Grid Optimization with Solar (GO-Solar) Experiences with:
Data-driven and Machine Learning Approaches for High-pen PV Grids

Principal Investigators: Bryan Palmintier, Yingchen Zhang

NREL Contributors: Andrey Bernstein, Rui Yang, Xiangqi Zhu, Ibrahim Krad, Yajing Liu, Maurice Martin

HECO Contributors: Marc Asano, Ryan Kadomoto, Alan Hirayama, Wei-Hann Chen

May 16, 2019
Manage **extreme penetrations of solar** and other DERs using **only a few measurement points** through matrix completion and multi-kernel learning-based **predictive state estimation (PSE)** and **only a few control nodes** dispatched through dual timescale **online multi-objective optimization (OMOO)** using voltage-load sensitivities to guide fast feedback response.
GO-Solar Key Activities

Predictive State Estimation

Full-scale T&D Co-Simulation

Hardware-in-the-Loop

On-line Multi-Objective Dispatch Optimization

Voltage limits, Performance targets

Existing communication links

| $V_n(t)$ |
Innovation: Matrix Completion for State Estimation

Concept:
Netflix Recommendation System + Power Systems Constraints (linearized)

Key idea: Estimate unknown elements using correlation

<table>
<thead>
<tr>
<th>Node</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{\mathbb{R}{v}}$</td>
<td>$X_{\mathbb{I}{v}}$</td>
</tr>
<tr>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>$|v|$</td>
<td></td>
</tr>
</tbody>
</table>

Objective function

\[\text{min}(\text{Rank of matrix } X) \]

Constraints: Known elements in $X = \text{Measurements}$

(2-point Linearized) power flow equations

Example Results

Actual HECO Feeder
- 2576 nodes, 536 loads
- Load profiles are aggregated from load pool according to peak load
- 1-minute power flow simulations

[Graphs showing distribution of absolute percentage error for voltage magnitude]

- Usually < 0.1% error (0.1V on 120V base)
- Always < 0.7% error (0.85V on 120V base)
- Even better with more measurements

Similar for Voltage angle (Nearly always <0.25deg at 30%)
Innovation: Multi-Kernel Learning for State Forecasting

Goal: Learn the spatiotemporal correlation between measurements and system states

Kernel Learning Concept
- Use kernel functions to map the input space to a higher-dimension feature space
- Learn the relationship in the feature space

Expanding to Multi-Kernel
- Kernels for different measurements
- Optimize the combination

Example Results

- 15-minute ahead @1min voltage magnitude forecast
- Input: P and Q at load nodes for the past 1 hour
- Training: 1-minute power flow results for 3 days (sliding window)

Training

95% CI: ±0.3%

Testing (1/5 of data)

95% CI: ±0.6%

Similar for Angle estimates: Training <0.2deg, Test <0.4deg
OMOO: Two-Time-Scale Optimization

Slow (every X minutes)
- Solve OPF to produce setpoints
- Provides nominal setpoints for DERs and legacy devices

Fast (every Y seconds)
- Use online optimization to “follow the plan” produced by slow-scale optimizer
- Adjusting the setpoints of DERs in real time.

Control in real time:
- DERs
- Legacy devices

Maximize customer and utility/aggregator objectives

Respect electrical limits (e.g., voltage regulation)
Slow Scale OMOO – VLSM-based OPF

• **Voltage-Load Sensitivity Matrix (VLSM)** based mixed-integer linear OPF [4]
 – Can handle integer constraints for taps/caps

Step 1: Build VLSM (periodically)

\[
\begin{align*}
\delta V &= \begin{bmatrix} VLSM_P \end{bmatrix} \delta P + \begin{bmatrix} VLSM_Q \end{bmatrix} \delta Q \\
\delta V_1 &= \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \end{bmatrix} \delta P_1 + \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \end{bmatrix} \delta Q_1 \\
\delta V_2 &= \begin{bmatrix} p_{21} & \cdots & p_{2n} \end{bmatrix} \delta P_2 + \begin{bmatrix} q_{21} & \cdots & q_{2n} \end{bmatrix} \delta Q_2 \\
& \vdots \\
\delta V_n &= \begin{bmatrix} p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \delta P_n + \begin{bmatrix} q_{n1} & q_{n2} & \cdots & q_{nn} \end{bmatrix} \delta Q_n
\end{align*}
\]

Step 2: Solve OPF MILP (minutes)

\[
\begin{align*}
\text{Min } Z &= \omega_1 \xi_C + \omega_2 \Delta V + \omega_3 M_{\text{reg}} \\
C &= \lambda_{\text{Load}} \sum_{i=1}^{n} \left(p_{\text{control}(i)}^{\text{Load}} \right)^2 + \lambda_{\text{PV}} \sum_{i=1}^{n} \left(p_{\text{PV}(i)}^{\text{PV}} \right)^2 + \lambda_{\text{PV}} \sum_{i=1}^{n} \left(Q_{\text{PV}(i)}^{\text{PV}} \right)^2 \\
&+ \lambda_{\text{ES}} \sum_{i=1}^{n} \left(p_{\text{ES}(i)}^{\text{ES}} \right)^2 + \lambda_{\text{cap}} \sum_{i=1}^{n} \left(s(i) Q_{\text{cap}(i)} \right)^2 \\
&+ \lambda_{\text{reg}} \sum_{t=1}^{n_{\text{reg}}} \left(M_{\text{Tap}(t)} - M_{\text{Tap}(t)}^{\text{opt}} \right)^2
\end{align*}
\]

Output: Dispatch/set points path for DERs and Legacy Utility Devices

- Goal: follow OPF plan
- Key ideas:
 - Hierarchical control
 - Lots of math with provable bounds
 - Single-step gradient
 - Rather than converging at each timestep, loosely converge across fast time steps

OMOO Example Results

Tracking setpoint while maximizing DER objectives

Substation kW

Transmission, too

PV systems

EVs
Challenge: Data

- Step 1: Get enough Data
- Step 2: Massage It
- Step 3: Visualize and Clean-up
- Step 4: Repeat

Symbolic aggregation approximation + K-means clustering

AMI data

Typical profiles

Synthetic SFO
4.3M Consumers
10M electrical nodes

- Rural 12.47kV
- Rural 25kV
- Urban 12.47kV
- Urban 4kV
- Urban delta
Challenges: Scalability

Issue: Many orders of magnitude larger systems

Ideas:
- Near optimality (close can be good enough)
- Decentralized/Distributed approaches
- Decomposition

Issue: How to split?
Challenge: System Changes

- Issue: The grid keeps changing
- Things we’re trying on GO-Solar (distribution reconfiguration)
 - Known change
 - Update PF model, still get accurate estimates
 - Working on algorithms to detect change
 - Unknown change
 - Measure Error
 - If high error: Revert to traditional methods
 - Retrain
Thank You!

Bryan.Palmintier@nrel.gov
Yingchen.Zhang@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR-5D00-73976