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Corrosion

Electrochemical corrosion 
of metallization or cell, 
frame and grounding 
parts, where moisture 
ingress, system voltage, 
encapsulant (especially 
acidity), galvanic 
incompatibility, and 
temperature interact.

• CdTe modules Fielded, -1000 Vsys Florida 2 y

Delamination, can see through module

All-India Survey of Photovoltaic Module Reliability: 2014
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Corrosion

Electrochemical corrosion 
of metallization or cell, 
frame and grounding 
parts, where moisture 
ingress, system voltage, 
encapsulant (especially 
acidity), galvanic 
incompatibility, and 
temperature interact.

• CdTe modules Fielded, -1000 Vsys Florida 2 y

• System voltage (–), heat, humidity on surface of glass:    
E field drift of Na in glass to TCO

• Light, mechanical stress causes failure of edge seal, 
moisture ingress, current leakage increase

 Corrosion
- (depends on TCO) Degradation of the SnO2:F TCO 

suggested (possibly formation of NaF, Na2SnO3 and SnO)
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Potential-induced 
degradation (PID)

Potential-induced 
degradation (shunting 
type), where Na drifts 
under an electric field and 
then diffuses into the p-n 
junction

• C-Si module Fielded, -600 Vsys Florida 4 y

0.1 Imp = 0.78 A1 Imp = 7.8 A

Electroluminescence
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Potential-induced 
degradation (PID)

Naumann & coworkers (2012)
Harvey & coworkers (2016) 

System voltage (–), heat, humidity on surface of glass:       
E field drift of Na 
Light, moisture ingress modulate rate
 PID Drift of Na+ by E-field through SiNx Diffused at 
stacking faults

SIMS Map: Na in 
pockets below 
surface shunting 
junction

Potential-induced 
degradation (shunting 
type), where Na drifts 
under an electric field and 
then diffuses into the p-n 
junction
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Potential-induced 
degradation (PID)

Preconditioning with light, followed by PID test:
Pre-exposure to light increases PID
-- mechanism not clear

Potential-induced 
degradation (shunting 
type), where Na drifts 
under an electric field and 
then diffuses into the p-n 
junction


[image: ]



Example of influence of preconditioning with light before performance of PID test using IEC 62804-1 PID test method protocol.  In this case, the exposure to light before the PID stress enhanced the PID.
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Potential-induced 
degradation (PID)

PID stress light mitigates PID
-SiNx AR coating becomes photoconductive, arresting and 
neutralizing advancing Na+ ions

Potential-induced 
degradation (shunting 
type), where Na drifts 
under an electric field and 
then diffuses into the p-n 
junction
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Corrosion
Voltage

Mechanical loading
Humidity

Light
High temperature

Temperature cycling

Delamination
Voltage

High temperature
Humidity

Light
High temperature

Acid/corrosive gasses

Yellowing
Light

Voltage
Temperature

Temperature cycling
Mechanical loading

Power loss

High temperature
Light, mechanical loading

Humidity, dryness
Acid/corrosive gasses
Temperature cycling

Polymer 
failure

Combined stress 
factors and 

resulting 
degradation modes

stabilized

unstabilized

Voltage
Mechanical loading

Humidity
Light

High temperature
Temperature cycling
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IEC 61215 ed. 3 
Qualification test
…module is capable of withstanding 
prolonged exposure in use 
climates… 

Minimal examination of 
combination of stresses
- Some sequencing of 
stresses
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Field Fails

Issues manifesting in the field in modules that passed the standards
—Multiple factors working in combination leading to the degradation—

Q-CellsPolyamide
backsheet

PID Corrosion Snail trailsLeTIDEdge seal failure Delamination
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Fraunhofer ISE
2017

Fill factor primarily 
degrading, associated with 
failing Ag-Si contacts

Damp Heat, 85°C, 85% RH

Electroluminescence

Koehl and coworkers 
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NREL
2012

In field results, Isc is the 
primary loss factor leading 
to power degradation

Jordan and coworkers 
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Fraunhofer ISE, 
2014

Sequential tests to better 
replicate losses of Isc & FF 
as they appear in the field
- More representative levels of 
humidity in the module

Koehl and coworkers 
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AIST
2015

Light preconditioning 
followed by damp heat 
Increased degradation

Damp Heat, 85°C, 85% RHXe lamp 
preconditioning

Working model: light activates decomposition 
and formation of acetic acid in EVA
- Weakens Ag/Si contacts

Ngo and coworkers Electroluminescence
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NREL
Test-to-Failure
2010

Combined:
System voltage + Damp heat 
& alternatively sequenced 
with thermal cycling • Damp heat with bias  potential induced degradation

• Alternating DH with bias/TC  backsheet cracks
- Hydrolytic degradation,   desiccation, loss of plasticity, shrinkage, stress
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NREL
Test-to-Failure
2010

Combined:
System voltage + Damp heat 
& alternatively sequenced 
with thermal cycling • Damp heat with bias  potential induced degradation

• Alternating DH with bias/TC  backsheet cracks
- Hydrolytic degradation,   desiccation, loss of plasticity, shrinkage, stress
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DuPont
2017

Sequences of DH, UV, and 
TC to replicate backsheet
field failures

Polyamide (PA)

Polyvinylidene
Fluoride (PVDF)

MAST #1 Field

Module accelerated stress tests
(MAST)

MAST #1

Gambogi and coworkers, 2017
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DuPont
2017

Sequences of UV + heat, 
intermittent water spray to 
replicate backsheet field 
failures

Polyvinylidene
Fluoride (PVDF)

MAST #3 Field
Module accelerated stress tests
(MAST)

MAST #3

Polyethylene 
terephthalate
(PET)

Shown with Back-lightingGambogi and coworkers, 2017
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NREL/U. Aalborg
2017

Mechanical loading 
sequenced with thermal 
cycling, humidity freeze

Sequence of stresses yield power loss 
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NREL/U. Aalborg
2017

Mechanical loading 
sequenced with thermal 
cycling, humidity freeze

Losses from Jo, n, and 
importantly Rs in later stages
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AIST
2009

UV light + high temperature 
leads to delamination 
*some AR coating*

65°C + UV :180 W/m2 900 h 75°C without UV light, 1000 h

Field example, NM
Photocatalytic reactions at TiOx ARC 
leading to delamination

h+ + H2O → H+ + •OH

e− + O2 → •O2
−
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JPL
1980s

NREL/SunPower
2016

System voltage bias & 
damp heat leads to 
corrosion, delamination

Damp heat &
(–) system voltage bias

Field example, NM

Chamber
85°C, 85% RH 1000h  72°C 95% RH, -1000 V
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Field Fails

Issues manifesting in the field in modules that passed the standards
—Multiple factors working in combination leading to the degradation—

Q-CellsPolyamide
backsheet

PID Corrosion Snail trailsLeTIDEdge seal failure Delamination



NREL    |    30

Combined-accelerated 
stress testing • Heat

• Light
• Humidity

– Condensing
– Non-condensing

• Mechanical pressure
• System voltage
• Reverse bias (in progress)

Mini-module platform

In-situ Metrology
• RH, Tmodule, I-V, EL

Combining stress factors

Discover potential weaknesses in module designs, both known and not a-priori recognized, 
reduce risk, accelerate time to market, bankability and reduce costly overdesign, to lower the 
levelized cost of electricity.
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Protocol

Phase 2 – Multi-season

• Field relevant levels
• Acceleration factor  8 ✕ - 16 ✕
• No light + rain combination (wet during transitions)
• PID voltage bias with light only

Phase 1 – Based on ASTM D7869 for tropical conditions
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Stress cycle
(phase 1)

Xe lights on, system voltage bias on -

Lights on: humidity lower     -
Lights off: modules wet
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Modes Types/issues Stress factors IEC C-AST

Electroluminescence
C-AST, Days=0 10 24 37 78

A

B

Cell spacing, cell 
thickness/nature, ribbon 
dimensions/bends, non-
solder distance, 
solder/ECA quality

Mechanical and 
thermomechanical stress 
on conductors. Current 
leading to joule heating 
in the conductors

IEC 61215 MQT 11  TC

IEC 62782 – DML
+ IEC 62759 (transp.):
50 TC, 20 HF, ML 2400 Pa)

Fatigue, 
breakage
(burns) ✓
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Modes Types/issues Stress factors IEC C-AST

Light-induced
degradation

B-O, Fe-B, sponge LID

Light & elevated 
temperature degradation
1) c:Si 2)  Thin Film

UV LID (H, charges)

Sunlight + temperature

Control

A

B
C

✓
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Modes Types/issues Stress factors IEC C-AST

Light-induced
degradation

B-O, Fe-B, sponge LID

Light & elevated 
temperature degradation
1) c:Si 2)  Thin Film

UV LID (H, charges)

Sunlight + temperature

Shadowed 
region
showing 
higher 
minority 
carrier 
lifetime

TPT UV Block EVATPT UV Pass EVA

Electroluminescence

✓
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V o
c

UV PASS EVA UV BLOCK EVA

UV block UV pass
EVA type

EVA type

0.
00

-0
.0

1
-0

.0
2

V o
c

Modes Types/issues Stress factors IEC C-AST

Light-induced 
degradation

B-O, FeB, Sponge LID Sunlight + temperature IEC 61215 MQT 19 Stabilization

Light & elevated 
temperature degradation
1) c:Si 2)  Thin Film

c-Si thin film

UV LID (H, charges) IEC 61345 module UV test
(withdrawn)

✓
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Modes Types/issues Stress factors IEC C-AST
Yellowing & 
module 
packaging 
optical losses

Photochemical 
degradation of 
polymers, ion 
migration 

Sunlight, 
temperature, 
humidity, 
electrical-bias

2 module types through C-AST:

✓
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Apply C-AST to identify 
weaknesses in backsheets

PVF PA PVDF

UV Pass EVA   

UV Block EVA   

Backsheet

En
ca

ps
ul

an
t

 Apply C-AST to identify failures in backsheets failed in field but failures not 
detected in conventional testing
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Modes Types/issues Stress factors IEC
Backsheet 
cracking and
delamination

Oxidative, photo, 
hydrolytic reactions, 
localized stress

Heat, sunlight, voltage 
moisture and mechanical 
stress

IEC 61730-2 Seq B: DH 200/UV 60/ 
HF 10/UV 60/HF 10

C-AST

PA Backsheet cracking PVDF Backsheet cracking
Cracking initiated along cell tabbing but quickly spread to 
areas between tabbing (tropical  2 wks. multi-season)

Major cracking over cell tabbing, but microcracking is 
present through backsheet (tropical stress)

25 mm 25 mm

✓
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Representation: 
the sample

Delamination of 
PA backsheet
edge seen at 
week 8 of C-AST

Associated with 
shrinkage of 
backsheet offset 
from glass edge of 
about 1 mm shown 
at week 22 on the 
right 

If you have a free-standing coupon,  or too small a sample, you might not have the 
critical dimensions to see the shrinkage and cracking:  Sample representation critical
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The tally

Multiple factors working in combination leading to the degradation

Q-CellsPolyamide
backsheet

PID Corrosion Snail trailsLeTIDEdge seal failure Delam.

IEC protocol tests, existing or missing vs       C-AST
13 + 7 Missing = 20

1   
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Representation
“Sample”: representation of the 
materials interfaces, boundary 
conditions of the shipping module 

“Factors”: extent of inclusion of the 
stress factors of the natural environment 

“Combination”: representation of the actual 
combination of stress factors as in the 
natural environment and their balance 
(exceeding vs not exceeding real-world stress 
levels)  
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C-AST – the value chain Customers
Test 

Chamber 
Mnf

Module 
Mnf

Materials 
Mnf

Bankers/
FinanciersInsurance

Testing 
Labs

Research 
Labs

Standards
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Summary & next steps

• To de-risk modules, we must represent:
– The sample
– Stress factors of the natural environment
– Their combination

 success at reproducing field failures
• Future work, especially in C-AST: 

– Further show field-failure mechanisms
– Engagement of all segments of the value chain
– Further develop value proposition
– Acceleration factor studies
– Migration to full size modules
– Better simulate wind load with dual side pressure

• Join our discussions:
– PV Quality Assurance Taskforce (PVQAT- Task Group 3)
– IEC Technical Committee 82 Working group 2: two IEC Technical Reports in progress
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