A novel reformulation of the Pseudo2D battery model coupling large deformations at particle and electrode levels

Weijie Mai, Andrew Colclasure, Kandler Smith
235th ECS Meeting
Dallas, Texas
May 26, 2019
Si anode has high energy density but suffer from large deformation.

Si anode + Daxin Binder

4200 mAh/g, 400% volume expansion

Electrode/Cell deformation

Active material (AM) expansion causes electrode deformation and porosity reduction.

A model coupling multi-scale deformations required for better cell design.
Introduction

- **Goal**: consistently incorporate deformations based on the P2D framework
- **Challenge**: infinitesimal deformation assumption inapplicable

P2D Newman model

<table>
<thead>
<tr>
<th>Particle Domain</th>
<th>Electrode Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D spherical particle model</td>
<td>1D porous electrode model</td>
</tr>
</tbody>
</table>

\[j(X) = a(X)i_{surf} \]

P2D model coupling large deformations

<table>
<thead>
<tr>
<th>Particle Domain</th>
<th>Electrode Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D spherical particle model</td>
<td>1D porous electrode model</td>
</tr>
</tbody>
</table>

\[j(x) = a(x)i_{surf} \]
Formulation: large deformation in electrode domain

- Finite strain theory
 - Deformation composed of elastic and inelastic deformations
 \[F = I + \nabla u \quad F = F_c F_c \]
 multiplicative decomposition
 \[u : \text{displacement vector} \]
 \[F : \text{deformation gradient tensor} \]
 - Isotropic inelastic deformation due to Li insertion/extraction
 \[F_c = \left(1 + \frac{\Omega_e}{3} \Delta C_{s,\text{avg}} \right) I \]
 \[\epsilon_e = \frac{1}{2}(F_e^T F_e - I) \]
 \[\Omega_e : \text{partial molar volume of Li in electrode} \]
 \[\epsilon_e : \text{elastic strain tensor} \]
 - Displacement can be solved by
 \[S = J_c F_c^{-T} (C : \epsilon_e) F_c^{-1} \]
 \[\nabla \cdot (FS)^T = 0 \]
 \[\sigma = J^{-1} F S F^T \]
 \[S : \text{Secondary PK stress} \]
 \[\sigma : \text{Cauchy stress} \]
 \[C : \text{stiffness tensor} \]
 - The Jacobian of the deformation gradient tensor – change of volume
 \[J = \det(F) = \frac{dV}{dV_0} \]
Formulation: conservation law in reference frame

- **Eulerian conservation law**

 \[
 \frac{\partial c(\mathbf{x})}{\partial t} = -\nabla_x \cdot \mathbf{N}(\mathbf{x}) + R(\mathbf{x})
 \]

 \[
 \mathbf{N}(\mathbf{x}) = -D \nabla_x c(\mathbf{x}) + c(\mathbf{x}) \mathbf{v}(\mathbf{x})
 \]

 - Volume element (fixed in space)
 - Need to include a convection term
 - Need to explicitly keep track of the deformation

- **Lagrangian conservation law**

 \[
 J = \det(\mathbf{F}) = \frac{dV}{dV_0}
 \]

 \[
 \frac{\partial}{\partial t} \left[c(\mathbf{X}) J(\mathbf{X}) \right] = -\nabla_X \cdot \mathbf{N}(\mathbf{X}) + R(\mathbf{X}) J(\mathbf{X})
 \]

 \[
 \mathbf{N}(\mathbf{X}) = -J F^{-1} DF^{-1} \nabla_X c(\mathbf{X}) = -D_X \nabla_X c(\mathbf{X})
 \]

 - Approximate field distributions in the undeformed geometry
 - Material volume: \(dV_0(\mathbf{X}) \rightarrow dV(x(\mathbf{X}))\)
 - Effect of deformation on conservation is embodied in deformation gradient tensor \(\mathbf{F}\)
Formulation: P2D with large deformation

- Particle deformation
 - Particle size change from \mathbb{R} to $\mathbb{R}(X)$ after lithiation/delithiation
 - Within each particle, the deformation is characterized by the particle deformation gradient tensor $F_p(R)$

 $$
 F_p = \begin{bmatrix}
 \frac{\partial r}{\partial R} & 0 & 0 \\
 0 & \frac{r}{R} & 0 \\
 0 & 0 & \frac{r}{R}
 \end{bmatrix}
 $$

 - In the current model, we assumed that deformation within particle is uniform

 $$
 \frac{\partial r}{\partial R} = \frac{r}{R} = \lambda \quad \Rightarrow \quad J_p = \frac{V_p}{V_{p,0}} = \det(F_p) = \lambda^3
 $$

 - Alternatively the particle deformation can be expressed in terms of electrode-level variables

 $$
 J_p = \frac{dV_s}{dV_{s,0}} = \frac{\varepsilon_s}{\varepsilon_{s,0}} J
 $$

 - Particle stretch can be expressed as

 $$
 \lambda = \frac{r}{R} = \left(\frac{\varepsilon_s}{\varepsilon_{s,0}} J \right)^{1/3}
 $$

AM expansion affects solid diffusion distance
Formulation: P2D with large deformation

- Solid diffusion in particle
 \[
 \frac{\partial}{\partial t}(J_p c_s) = -\frac{1}{R^2} \nabla_L (R^2 J_L)
 \]

- Charge conservation in electrolyte
 \[
 \nabla_L \cdot \mathbf{i}_l = j J
 \]

- Charge conservation in electrodes
 \[
 \nabla_L \cdot \mathbf{i}_s = -j J
 \]

- Mass conservation in electrolyte
 \[
 (1 - \varepsilon_s) J \frac{\partial c_e}{\partial t} = \nabla_L \cdot \left[D_l^L \nabla_L c_e - \frac{i_{e+}}{F} \right] + \frac{j}{nF} J,
 \]
 electrolyte modeled as incompressible fluid

- Variation of solid volume fraction
 \[
 \frac{\partial (\varepsilon_s J)}{\partial t} = -\frac{s \Omega_e}{nF} j J
 \]
 \[\varepsilon_e = 1 - \varepsilon_s\]

The new model:
- Approximates two additional fields (electrode displacement, AM volume fraction)
- Conservation laws are formulated in the reference frame
- Only requires minor modifications of the existing P2D governing equations
Additional multiphysics coupling and assumptions

- **Stress-dependent OCP**

 Lu et al. Physical Chemistry Chemical Physics (2016)

 \[E_{Si}^{eq} = E_{Si}^{eq}(SOC) + \frac{\Omega \sigma_R}{F} \]

 Voltage hysteresis of Li\(_x\)Si system due to the effect of stress

- **Porosity-dependent mechanical properties**

 \[E = E_s (1 - \frac{\varepsilon_e}{\varepsilon_0})^n \]

 \[\nu = \nu_s + \frac{\varepsilon_e}{\varepsilon_1} (\nu_0 - \nu_s) \]

- **Specific surface area**

 \[a = \frac{3\varepsilon_s}{r(x)} = \frac{3\varepsilon_s}{R} J_p^{-\frac{1}{3}}(x) \]

 Couples particle deformation and porosity reduction

- **Assumptions**

 - All deformations are elastic and nondestructive
 - Uniform and isotropic deformation within each particle
 - Negligible in-plane electrode deformation (thin electrode is well adhered to strong metal foil cc)
 - Electrolyte move out/into a material volume only in the out-of-plane direction
 - Electrode is composed of only active material and electrolyte
Low rate performance (0.02C)

- Si anode/NMC532 cathode; ANL Gen2 electrolyte; 5 mAh/cm² ($L_{cell} = 143.3 \mu m$)
- 0.02C charge to 4.08 V; both ends of the cell are fixed

Case I: P2D

- Thickness changes: anode (35.6%↑), separator (20.1%↓), cathode (9.3%↓)
- Porosity reductions: anode (43.8%↓), separator (41.8%↓), cathode (18%↓)
- Uniform porosity within each component
- Negligible impact on cell voltage and capacity
Low rate performance (0.02C, Case II)

- Nonuniform particle expansion and specific surface area increase
- Magnitude of variation is small due to low charge rate
- Average particle expansion close to the analytical value
- Both σ_{xx} and σ_h in anode are uniform due to relatively uniform Li insertion rate distribution
High rate performance (1C)

Case I: P2D
Case II: P2D+deformations
Case III: Case II+OCP(σ_h)

- Nonuniform porosity reduction and deformations due to faster lithiation rate near anode/separator interface
- Porosity reduction leads to increase of charge overpotential
- The stress effect slightly improve the uniformity of field distributions in anode
Effect of porosity and loading (1C, Case III)

- Optimal volumetric energy density (~900 Wh/L) obtained for $\varepsilon_{a,0} = 0.5$
- The predicted optimal loading is 4 mAh/cm²
- Classic P2D overpredicts cell energy density especially for lower electrode porosity and higher loadings
Si/C anode (half cell, 4 mAh/cm², 0.02 C)

- $\varepsilon_e,0 = 0.5$, $\varepsilon_C,0 = 0.43$, $\varepsilon_{Si,0} = 0.07$
- Sequential lithiation/delithiation of graphite and Si
- Significant reduction of porosity due to Si expansion even though its initial volume fraction is low
Conclusion/Future Work

- The P2D model was reformulated to consistently couple particle and electrode deformations.
- Deformations and porosity reduction significantly affect the accessible capacity of the cell.
- The proposed model shows notable differences in predicting the optimal cell loading and electrode porosity compared with the P2D model.
- The model is under further development to resolve particle-level stress and allow simulating performances of composite anode (Si/C).

P2D Newman model

P2D model coupling large deformations
Complementary materials

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cathode</th>
<th>Separator</th>
<th>Anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (μm)</td>
<td>1.8</td>
<td>N/A</td>
<td>0.1</td>
</tr>
<tr>
<td>D_s (m^2/s)</td>
<td>Appendix B</td>
<td>N/A</td>
<td>1e-16</td>
</tr>
<tr>
<td>κ_s (S/m)</td>
<td>100</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td>i_0 (A/m^2)</td>
<td>Appendix B</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Ω (m^3/mol)</td>
<td>7.8e-7 [22]</td>
<td>N/A</td>
<td>9.0e-6 [23]</td>
</tr>
<tr>
<td>$C_{s,\text{max}}$ (kmol/m3)</td>
<td>49.6</td>
<td>N/A</td>
<td>333.3</td>
</tr>
<tr>
<td>$\varepsilon_{e,0}$</td>
<td>0.35</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>L_0 (μm) @ 5 mAh/cm2, N:P=1.2</td>
<td>96.4</td>
<td>20</td>
<td>26.9</td>
</tr>
<tr>
<td>Intercalation fraction</td>
<td>(0.3,0.9)</td>
<td>N/A</td>
<td>(0.1,0.6)</td>
</tr>
<tr>
<td>E_s (GPa)</td>
<td>2.5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ν</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Bruggeman factor</td>
<td>2.2</td>
<td>2.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 1: Values of the parameters used in the current model for all example problems unless stated otherwise.
Complementary materials

<table>
<thead>
<tr>
<th>Variable</th>
<th>Governing equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_s</td>
<td>$\frac{\partial}{\partial t} \left[\frac{\varepsilon_s}{\varepsilon_{s,0}} (1 + \frac{\partial u}{\partial X}) c_s \right] = \frac{1}{R^2} \frac{\partial}{\partial R} \left[R^2 D_E \left[\frac{\varepsilon_s}{\varepsilon_{s,0}} (1 + \frac{\partial u}{\partial X}) \right]^{1/3} \frac{\partial c_s}{\partial R} \right]$</td>
</tr>
<tr>
<td>ε_s</td>
<td>$\frac{\partial}{\partial t} \left[(1 + \frac{\partial u}{\partial X}) \varepsilon_s \right] = -\frac{s \Omega}{n_F} (1 + \frac{\partial u}{\partial X}) i_E a$</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>$\frac{\partial i_s}{\partial X} = -(1 + \frac{\partial u}{\partial X}) i_E a$</td>
</tr>
<tr>
<td></td>
<td>$i_s = -\kappa_{s,\text{eff}} \nabla \phi_s$, $\kappa_{s,\text{eff}} = \kappa_s e_s^b / (1 + \frac{\partial u}{\partial X})$</td>
</tr>
<tr>
<td>ϕ_e</td>
<td>$\frac{\partial i_e}{\partial X} = (1 + \frac{\partial u}{\partial X}) i_E a$</td>
</tr>
<tr>
<td></td>
<td>$i_e = -\kappa_{e,\text{eff}} \nabla \phi_e + \left(\frac{2 \kappa_{e,\text{eff}} R T}{F} \right) (1 + \frac{\partial \ln f^+}{\partial \ln c_e}) (1 - t_+) \nabla \ln c_e$</td>
</tr>
<tr>
<td></td>
<td>$\kappa_{e,\text{eff}} = \kappa_e e_e^b / (1 + \frac{\partial u}{\partial X})$</td>
</tr>
<tr>
<td>c_e</td>
<td>$\varepsilon_e (1 + \frac{\partial u}{\partial X}) \frac{\partial c_e}{\partial t} = \frac{\partial}{\partial X} \left(D_{e,\text{eff}} \frac{\partial c_e}{\partial X} - \frac{i_e t_+}{F} \right) + \frac{s}{n_F} (1 + \frac{\partial u}{\partial X}) i_E a$</td>
</tr>
<tr>
<td></td>
<td>$D_{e,\text{eff}} = D_e e_e^b / (1 + \frac{\partial u}{\partial X})$</td>
</tr>
<tr>
<td>u</td>
<td>$\nabla (FS)_{XX} = 0$</td>
</tr>
<tr>
<td></td>
<td>$(FS){XX} = (1 + \frac{\partial u}{\partial X}) (1 + \frac{\Omega \Delta C{s,\text{avg}}}{3}) \frac{E(1-\nu)}{2(1+\nu)(1-2\nu)} \left[\left(\frac{1 + \frac{\partial u}{\partial X}}{1 + \frac{\Omega \Delta C_{s,\text{avg}}}{3}} \right)^2 \right] + \frac{2\nu}{(1-\nu)(1+\frac{\Omega \Delta C_{s,\text{avg}}}{3})^2} - \frac{1+\nu}{1-\nu}$</td>
</tr>
</tbody>
</table>

Table 3: Explicit forms of the governing equations. Derivatives are defined in the reference configuration.
High rate performance (1C)
Effect of cell fixture condition (5 mAh/cm², \(\varepsilon_{a,0} = 0.5, 1\)C)

- Smaller porosity variation and thus more uniform Si utilization when P=0 psi
- Negligible porosity reduction in cathode and separator
- Separator is compressed more when both ends are fixed due to its lower Young’s module compared to electrodes
Effect of cell fixture condition (5 mAh/cm², $\varepsilon_{a,0} = 0.5, 1C$)

- Higher cell capacity and lower electrode stress when the cell is free to expand.
- Stress in cathode is slightly tensile for $P=0$ psi due to NMC contraction.
- ~9.1% increase of cell thickness, mainly due to Si anode expansion.
Formulation: porosity variation

- AM expansion causes porosity reduction and electrode deformation

\[
\frac{\partial \varepsilon_s}{\partial t} + \nabla \cdot (\varepsilon_s \mathbf{v}) = -\frac{s\Omega_e}{nF} j
\]

- Variation rate of solid volume fraction
- Electrode deformation rate
- Increase rate of AM volume

\(\varepsilon_s\) : volume fraction of solid phase
\(\Omega_e\) : partial molar volume of Li in electrode
\(\mathbf{v}\) : local electrode velocity vector
\(j = a(x)i_{\text{surf}}\) : volumetric current source

- Ratio of porosity reduction and electrode deformation depends on fixture condition
- Reference frame reformulation

\[
\frac{\partial (\varepsilon_s J)}{\partial t} = -\frac{s\Omega_e}{nF} j J
\]

\(\varepsilon_e = 1 - \varepsilon_s\)