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Background 

On-demand transportation services have seen a dramatic rise 
in the past decade, thanks to technology.

Connected and automated vehicle (CAV) technology holds 
potential for a major transformation in the on-demand mobility 
services landscape.

The timeline for fully automated vehicles (AVs) to reach the 
critical market share is still uncertain.

In the short term, many cities in the United States and abroad 
are testing low-speed automated electric shuttles (AES) as a 
shared on-demand mobility service in geo-fenced regions.

Automated Mobility District (AMD)
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What is an Automated Mobility District?

An AMD is a campus-sized implementation of CAV technology to realize all the benefits of a fully 
electric automated mobility service within a confined region or district.
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Real-World AMD Demonstrations
Current Upcoming

Denver, CO New York City, NY

Houston, TX Rhode Island

Arlington, TX Austin, TX

Las Vegas, NV Reston, VA

Jacksonville, FL Battle Creek, MD

Columbus, OH Columbus – Linden, OH

Ann Arbor, MI Sacramento State 
University, CA

Bishop Ranch, CA Dublin, CA

Gainesville, FL Rivium Park, 
Netherlands

Babcock Ranch, FL

Source: https://www.smartcitiesdive.com/news/autonomous-
shuttles-city-transportation/551489/

Source: https://www.star-
telegram.com/news/local/community/arlington/article213011
984.html

Source: 
https://www.bizjournals.com/columbus/news/2018/12/04/self-
driving-shuttles-to-start-circling-scioto.html
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Automated Mobility Districts

Fully automated and driverless 
cars

Service constrained to an area 
with high trip demand

Mix of on-demand and fixed 
route services

Multi-modal access within/at 
the perimeter

Characteristics Operational Challenges 

Customer demand (adoption rate)

Fleet size

Operational configuration: 
Fixed route vs. on-demand 

Battery capacity

Mobility/energy impacts
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Current State of AMD Modeling

Where We Are Where We Want To Be
Existing tools primarily emphasize:

• The road network, with minimal 
to no consideration for 
pedestrian/bike/transit

• Privately owned vehicles, but 
do not model shared 
economies

• Solutions not customized to 
guide early-stage deployments

Need modeling tools that:

• Capture private as well as shared 
economies in vehicles 

• Are built from field deployments of 
emerging transportation 
technology

• Can quantify energy and emissions 
as well as mobility benefits
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AMD Simulation Toolkit: Model Flow

Travel Demand
• Origin-destination data from 

regional travel demand 
model

• Local surveys or counts
• Induced travel demand
• Passenger travel behavior; 

adoption rates

SUMO 
(Mobility Analysis)

• SUMO ― Simulator of Urban 
Mobility

• Carries out the network 
simulation of vehicles

• SUMO will output travel 
trajectories

FASTSim
(Energy Analysis)

• FASTSim ― Future 
Automotive Systems 
Technology Simulator

• FASTSim will output vehicle 
energy consumption

Optimization Module
•Fleet size: How many electric shuttle units will be 

required?
•Routes: What are the optimal routes that minimize 

travel time and energy consumption?
•How do we find solutions that meet customers’ 

expected waiting time and overall trip duration?

Mode Choice Modeling
•Initially tagged to be developed based on 

user surveys from Greenville
•Resorting to a model based on existing 

literature owing to lack of data from 
Greenville
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INPUTS/OUTPUTS 
FOR SUMO

AES: Automated Electric Shuttle; GIS: Geographic Information System
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Mode Choice Modeling

51.95% 21.43% 12.34% 14.29%

0% 20% 40% 60% 80% 100%

Setting 1

52.27% 24.03% 8.44% 15.26%

0% 20% 40% 60% 80% 100%

Setting 2

Auto Fixed Route AES Walk

• Modes considered in Greenville AMD simulation 

1) Auto, 2) Walk, 3) AES, 4) Fixed Route

• General form of mode choice model 

𝑉𝑉𝑖𝑖 = 𝛼𝛼 + �
𝑗𝑗=1

𝐽𝐽

𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗

Where
i ∈ {Auto, Walk, AES, Fixed Route}
α is the constant value
𝑥𝑥𝑗𝑗is 𝑗𝑗𝑡𝑡𝑡 mode choice attribute
βj is coef. of attribute 𝑥𝑥𝑗𝑗

• Potential attributes of mode choice model 
o In-vehicle travel time (IVTT)
o Out-of-vehicle travel time (OVTT) 
o Value of travel distance 
o Fixed cost (fare) 
o Other costs, e.g., parking cost

Example including IVTT and OVTT 

Value of 
IVTT ($/h)

Value of OVTT 
($/h)

Car 10 0
Fixed Route 17 34
Walk 10 34
AES in Setting 1 10 34
AES in Setting 2 17 34

• Mode shift observed when value of IVTT changed 
• More tests on other attributes in progress
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INPUTS/OUTPUTS 
FOR FASTSIM
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AMD Simulation Sample
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Optimization Framework: Workflow

INPUT

Road network:

Graph (nodes, edges)

On-demand requests: 

Origin, destination, preferred 
waiting time window, departure 

time window

Cost:

Time-dependent generalized 
travel cost at link level

AES configurations:

Passenger capacity and distance 
covered by single charge

OPTIMIZATION

Minimize the generalized 
travel cost 

Find the minimum number of 
vehicles/AES

Meet waiting time threshold:

A customer may not wait more 
than 120 seconds before an AES 

picks her up from the origin node

Meet single charge distance 
constraint:

An AES only covers the distance 
allowed by a single charge

OUTPUT

Minimum number of AES 
units required that meet on-

demand requests with 
specified constraints

Optimal routes for all AES 
units in the network

Total energy consumption 
(kWh) by the AES units 
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Optimization Model

Formulation
• The problem is formulated as a 

constrained mixed integer 
program

• Decision variables are integers
• Set of constraints are linear in 

nature
• Combinatorial problem

Challenges 
• General solution approaches include branch-

and-bound and cutting-plane methods
• Smaller networks can be solved using 

commercial solvers such as IBM CPLEX and 
Gurobi

• Computational complexity rises with the size 
of the graph (network) and the number of on-
demand requests

• Exact solution methods are not scalable for 
large networks
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Case Study: Greenville, South Carolina

Greenville, South Carolina, network has 554 nodes and 1,340 edges

o Location: Greenville, South 
Carolina

o Analysis period: a.m. peak hour 
(6 a.m.–9 a.m.) 

o The time-dependent demand 
distribution:
• Known and deterministic 
• Total 378 trips
• AMD share is about 50%
• Distributed among eight traffic 

analysis zones
o AES configuration:

• Capacity: 2, 4, and 8 passengers
• Range: 20, 30, and 50 km
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Travel Cost and Energy Consumption

o Link travel time data are obtained from the 
microscopic traffic simulation tool, SUMO, at a 
resolution of 15 minutes

o We model the a.m. peak hour (6 a.m.–9 a.m.) 
in the Greenville, South Carolina, network 

o We assume dynamic travel time that changes 
each 15-minute interval. Thus, we have 
(180/15) or 12 interval horizons

o An average speed and energy look-up table is 
developed using FASTSim**

o A relationship between average driving speed 
and energy consumption rate is developed 
using SUMO

**Brooker, A., Gonder, J., Wang, L., Wood, E., et al., "FASTSim: A Model to Estimate Vehicle Efficiency, 
Cost, and Performance," SAE Technical Paper 2015-01-0973, 2015, doi:10.4271/2015-01-0973.
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Findings: Travel Time (Cost) 

o Tabu search performs 
better compared with 
commonly used 
heuristics: RSTM and 
RSRH

o Tabu search provides 
lower travel time 
(cost) in all demand 
cases and all AES 
ranges (the overall 
savings range from 2% 
to 10%)
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RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. 

RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited  information about future requests from the customers. 

Demand: Medium (baseline)  177 requests; Low  134 requests (25% ↓ baseline); High  194 requests (10% ↑ baseline) 
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Findings: Energy Consumption

o Energy savings 
compared with 
both RRTM and 
RSRH ranges 
from 9 %  to 18%

o For 30 km AES 
range, the 
relative energy 
savings are most 
significant

0

100

200

300

400

500

600

20km-Range 30km-Range 50km-Range 20km-Range 30km-Range 50km-Range 20km-Range 30km-Range 50km-Range

Low Low Low Medium Medium Medium High High High

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h)

energy_RSTM energy_RSRH energy_Tabu

RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. 

RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited  information about future requests from the customers. 

Demand: Medium (baseline)  177 requests; Low  134 requests (25% ↓ baseline); High  194 requests (10% ↑ baseline) 
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Findings: Minimum Number of Vehicles Required

o The results are intuitive and 
conform to general expectations 

o The minimum number of 
vehicles required rises with 
higher demand and shorter AES 
range

o Higher number of vehicles as the 
trips are heavily dispersed in 
space and time 
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Next Steps

• Integrating more constraints into the optimization module

o Soft time window for waiting time

o Trip duration threshold for group rides

• Replicating the AMD modeling process in one location in addition to 

Greenville

• Incorporation of additional ‘mobility on-demand’ modes

• Integrating the toolkit into a regional travel demand model

• Inter-AMD travel modeling and simulation
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