for the volt-var 

curve used in Hawaii)
• If the sloping region of the volt-watt curve is outside ANSI Range B (1.06 pu), volt-watt 

provides a backstop against occasional high voltages while maintaining near-zero curtailment
• It is difficult to predict in advance exactly which locations will have high voltages, and periods of high 

voltage sometimes occur for a few days at a time due to feeder reconfigurations (utility switching)
• Volt-var and volt-watt are most beneficial if deployed system-wide

Ongoing work and next steps:
• HECO deploying AMI with all new PV systems

• NREL receiving and analyzing AMI data in ESIF High Performance Computing (HPC) Center
• NREL and HECO developing “non-wires alternatives toolbox” for mitigation of high voltages

• Most new PV systems in Hawaii now have integrated battery storage – daytime export is no longer 
economical in most cases

• This helps maintain voltages within ANSI Range A
• Leverage storage for other purposes?
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22Solutions: Frequency-Watt Control

• As PV displaces conventional generation, system 
frequency stability is degraded

• DERs can help mitigate this by providing rapid 
frequency response (e.g. frequency-watt droop)

DOE GMLC project (HECO-NREL-SNL) examined 
ability of real hardware inverters to provide fast droop 
response

Approaches:
• Inverter hardware response characterization
• PSSE simulations
• Stability analysis
• Inverter controls development
• PHIL tests (at NREL ESIF)

PHIL Test Setup Including Real-time Model 
of Oahu Power System

https://www.nrel.gov/docs/fy17osti/68884.pdf
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23Solutions: Frequency-Watt Control

Findings:
• Many (but not all) off-the-shelf inverters can 

respond very quickly (sub-second) to frequency 
events

• At the time of testing (2017), most inverters only 
provided overfrequency response (even if 
headroom for underfrequency response available)

• Fast response is needed to mitigate frequency 
events in low inertia systems

• Under-frequency load-shedding (UFLS) can make 
DER frequency response less effective

Outcomes:
• IEEE 1547-2018 allows for very fast frequency 

droop if needed
• Very fast response may not be 

needed/desired in all cases
• HECO now requires freq-watt for all new DERs

Example PHIL test of overfrequency event 
demonstrating DER inverters mitigating 

cascading event

https://www.nrel.gov/docs/fy17osti/68884.pdf
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24Conclusions

• Activating relatively wide voltage and frequency ride-through early is step #1 towards 
successfully operating a grid with high levels of PV

• Inverter anti-islanding controls were found reliable even with grid support active, and 
even in the multi-inverter, multi-PCC scenarios tested

• LROV concerns are easily mitigated through type-testing; GFOV is more complicated 
(but is not a problem if zero-sequence continuity is maintained)

• Power HIL tests validate the benefits of advanced inverter functions
• For feeders with very large numbers of distributed inverters, volt-var control is more 

beneficial to the utility and the customers than fixed PF 
• Volt-watt control is beneficial as a backstop against high customer voltages, especially 

given limited grid-edge visibility
• Ensuring the correct inverter settings are deployed in field requires verification
• Smart inverters won’t solve all your problems, but they can help!



25Questions and possible next steps

• How to transition older “legacy” PV systems to advanced inverters?
• DER inverter fault response?  Is “momentary cessation” okay if 100+ MW of distributed 

inverters do it?
• Grid services from DERs?  

• Bulk grid services? Local services?  Aggregators?  DERMS? … Cybersecurity?
• Inverter data integration into utility systems?  

• Planning?  Operations?
• Coordinated control of DERs?
• What other utility devices are needed in ultra-high DER world? D-STATCOMs?  

Synchronous condensers?
• What is the role of grid-forming inverters?
• Which of the above are appropriate for DERs vs larger utility-scale PV-battery plants?
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