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Project Objectives 

Manage extreme penetrations of solar and other DERs using only a few 
measurement points through matrix completion and multi-kernel learning-based 
predictive state estimation (PSE) and only a few control nodes dispatched through 
dual timescale online multi-objective optimization (OMOO) using voltage-load 
sensitivities to guide fast feedback response

Challenge #1: 
Operations with Extreme 

penetrations of 
distributed PV

Challenge #2:
Communicate  and 

control with 
millions of DERs

GO-Solar Solution
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GO-Solar Key Activities
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Innovation: Matrix Completion for State Estimation
vs. Conventional state estimation

– Weighted least squares
– Objective:  Minimize the 

weighted residuals

Requires redundant 
measurements

State variables MeasurementsUnknown Partially known

Node

Quantity

Concept:
Netflix Recommendation System
+ Power Systems Constraints (linearized)

Key idea: Estimate unknown 
elements using correlation

[1] Y. Zhang, A. Bernstein, A. Schmitt, and R. Yang, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, 2019.
[2] P. Donti, Y. Liu, A. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” submitted to IEEE Transactions on 
Smart Grid, 2019.
[3] Andrey Bernstein and Emiliano Dall’Anese, “Linear Power-Flow Models in Multiphase Distribution Networks”, presented at the 7th IEEE International Conference 
on Innovative Smart Grid Technologies (ISGT Europe 2017), Torino, Italy September 26–29, 2017

Constraints Known elements in        =  Measurements
(2-point Linearized) power flow equations

Objective function min(Rank of matrix     ) New

[3]
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Example Results
Actual HECO Feeder
– 2576 nodes, 536 loads
– Load profiles are aggregated from load pool according to peak load
– 1-minute power flow simulations

Usually < 0.1% error
(0.1V on 120V base)

Always < 0.7% error
(0.85V on 120V base)

Even better with more measurements

Similar for Voltage angle (Nearly always <0.25deg at 30%)

Measurements at 
30% of nodes

Distribution of Absolute Percentage Error for Voltage Magnitude

50% 70%
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DER

Load
LoadFuture

Forecast

Historical 
measurements

Future 
states

Goal: Learn the spatiotemporal correlation 
between measurements and system states

Multi-Kernel 
Learning

Innovation: Multi-Kernel 
Learning for State 

Forecasting

Kernel Learning Concept
• Use kernel functions to map the input space 

to a higher-dimension feature space
• Learn the relationship in the feature space

Source: R. G. Esfahani and A. A. Mohammad, “Towards an anomaly 
detection technique for web services based on kernel methods,” IEEE 
Innovations in Information Technology, 2009.

DG

Power

Current

Voltage

Voltage
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Voltage 
Phasors

Kernels

Kernels

Kernels

Kernels
KernelsMeasurements System States

Expanding to Multi-Kernel
• Kernels for different measurements
• Optimize the combination

…
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Example Results

• 15-minute ahead @1min voltage magnitude forecast
• Input: P and Q at load nodes for the past 1 hour
• Training: 1-minute power flow results for 3 days (sliding window)

Magnitude Forecasting Error (%)
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Magnitude Forecasting Error (%)
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Training Testing (1/5 of data)
95% CI: ±0.3%

Similar for Angle estimates: Training <0.2deg, Test <0.4deg

95% CI: ±0.6%
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OMOO: Two-Time-Scale Optimization

Slow (every X minutes)
• Solve OPF to produce 

setpoints
• Provides nominal 

setpoints for DERs and 
legacy devices 

Fast (every Y seconds)
• Use online optimization to 

“follow the plan” produced 
by slow-scale optimizer 

• Adjusting the setpoints of 
DERs in real time. 

Planned 
path for X 
minutes

Control in real time:
• DERs
• Legacy devices

Respect electrical limits (e.g., voltage regulation)

Maximize customer and
utility/aggregator 
objectives

Distribution 
feeder

Transmission 
system



NREL    |    9

Slow Scale OMOO – VLSM-based OPF

• Voltage-Load Sensitivity Matrix (VLSM) based mixed-integer linear OPF [4]

– Can handle integer constraints for taps/caps

[4] X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World Conference on Photovoltaic 
Energy Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018.
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Step 1: Build VLSM (periodically) Step 2: Solve OPF MILP (minutes)
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Output: Dispatch/set points path for DERs and Legacy Utility Devices
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[5] A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and 
Information Processing (GlobalSIP), Montreal, Quebec, Canada, Nov. 2017.

 Goal: follow OPF plan
 Key ideas:

– Hierarchical control
– Lots of math with 

provable bounds
– Single-step gradient

• Rather than converging at each 
timestep, loosely converge across 
fast time steps

Fast Scale – OMOO
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OMOO Example Results

Tracking setpoint while maximizing DER objectives

PV systems EVs

Su
bs

ta
tio

n 
kW Transmission, too
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Challenge: Data

• Step 1: Get enough Data
• Step 2: Massage It
• Step 3: Visualize and Clean-up
• Step 4: Repeat

Symbolic 
aggregation 

approximation

K-means 
clustering

AMI 
data

Typical  
profiles

Synthetic SFO
4.3M Consumers
10M electrical 
nodes

Rural 12.47kV
Rural 25kV
Urban 12.47kV
Urban 4kV
Urban delta
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Challenges: Scalability

Issue: Many orders of magnitude larger systems
Ideas:

Sensitivity Heatmap

Issue: How to split?

• Near optimality (close can be good enough)
• Decentralized/Distributed approaches
• Decomposition
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Challenge: System Changes

• Issue: The grid keeps changing 
• Things we’re trying on GO-Solar (distribution reconfiguration)

– Known change
• Update PF model, still get accurate estimates
• Working on algorithms to detect change

– Unknown change
• Measure Error 

– If high error: Revert to traditional methods
• Retrain 



Thank You!

Bryan.Palmintier@nrel.gov
Yingchen.Zhang@nrel.gov
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