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• Currently, most power electronics are made of silicon (Si).
• Wide-bandgap (WBG) semiconductors (SiC, GaN) have better performance but higher 

cost.
• Ga2O3 offers a promise to achieve performance of SiC and GaN at the cost of Si.

• The theoretical Ga2O3 figure of merit is ~10x larger compared to SiC.
• The Ga2O3 crystals may be 3−5x cheaper compared to SiC crystals.
• Fast-growing field: publications increased 250% in past few years.

Background: Why Ga2O3 WBG Semiconductor

GaN: gallium nitride
Ga2O3: gallium oxide
Si: silicon
SiC: silicon carbide
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Objective: Ga2O3 Packaged Devices and Modules
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Technoeconomic Analysis of Ga2O3 Wafer Cost

Preliminary result: Ga2O3 wafer cost can be >3−5x lower than SiC – 2x-4x cheaper devices
Next steps: Technoeconomic analysis model for Ga2O3 device and half-bridge modules

Method: Bottom-up technoeconomic analysis with inputs from industry and literature. 
Calculated: Ga2O3 wafer cost breakdown, in comparison with verified SiC model.

S. B. Reese, A. Zakutayev et al. “How Much Will Gallium Oxide Power Electronics Cost?”
Joule (2019) DOI: 10.1016/j.joule.2019.01.011
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TCAD Model of Ga2O3 Device Electrical Performance

Challenge: Fabricating power transistors is difficult, modeling is needed as a guide
Method: TCAD Finite Element Modeling in Sentaurus Synopsys S.-P. 2D solver
Inputs: Device geometry and doping levels
Outputs: Transistor I-V curves, CV curves, transient and thermal curves

Vertical Planar Structure

Vertical FinFET structure

Al2O3: aluminum oxide
FinFET: Fin Field Effect Transistor
Mg: magnesium
TCAD: Technology computer-aided design
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TCAD Model of Ga2O3 Device Electrical Performance

• Preliminary result: Good transistor performance is expected from vertical FinFET devices.
• Next steps: Thermal performance model, use this data as input to SPICE modeling.
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Oxide Transistor Fabrication and Measurements

cross-section

RMS Rough.: 
8.7 nm

GaN (004)

AlGaN

AlGaN: aluminum gallium nitride 

Photo Credit: Andriy Zakutayev  (NREL)

Photo Credit: Andriy Zakutayev  (NREL)

Photo Credit: Andriy Zakutayev  (NREL)
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Ga2O3 Thermal Challenges
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Thermal conductivity at 150°C: 

• Ga2O3: 15 W/m-K [1] 

• Si: 92 W/m-K [2] (Ga2O3 is 84% lower)
• SiC: 210 W/m-K [3] (Ga2O3 is 93% 

lower)

Used these temperature-dependent, 
anisotropic properties for modeling.

[1] Wong, Man Hoi, et al. "Characterization of channel temperature in Ga2O3 metal-oxide-semiconductor field-effect transistors by electrical measurements and thermal modeling." Applied Physics Letters 109.19 
(2016): 193503.
[2] Lau, John H., and Yi-Hsin Pao. Solder joint reliability of BGA, CSP, flip chip, and fine pitch SMT assemblies. McGraw-Hill Professional Publishing, (1997).
[3] Wang, Zhiqiang, et al. "Temperature-dependent short-circuit capability of silicon carbide power MOSFETs." IEEE Transactions on Power Electronics 31.2 (2016): 1555-1566.

Image and thermal 
conductivity values from [1]
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Comparing Ga2O3 to SiC and Si

Ga2O3 has 12% higher thermal 
resistance compared to SiC 
(at 10,000 W/m2-K)

Baseplate (copper)

DBC (Si3N4)

Device (5×5×0.18 mm)
FEA model

Fluid

FEA steady-state results
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 Gallium oxide
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DBC: direct-bond copper
FEA: finite element analysis
Si3N4: silicon nitride
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Design the 
cooling strategies

Device 
packaging

Convective 
cooling

Cooling fluid

Thermal Management Design Approach

Define the 
thermal target to 
achieve 100 kW/L

Heat load (100 kW inverter): 2,150 W
Maximum device temperature: 250°C

Module and cold plate volume: < 240 mL
Volumetric thermal resistance target:   

21 cm3-K/W
Dielectric cooling (single-phase heat transfer) planar 

package concept

Thermal strategy to reach a power density of 100 kW/L

Photo Credit: Gilbert 
Moreno (NREL)
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Dielectric Cooling Concept

Dielectric fluid

Inexpensive dielectric material

MOSFET

Electrical conductor

Electrical conductor

Electrical 
lead

MOSFET: metal–oxide–semiconductor field-effect transistor, DBC: direct-bond copper

Improved performance over 
conventional DBC-based designs

Improved cooling (single-phase) via 
jet impingement and finned surfaces

Cooling of the bus 
bars/electrical 
interconnects to 
lower capacitor and 
gate driver 
temperatures

Eliminates expensive 
ceramic materials
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Dielectric Fluid Selection

• Selected synthetic hydrocarbons that are used in electronics cooling 
(single-phase) applications: 
– Alpha 6: DSI Ventures 
– AmpCool (AC)-100: Engineered Fluids

• Potential to use automatic transmission fluid (ATF) to decrease cost, use fluid 
already qualified for automotive use, enable motor–inverter integration.

• Challenge is to create a cooling system with high thermal performance using 
fluids with relatively inferior heat transfer properties as compared to water-
ethylene glycol (WEG).

Fluid
(properties at 70°C)

Thermal conductivity 
[W/m-K]

Specific heat 
[J/kg-K]

Density 
[kg/m3]

Viscosity 
[Pa-s]

Flash point 
[°C]

Pour point 
[°C]

Alpha 6 1 0.14 2,308 792 0.0091 246 -57

AC-100 1 0.13 2,326 761 0.0025 180 -55

ATF 2 0.16 2,131 836 0.012 199 -45

WEG (50/50) 3 0.42 3,513 1,034 0.0013 > 121 4 -36 5 (freeze point)

1 Communications with vendor (DSI Ventures or Engineered Fluids)
2 Kemp, Steven P., and James L. Linden. 1990. “Physical and Chemical Properties of a Typical Automatic Transmission Fluid.” SAE Technical paper.
3 Alshamani, Kaisar. 2003. “Equations for Physical Properties of Automotive Coolants.” SAE Technical Paper.
4 “Safety Data Sheet ZEREX HD Nitrile Free Extended Life 50/50 Antifreeze Coolant.” Valvoline. Accessed April 1, 2019. https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces.
5 “Product Information: Valvoline ZEREX G05 Antifreeze Coolant.” 2018. US_Val_ZXG05_AFC_HD_EN.Pdf. 2018. https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1.

https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces
https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1
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Ga2O3 Cooling Strategy Comparisons

• Dielectric-fluid concept provides 14% lower thermal resistance compared to other cooling strategies (at 10,000 
W/m2-K). 

• Improved performance at higher heat transfer coefficients.

Baseplate cooled

DBC cooled

Dielectric-fluid cooled
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Cooling System Design: Modeling Results

Optimized dimensions using 
Alpha 6 fluid at Tinlet = 65°C
• Slot jet (1.75 × 10 mm) 

impinging on fins (0.2 × 4 
× 10 mm) 

Achieved high thermal performance
• Heat transfer coefficient 23,000 

W/m2-K at a relatively low jet 
velocity of 0.3 m/s

• Higher performance possible

Decreased size
• Predict we can dissipate 

2.2 kW with 12 devices.  
Results in a heat flux ~718 
W/cm2 at Tj ≈ 233°C

• ~50% lower thermal 
resistance compared to 
2014 Accord Hybrid   
[Accord data taken from 1]

Slot jet

5 × 5 × 0.18 mm Ga2O3 device

10 mm

4 mm

Planar module, dielectric cooling concept

10 mm

1.75 mm

1 Moreno, Gilberto, et al. "Evaluation of performance and opportunities for improvements in automotive power electronics systems." 2016 15th IEEE Intersociety Conference on Thermal and 
Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016.
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Cooling System Design: Modeling Results

Designed fluid manifold to 
distribute flow to 12 devices. 

• Total flow rate: 4.1 Lpm

• Reduced size: 120 mL total cold 
plate and power module volume.

• Reduced thermal resistance: 
Volumetric thermal resistance is 
9.4 cm3-K/W (compared to 
resistance target of 21 cm3-K/W)

• Modeling results indicate that it is 
possible to create power-dense 
Ga2O3-based modules.

Results using Alpha 6 fluid at Tinlet = 65°C CAD: computer-aided design

94 mm

18 
mm

CAD model of the cold plate with finned heat spreaders

inlet

outlet
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Experimental Validation

Fabricated new flow loop
• Characterize the thermal performance 

using different dielectric fluids at various 
fluid temperatures (-40° – 70°C) and flow 
rates

3D printed cold plate prototype
• Use resistance heater to simulate 

devices

Photo Credit: Gilbert Moreno (NREL)

Photo Credit: Gilbert Moreno (NREL)
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Thermomechanical Modeling

Spreader

Metallization

Solder

Device

Device heat generation (blue region) – 39.77 W/mm3

Heat transfer coefficient – 23,200 W/m2K
Double-sided package 

Coupled thermal-mechanical analysis
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Conclusions and Future Work

Conclusions
• Device modeling shows that vertical FinFET can give promising device 

performance.
• Growth capability of new materials using molecular beam epitaxy 

(MBE) was developed, based on prior track record in semiconductor 
growth at NREL.

• Developed a compact, high-performance, dielectric fluid-based 
thermal management solution.

• Results indicate a pathway to power dense, low cost, high 
performance, and reliable Ga2O3-based power modules.

Future work
• Perform transient thermal simulations to characterize the short-

circuit behavior. 
• Conduct experiments to validate the dielectric cooling concept.
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