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ABSTRACT Deploying shared automated electric vehicles (SAEVs) on current roadways in cities will
significantly shape current transportation systems and make our urban mobility systems more efficient,
convenient, and environmentally friendly. Utilizing wireless power transfer (WPT) technology to charge
the SAEVs provides perfect fits for realizing a fully automated mobility system. However, the investment
in wireless charging infrastructure (WCI) presents a critical barrier for commercializing and adopting this
technology. The barrier can be cleared by realizing the proper design of the WPT system that maximizes
the benefits and minimizes the cost of WCI at the same time. This paper introduces a system design
optimization tool and methodology for WCI for serving fixed-route SAEVs in automated mobility districts
(AMDs). The tool offers the capability of integrating driving data (simulated or collected from the real
world), vehicle parameters (e.g., battery, motor, dimensions, and so on), and wireless charger characteristics
(rate, locations, alignment, and so on) to generate energy and state-of-charge profiles for each vehicle,
considering motoring, regenerative braking, and charging. Furthermore, the proposed tool incorporates
a multi-objective optimization layer for searching the optimum design parameters based on predefined
objectives and constraints. The proposed method was utilized to design the WCI for a hypothetical AMD
scenario with four SAEVs. The outcomes show that implementing in-route wireless chargers at designated
stops for the SAEVs with maximum power level has the potential to provide a charge sustaining operation
with 52% reduction in the on-board battery and presents the most cost-effective solution. The proposed
solution is assessed in comparison with other charging technologies, such as stationary WPT and dc fast
charging, and it shows the most feasible option for an AMD network in terms of cost, convenience, and
performance.

INDEX TERMS Automated mobility district, in-route, shared automated electric vehicles, wireless charging
infrastructure, wireless power transfer.

I. INTRODUCTION
Recently, three revolutions in the transportation sector
—automation, shared mobility, and electrification—have the
potential to reduce energy/fuel consumption and green-
house gas emissions. Shared automated electric vehi-
cle (SAEV) technology is bringing a significant reduction
in vehicle emissions, and energy use by decreasing vehi-
cle miles traveled and accelerating the adoption of cleaner

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

vehicles and fuels [1]. SAEVs will unprecedentedly change
current transportation systems and make our urban mobil-
ity systems more efficient, convenient, and environmentally
friendly [2]. However, the proliferation of SAEVs could be
hindered if electric vehicle (EV) charging infrastructure is
not able to support an influx of high-mileage, high-usage
SAEVs. Based on the literature, there are three alterna-
tives for EV supply equipment (EVSE), i.e., charging infras-
tructure [3]: 1) battery swapping stations, 2) conductive
charging stations, and 3) wireless charging. In a battery swap-
ping scenario, the battery swapping stations (BSSs) are set
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up to replace the empty battery of the vehicle with a fully
charged one [4]. This strategy offers a speedy recharging
process (i.e., battery exchange in less than five minutes),
and it allows flexible charging time, which can be shifted
to the off-peak period. However, the long-term battery health
impacts, associated cost, and practicality of BSSs are still in
question [3]. Although conductive charging technology offers
a cost-effective and feasible solution [5], it requires a longer
charging time, and it is inconvenient for autonomous vehicles
since it requires someone to plug in the vehicle, which causes
extra labor load in the case of driverless vehicles. These
limitations can be avoided by implementing fast chargers
with a robot-based plug-in in which an automated arm will
plug in the vehicle, instead of needing a human [6], [7].
Even though this seems a logical solution; the conductive
charging technology still requires dedicated land or space for
charging stations, which is challenging in crowded cities and
city districts. In addition, it does not solve the limited driving
range of EVs unless a large battery is installed in the vehicle,
which means a heavier, larger, and more expensive vehicle.
Besides, heavy-duty cables exposed to the public may lead to
safety issues, such as arcing and exposed conductor [8]. The
third option is the wireless (inductive) power transfer (WPT)
in which the vehicle can be charged by magnetic induc-
tion during either long-term parking (stationary), driving
(dynamic or in-motion), or transient stops (quasi-dynamic or
opportunistic). Wireless charging technology offers an ideal
solution for SAEV charging to accommodate its automation.
The wireless charging infrastructure (WCI) can be imple-
mented on the road and does not require dedicated stations,
and it is safe because no heavy-duty cables are needed [9],
[10]. Furthermore, implementing dynamic wireless power
transfer (DWPT) has the potential to provide infinite driving
range and to dramatically reduce a vehicle’s battery size,
which will benefit the SAEV adoption. Therefore, wireless
charging technology is considered in this work for serving
SAEVs.

One of the main limitations of the wireless charging
technology is the high initial investment cost compared
to the conventional conductive charging. However, this
large initial cost can be compensated by decreasing the
battery size and increasing vehicle range due to the
elimination of recharging downtime [11]. Therefore, opti-
mizing the system key design parameters of this tech-
nology is critical to make it cost-efficient for SAEVs.
Several works have been introduced in the literature
about component design and optimization of stationary
WPT technology, including power pads, power electronics
converters, and compensation networks [12]–[17]. Others
investigated component design in dynamic WPT technol-
ogy, such as [18]–[23]. In [11], the system design of the
online line electric vehicle (OLEV) developed by the Korea
Advanced Institute of Science and Technology (KAIST)
was investigated, considering a shuttle bus service in the
Seoul Grand (Amusement) Park. In [24], another design
optimization was presented for the OLEV system operating

at the KAIST campus. The researchers developed a mathe-
matical model for the OLEV project and utilized it to define
the optimum battery capacity and wireless track allocation.
This work indicated promising results for the specific case
of an OLEV bus and would not be appropriate for scenarios
that use SAEVs because of the consideration of regulated
speed profile, fixed charging power, and neglecting several
vehicle dynamics, such as regenerative braking. Another opti-
mization approach for the vehicle parameters (cost and size)
with a dynamic WPT charger was presented in [25]. In [26],
the authors performed a system optimization algorithm for
implementing dynamic WPT technology at highways, which
was applied to constant speed scenarios and did not consider
sizing the battery capacity. Researchers from the National
Renewable Energy Laboratory (NREL) investigated WCI
design for serving circulator shuttles operating at the NREL
campus [27], and the shuttle system at Zion National Park,
Utah, USA [28]. In those works, the researchers conducted
parametric analyses for charging power and battery capacity,
considering few positions for stationary WPT system.

In contrast to the works mentioned above, this paper pro-
poses an advanced design optimization tool for determining
the key parameters of the WPT system serving fixed-route
on-demand SAEVs operating in automated mobility districts
(AMDs). The contributions in this work are summarized as
follows:
• Developing a microscopic simulation model for SAEVs
operating in AMDs.

• Integrating the simulated driving data with a vehi-
cle energy consumption model, considering a real
autonomous electric shuttle EasyMile EZ10 parameters,
and a wireless charger power model, considering the
vehicle position in both travel and lane directions.

• Proposing an optimization layer to automatically find
the best combination of the system key design param-
eters, including battery capacity, charging power, place-
ment location, track length, etc.

• Formulating and solving a multi-objective optimization
problem that guarantees a charge sustaining operation
with minimum cost and proper battery capacity while
avoiding overcharging and charge depletion.

• Evaluating the proposed in-route charging solution in
comparison with other technologies, including station-
ary WPT and dc fast charger (DCFC).

II. MODELING OF AUTOMATED MOBILITY
DISTRICTS
A. AUTOMATED MOBILITY DISTRICTS
Deploying SAEV technology will mutate our transportation
systems andmake urbanmobility safer, more efficient, conve-
nient, and environmentally friendly. However, to realize such
a future transportation system powered by SAEVs anywhere
in smart cities may not be trivial and may take time due
to the maturity of SAEV technology and its deployment.
On one hand, SAEVs or automated shuttles (ASs) have
already been implemented in specific places (e.g., airports),
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such as automated person movers (APMs), personal rapid
transit (PRT), and group rapid transit (GRT). Those systems
usually require expensive additional infrastructure, such as
exclusive guideways for ASs, and some even need specially
designed vehicles. They are not easy to replicate anywhere in
current cities. Along this line, AMDs describing a district-
scale (such as 5 to 10 miles squared) implementation of
SAEV technology to realize the full benefits of automated-
shared-mobility services within a confined geographic region
was raised by researchers from NREL [2], [29]. An AMD
could be considered as an intermediate step towards any-
where automated vehicle service in cities. Comparing with
current PRT-like systems, AMDs use current existing road-
way infrastructure and is suitable for various automation
levels of ASs. In an AMD, autonomous electric shuttles
serve most of the mobility demand in the district. Personal
vehicle use is not encouraged because of parking availability
and pricing or prohibited by disallowing mobility access by
privately owned vehicles.

B. AMD SIMULATION
Because no real AMDnetworks exist, a hypothetical diamond
network is considered and modeled in the Simulation of
Urban Mobility (SUMO) microscopic traffic tool [30]. It has
13 nodes and 48 links, as shown in Fig. 1. The hypothetical
network is chosen in this study as an example for future
AMD scenarios, which includes all the expected automated
electric mobility elements for an AMD, such as automated
electric shuttles (AESs), fixed-route on-demand service, and
AES stops but does not have the traffic network complexity.
The network is generated by the netgenerate module from
the SUMO package. The nodes represent the junctions of the
road network, and the links (or edges) indicate the roadways
between the junctions. Each edge is directional and consists
of two motor vehicle lanes and one pedestrian lane. Four
on-demand AESs are running on fixed routes in the middle
loop (shown with yellow dashed line) on the network. Two

FIGURE 1. A hypothetical AMD network in SUMO.

AESs operate in the clockwise direction of the loop, while
the other two serve the demand in the counter-clockwise
direction. Each edge in the circuit has a pedestrian sidewalk
lane and has an AES stop (located inside the white boxes
and denoted as pink segments). Three traffic lights/signals
are assigned at the intersections, depicted by the red boxes,
and their traffic signal timing configurations are set by default
as provided by SUMO. The default traffic signal timing is
designed according to the related edge attributes, such as
speed limit and number of lanes. The AES trip was modeled
to involve four steps: 1) a passenger appears in the network
and walks to the nearest stop; 2) the passenger requests a
pick-up, the closest available AES dispatches to pick up
the passenger and drop the passenger off at the designated
AES stop nearest the traveler’s destination; 3) the passenger
walks to the final destination; and 4) the AES waits at that
destination stop until another pickup request is received and
the AES is assigned to another traveler. The waiting time
of the AES is basically relevant to the traffic demand of
passengers (i.e., high demand may imply a short waiting time
and low demand leads to a long waiting time). The simulation
is set so that, once the passenger submits a request for a
ride, the vehicle responses immediately and starts moving
toward the passenger stop. After the vehicle completes a ride
request, it will stop at the delivery stop of the last passenger
and wait until it receives another request. This on-demand
logic is very similar to today’s elevator’s technology logic.
The time between the start of another trip and the stop of the
previous trip could be defined as the waiting time of AES.
The experiment in the paper gave a travel demand level
of 300, which has a waiting time for an AES ranging from 1 to
12 seconds. There might be a small delay between submitting
a ride request and the response from the vehicle due to
communication delays and data processing. However, it is
expected that this time delay to be very small compared to the
waiting time for both the vehicle and passenger. For charging
infrastructure design purposes, the worst case is considered in
this work by neglecting the data processing and communica-
tion time delays, which lead to less wireless energy transfer at
stops and increase the challenges for the charging infrastruc-
ture to meet the vehicle’s energy requirements. Furthermore,
in this study, the capacity of each AES is one passenger
at a time.

The simulation was carried out for demand of 300 trips dis-
tributed across the 13 origin-destination (OD) pairs. Within
this district simulation, all ODs are within feasible walkable
distances, and the walk mode is for door-to-door trip comple-
tion. The choice set of travel modes encompasses 1) passen-
ger car, 2) AES, and 3) walking. Traffic demand is distributed
according to a bimodal distribution reflecting morning and
afternoon peak hours during a typical day. After running the
simulation, the driving data (e.g., speed and geographical
location) of the four AESs are extracted to be utilized for
investigating the required charging infrastructure. The speed
profiles for the four AESs are shown in Fig. 2.
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FIGURE 2. Speed profiles of the four AESs operating in the middle loop of
the AMD network: (a) AES0, (b) AES1, (c) AES2, (d) AES3.

FIGURE 3. WPTSim-based WCI design platform.

III. SYSTEM DESIGN OF WIRELESS CHARGING
INFRASTRUCTURE
AWPT simulation and system design optimization platform,
called WPTSim, investigating WCI for fixed-route traffic
scenarios has been developed. The platform has two layers:
an energy analysis layer, and optimization layer, as indicated
in Fig. 3. The energy analysis layer incorporates a vehicle
energy consumption model, traffic data, and a charger model.
This layer takes input data associated with a vehicle (battery
capacity, mass, motor, etc.), traffic (speed, route, grade, etc.)
and charger (rate, location, type, efficiency, etc.). It predicts
the total vehicle energy and state-of-charge (SOC) profiles,
considering vehicle dynamics (motoring and regenerative
braking) and the charging events. The optimization layer
provides an automatic search capability that changes the input
parameters based on predefined objectives and constraints,
and evaluates the output until the best combination of param-
eters is determined.

A. VEHICLE ENERGY CONSUMPTION MODEL
An energy consumption model for the SAEV is devel-
oped based on the Future Automotive Systems Technology

TABLE 1. EasyMile EZ10 autonomous electric shuttle parameters.

Simulator (FASTSim) for vehicle powertrain modeling [31].
The model receives traffic data (vehicle speed and route) and
vehicle parameters, such as aerodynamic drag, frontal area,
mass, rolling resistance, etc., and generates the battery energy
due to motoring and regenerative braking. At each time step,
it estimates the road load power (PE ), including drag power
(Pdrag), acceleration power (Pacc), and ascent power (Pasc),
as given in (1)-(4).

Pdrag(τ ) =
0.5 Dair ∗ Cdrag ∗ Af ∗

(
s(τ−1)+s(τ )

2

)3
1000

(1)

Pacc(τ ) =

(
Mtot
2τ

)
∗
(
s(τ )2 − s (τ − 1)2

)
1000

(2)

Pasc(τ ) =
G.sin (atan(g(τ ))) ∗Mtot ∗

(
s(τ−1)+s(τ )

2

)
1000

(3)

PE (τ ) = Pdrag(τ )+ Pacc(τ )+ Pasc(τ ) (4)

where Dair is the air density (1.225 kg/m3), while Cdrag is
the vehicle drag coefficient, and Af is the vehicle frontal area
(m2); τ represents the time step (sec); s (τ − 1) is the previous
vehicle speed achieved [Mps (meters per second)], while s(τ )
is the current vehicle speed (Mps). Mtot indicates the total
vehicle mass including the battery mass (kg); G is gravity
(9.8 m/sec2), and g denotes the percentage of road grade.
In this work, the parameters of the EasyMile EZ10

autonomous electric shuttle are considered for vehicle mod-
eling. It has a seating capacity of 12 passengers with
2,750 kg curb-weight and 19-kWh battery capacity, as pre-
sented in Table I [32].

B. WIRELESS CHARGER MODEL
A wireless charger basically consists of two isolated sides:
transmitter (track) and receiver (pick-up). Typically, the trans-
mitter is embedded in the road, and the receiver is installed
underneath the vehicle and attached to its chassis. The power
transfers from the transmitter to receiver through a relatively
large air-gap by magnetic field coupling. A model for the
wireless charger was created and incorporated with the vehi-
cle energy consumption model. The model determines the
received electric power at the vehicle pad (receiver) based
on the vehicle’s position in the travel and lane directions.
This power profile is a function of the coils’ dimensions and
shapes. According to the literature, there are two designs
for the track with respect to the pick-up coil [33]: 1) long
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FIGURE 4. Coupled wireless power profile in travel and lane directions
for long-track design with the system parameters.

TABLE 2. Parameters of one segment of DWPT system.

track approach, and 2) multiple-pads approach. In the long
track structure, the track length is longer than the pick-up
coil length, which provides a higher and more constant power
transfer profile. However, it shows less efficient operation
due to the energization of a long cable with only a small
portion coupled with the vehicle coil. On the other hand,
the multiple-pad short track design can provide higher peak
efficiency. However, it indicates a pulsating power profile
with less energy transfer and higher installation costs. Due
to the advantages of the long track design, it is considered
in this study. For the long track design, the coupled power
profile in the travel direction is trapezoidal with idle ends,
as indicated in Fig. 4 [26], [34]. Also, the misalignment in
the lane direction is considered by applying the parabola
profile. The coupling power profile in both travel and lane
directions for one segment of a 100-kW DWPT system with
the characteristics presented in Table II is shown in Fig. 5.
This figure is implemented in the design tool as a look-up
table, which predicts the received power at the vehicle pad
based on the misalignments in both travel and lane directions.
These misalignments are measured by the distances between
the center of the vehicle pad, which is assumed to match with
the vehicle position provided by traffic simulation, and the
center of the transmitter pad, which is known after defining
the track positions, as will be explained in the next section.

FIGURE 5. Coupled wireless power profile in travel and lane directions
for 100-kW DWPT system with the parameters in Table I.

IV. DESIGN METHODOLOGY AND CASE STUDY
In this work, a design methodology based on the WPTSim
tool in Fig. 3 for wireless charging infrastructure to serve
fixed-route SAEVs in an AMD is presented. The wireless
charging infrastructure design approach is explained in the
following steps:

1) Integrate the input control parameters, including
the driving data from SUMO (speed profile and
route), wireless charger specifications, and vehicle
parameters.

2) Assign potential positions for wireless chargers located
on the vehicle’s routes.

3) Choose and adjust the desired design variables, such
as battery capacity, charging power level, track length,
track positions, etc.

4) Run the WPTSim tool and check the energy and SOC
profiles to evaluate the design.

In addition, the tool provides the capability to consider a
conductive charging option at the parking spot or not. This
charger is defined by its rated power and efficiency.

A. DESIGN CASE STUDY
The hypothetical AMD scenario with an AES (AES0) speed
profile is considered with EasyMile EZ10 AS parameters.
Based on the routes of the four AESs operating in the middle
loop of the hypothetical network, 12 potential positions for
in-route wireless chargers are defined, as depicted in Fig. 6.
Four of these positions are quasi-dynamic (highlighted in
green), which are aligned with the four stop stations. The
other eight positions are dynamic and highlighted in blue.
These 12 positions cover almost all of the entire middle
loop of the network. The driving performance is analyzed
using WPTSim where the 12 wireless charging positions are
active with three track segments (15 meters, as indicated
in Fig. 4 and Table II) at each position. The number of
segments and the track length are decided to cover the entire
bounded region for a wireless charger. For example, the
quasi-dynamic positions (P1–P4) were set to supply 20 kW
maximum power, while the dynamic positions (P5–P12) were
established to transfer 40 kW. Moreover, in this case, a

FIGURE 6. Placement of wireless transmitters along the middle loop,
considering the routes of AES0, AES1, AES2 and AES3.
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FIGURE 7. Driving performance with 12 wireless charging positions.
(a) Speed profile showing different segments. (b) Battery power and SOC.

FIGURE 8. Zoomed driving performance with 12 wireless charging
positions. (a) Speed profile showing different segments. (b) Battery
power and SOC.

20-kW conductive charging capability was considered during
the after-operation hours.

The driving performance in this scenario is indicated
in Figs. 7 and 8. As it can be noticed in Fig. 7(a) and 8(a),
the WPTSim tool divided the speed profile into segments and
assigned a different color and type for each segment. Type 1
(black) was assigned to the segments where the vehicle runs
without wireless charging. Type 2, with 12 different colors,
was assigned to the segments in which the vehicle runs over
a wireless charger. Type 3 (pink) was assigned to the segment
where the vehicle is parked before activating the conduc-
tive charger, and type 4 was allocated during the conductive
charging operation. As it can be noticed in Fig. 8(b), about
20-kW WPT took place during zero speed (quasi-dynamic
positions), and 40-kW WPT took place during driving
(dynamic positions). Moreover, a 20-kW conductive charge
was activated during parking after a pre-set delay time to fully
charge the vehicle [Fig. 7(b)]. The SOC profile is presented
in Fig. 7(b), which varies based on the vehicle dynamics and
charging events.

Manual parametric analysis can be performed by adjusting
the input parameters for the vehicle and charger and evalu-
ating the driving performance. However, doing this manual
adjustment would be very difficult and time consuming due to
a large number of variables. Furthermore, even with in-depth

and intensive analysis, finding the best solution is not guar-
anteed due to the nonlinear relationships among the key
variables. Therefore, an automatic optimization framework
is necessary to find the best combination solution of the
key design parameters that realizes predefined objectives and
constraints.

V. DESIGN MULTI-OBJECTIVE OPTIMIZATION
Finding the best combination solution for the key design
variables requires formulating and solving a multi-objective
automatic optimization problem. Therefore, an optimization
layer (as depicted in Fig. 3) was added on top of the energy
analysis layer to provide an automatic search capability to
find the optimal design parameters. An optimization search
algorithm is integrated with the vehicle energy and charger
models to iteratively generate the design variables, update the
input data, get energy profiles and then evaluate the objectives
and constraints. Based on the fitness (cost) function value, the
algorithm produces a new combination of the design variables
and continues repeating this process until the optimum solu-
tion is realized.

A. PROBLEM FORMULATION
The primary purpose of the optimization problem is to find
the best combination of the design variables (e.g., battery
capacity, WPT system parameters, etc.), such that the prede-
fined objectives (e.g., charge sustaining operation, minimum
battery capacity, etc.) are realized under certain constraints
for a better battery performance. The multi-objective opti-
mization problem for the WPT system with the hypothetical
AMD scenario is formulated as follows:

1) OPTIMIZATION VARIABLES
Four design variables are investigated that represent the trade-
off between minimizing the infrastructure cost and achieving
charge sustaining operation. These design variables with their
upper and lower limits are listed below.

1) Number and placement of each wireless charger
(NWPT ): x1ε[1 : 4095].

2) Nominal power of wireless transmitter (PT ):
x2ε{10, 20, 30, . . . , 100} kW.

3) EV’s battery capacity (Qb): x3ε[2 : 60] kWh.
4) Number of track segments per position (NS ): x4ε[1 : 3]

with 5 meters per segment (LS ) (i.e. [5 m: 15 m]).

The first variable (NWPT ) indicates the number of wireless
charger positions and where these positions are located.
It represented in the algorithm by a binary vector with
12 bits {b1, b2, . . . , b12} (number of total candidate positions
in order). In each iteration, the algorithm generates a real
number between 1 and 4,095 (212-1), which is converted
to a binary vector. The positions corresponding to ones are
considered as active (transmitting power) and the positions
corresponding to zeros are treated as inactive (do not exist).
For example, if the algorithm generates 3,860, this

VOLUME 7, 2019 79973



A. A. S. Mohamed et al.: System Design and Optimization of In-Route WCI for SAEVs

corresponds to 111100010100 and means that positions
{1, 2, 3, 4, 8, 10} will be considered as active.

2) OPTIMIZATION OBJECTIVES
To solve the tradeoff between minimizing the DWPT infras-
tructure cost and achieving the two primary goals for this
technology (realizing charge sustaining and reducing battery
capacity), a multi-objective optimization with four objectives
is identified. Due to the limited information about the actual
cost components of the DWPT system, it is assumed that
the total system cost is linearly proportional to the system
design parameters (power level, battery capacity, and track
length). In this case, three of the objectives that represent
the DWPT cost are stated as linear functions of the design
parameters.

a: PER-UNIT BATTERY CAPACITY
The first goal is to minimize the battery capacity required in
the autonomous vehicle. This objective is stated mathemati-
cally as in (5).

f1 =
(

Qb
Qb_max

)
p.u. (5)

where Qb_max is the upper boundary of the battery capacity
(Qb) in kWh.

b: PER-UNIT WIRELESS TRACK LENGTH
The infrastructure cost of the DWPT technology is propor-
tional with the track length. Therefore, minimizing the length
of the track embedded in the roadway is considered as a sec-
ond objective, as given in (6).

f2 =
LT

LT_max
p.u. (6)

where LT is the total embedded length of wireless track in
meters, and LT_max is the maximum possible length of the
wireless track in meters. These lengths are formulated as a
function of the number of wireless positions (NWPT ), number
of track segments per position (NS ) and segment length (LS ),
as given in (7).

LT = NWPT × NS × LS
LT_max = NWPT_max × NS_max × LS (7)

whereNWPT_max is the number of all potential WPT positions
(12 positions), and NS_max is the maximum number of track
segments that can fit at each position (three segments).

c: PER-UNIT WIRELESS CHARGER POWER
The component costs of the DWPT system are relevant to
the power level. A high power level requires more magnetic
materials, more litz wires, thicker wires, larger and more
expensive power converters, and passive components. Reduc-
ing the power level will decrease the overall system cost, but it
may not satisfy the vehicle’s energy need. Therefore, the third

objective in the formula is to optimize the charging power
level, as stated in (8).

f3 =
PT

PT_max
p.u. (8)

where PT_max is the upper boundary of the wireless charging
rate PT in kW.

d: CHARGE SUSTAINING OPERATION
Charge sustaining operation can be determined by reaching
zero net energy at the end of the driving cycle, such that
the consumed energy by the vehicle is compensated by the
gained energy from the regenerative braking and wireless
charging infrastructure. Consequently, the fourth objective in
this problem is to minimize the net energy, as stated in (9).

f4 =

∣∣Ef − Ei∣∣
Ei

(9)

where: Ef and Ei are the final and initial battery energy in
kWh, respectively.

3) OPTIMIZATION CONSTRAINTS
The optimization search algorithm is operated under certain
constraints that restrict the charging and discharging opera-
tion, as stated in (10). The first two constraints (C1 and C2)
were set to improve the EV’s battery performance by avoiding
over-charging and deep-discharging. A third constraint (C3)
was formulated to limit the search space to the solutions that
have the potential to achieve charge-sustaining operation. The
last set of constraints define the upper and lower limits of the
optimization variables.

C1 : SOCmin ≥ A%

C2 : SOCmax ≤ B%

C3 :
∣∣SOCfinal − SOC initial

∣∣ ≤ ε%
C4 : x(L)i ≤ xi ≤ x

(U )
i , i = 1, 2, 3, 4 (10)

where, A is the minimum acceptable SOC, B is the maximum
acceptable SOC, ε is the maximum allowed the absolute
difference in SOC, and x refers to an optimization variable,
which has x(U )

i as an upper boundary and x(L)i as a lower
boundary.

B. OPTIMIZATION PROBLEM SOLUTION
The four objectives are addressed using the weighted sum
technique, as indicated in (11).

Minimize F(x) =
∑4

m=1
wm fm(x) (11)

where, wm is the weight vector.
Considering linear relationships between the system cost

and design parameters, equal-unity weights are assigned for
all the objectives. In this case, it is assumed that all the
objectives have the same degree of importance.

The optimization problem is solved using a genetic
algorithm (GA), which is a stochastic search approach
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FIGURE 9. Flow-chart for the integration between GA and WPTSim.

that emulates biological evolutionary theories to solve
optimization problems. It enables parallel search from a pop-
ulation of points. Based on the literature, GA illustrated excel-
lent performance in solving nonlinear and multi-objective
optimization problems [35]. GA optimization is integrated
withWPTSim tool to solve the multi-objective DWPT design
optimization problem. The interaction between GA and
WPTSim tool is explained by the flow-chart shown in Fig. 9.

VI. RESULTS AND DISCUSSION
The multi-objective optimization was formulated to find the
optimum design parameters that serve the four AESs oper-
ating in the diamond AMD network scenario. The opti-
mization settings and results are discussed in this section.
Moreover, the optimum solution is analyzed and evaluated in
comparison with other solutions, including stationary WPT
and DCFC.

A. GA OPTIMIZATION SETTINGS AND RESULTS
In the optimization process, the speed profile of the first AES,
AES0, from the AMD scenario with EasyMile EZ10 vehicle
parameters was considered. The setting for the objective func-
tion, constraints’ parameters, and GA are stated in Table III.
The accepted SOCwindow through the entire driving cycle is
set to 40% (40%–80%) to avoid deep discharging and over-
charging, and the maximum acceptable change of SOC (ε)
is set to 5% to realize charge sustaining. These settings were
chosen and optimized by trial and error.

GA optimization was run with the settings in Table III
for 2,000 iterations (40 populations × 50 generations)
and repeated three times to ensure the best solution.

TABLE 3. GA optimization settings.

FIGURE 10. Progression of GA optimization. (a) Mean fitness value.
(b) Best fitness value.

The progression of the fitness function is indicated in Fig. 10.
It illustrates the wide variation of the mean fitness value due
to the random search capability of GA. However, the best fit-
ness value shows a stable descend trend towards theminimum
fitness (optimal solution), compared with the initial value.

The final optimal solution generated by GA is presented
in Table IV. As can be observed, the algorithm chose the first
four positions for the wireless chargers that match the desig-
nated AES stops. This makes a lot of sense since the vehi-
cles can receive more electric energy at these positions by
spending longer times during the low-speed movement and
transient stops. Also, the algorithm decided to go with the
maximum power level (100 kW) and minimum track length
(1 segment/position), which leads to minimum charging
infrastructure cost. Finally, the battery capacity was mini-
mized to 9 kWh instead of 19 kWh, as initially installed by
EasyMile.

TABLE 4. Optimal design solution.

B. ASSESSMENT OF THE OPTIMAL DESIGN SOLUTION
The optimal design variables presented in Table IV were fed
into the WPTSim tool for evaluation. The performance of
the EasyMile EZ10 vehicle with the AES0 driving profile is
described in Figs. 11 and 12. Note that, only four positions
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FIGURE 11. Optimal driving performance with four wireless charging
positions and AES0 speed profile. (a) Speed profile showing different
segments. (b) Battery power and SOC.

FIGURE 12. Zoomed optimal driving performance with four wireless
charging positions and AES0 speed profile. (a) Speed profile showing
different segments. (b) Battery power and SOC.

are assigned with Type 2 (existing over a wireless charger),
and all charging events happened around zero speed with
100-kW rate. Moreover, Fig. 11(b) shows the SOC profile,
which starts and ends almost at the same level, which proves
the realization of charge sustaining operation.

The performance parameters are extracted from the opti-
mum solution and presented in Table V. It can be observed
that the SOC neither exceeded 80% nor dropped below 40%
(SOCmax = 79.14% and SOCmin = 59.37%). Also, the vari-
ation of SOC from the beginning to the end of the driving
cycle is 0.04% (less than 5%).

TABLE 5. Performance parameters.

FIGURE 13. Energy profiles of the optimal design solution for about
200 miles range.

By repeating the active region of the speed profile of AES0,
the driving range was extended from about 2.5 hr. (25 miles)
presented in Fig. 7 to 12 hr. (about 200 miles). The energy
profiles with the extended range are depicted in Fig. 13. The
figure shows the energy profiles due to the vehicle dynamics
(motoring and regenerative braking), in-route wireless charg-
ers, and net battery energy. It can be noted that the vehicle
energy consumption got compensated by WPT energy, such
that the net battery energy is almost zero. This means that at
the end of the driving cycle, the battery has the same energy
level as when it started. Although only AES0 driving data
have been considered in the optimization, the final solution
is adequate for serving all AESs since they all have similar
levels of energy consumption and speed. Moreover, they all
are operating on-demand and using the four designated stops,
which get electrified with wireless chargers.

C. BATTERY LIFE ASSESSMENT
Based on the design optimization results, increasing the
charging power and decreasing the battery capacity and coil
length lead to the most cost-effective design solution. How-
ever, this solution leads to a high battery charging rate (C-rate)
of about 11C with an impulse charging profile, as indicated
in Fig. 11. This results in a unique stress profile inside the bat-
tery cells that would impact the degradation mechanisms of
the cells. Based on the literature, with proper battery design,
thin-electrode graphite/nickel-manganese-cobalt (NMC532)
lithium-ion batteries can tolerate up to 6C continuous
charging for 800 cycles with just 10% capacity loss [36].
For a pulse charging profile within a narrow SOC win-
dow, these cells can presumably tolerate even more cycles.
Furthermore, alternate anode chemistries, such as lithium
titanate (LTO), are even better suited for frequent fast charg-
ing than graphite anodes. There are open questions regarding
optimal battery design for cost, performance, and lifetime.
These thin-electrode batteries may come with penalties of
increased cost (as much as 100%) and reduced energy density
(20%), however [37], lifetime is highly variable for different
Li-ion cells. As a preliminary analysis, Fig. 14 shows lifetime
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FIGURE 14. Estimates of battery lifetime under WPT use vary from
1 to 10 years across battery chemistries and designs.

predictions for four possible battery technologies under a
WPT charging profile, shown in Fig. 11. This indicates that
while batteries of specific chemistries, such as the Lithium
Nickel Cobalt Aluminum Oxide (NCA), degrade less with
the usage scenario considered here, other chemistries such
as Lithium Nickel Cobalt Manganese Oxide (NMC) and
Lithium Iron Phosphate (LFP) degrade much faster. The
lifetime models were trained in various storage and low-rate
cycling data. Actual outcomes for WPT cycling are uncer-
tain. To reduce this uncertainty and better understand plau-
sible WPT lifetime outcomes across battery chemistries and
designs, further research is warranted to better understand
battery lifetime under WPT applications, determine cost/life
optimal battery designs for WPT, and include the battery life
in the design optimization.

D. ASSESSMENT OF DIFFERENT CHARGING
TECHNOLOGIES
By analyzing the range for the current AES EZ10 with
a 19-kWh on-board battery and SOCi = 80%, the results
show that a full charge cycle allows the vehicle to run contin-
uously for less than 2 hrs., as indicated in Fig. 15. Therefore,
this kind of vehicle requires either replacing the current bat-
tery with a larger one or deploying in-route wireless charging
capability. In this section, a comparative analysis among three
different scenarios is presented: 1) a large on-board battery
with stationary wireless charger to be used at night, 2) a
large on-board battery with DCFC to be used at night, and
3) a small on-board battery with the proposed in-route wire-
less charging. For the stationary charging options (1 and 2),
the battery capacity is chosen to provide a 200-mile (12-hr.)
range with a full charge cycle, and the charger power level
is determined to fully charge the battery within 15 minutes,
as a target by the U.S. Department of Energy (DOE) [37].
Under these conditions, the required battery capacity is about
300 kWh, and the charger nominal power is about 950 kW.
The SOC profiles for the AES, considering the in-route and
stationary charging options, are indicated in Fig. 15 in red and
blue, respectively.

FIGURE 15. SOC profiles considering different charger and vehicle
parameters (the current vehicle status, a vehicle with the optimized
in-route WPT system and a vehicle with a 200-mile battery and
15-minute stationary charger).

TABLE 6. Performance matrix for different scenarios.

Table VI shows a comparative analysis for the three
charging technologies, considering several performance
indices, such as vehicle component cost (battery and vehicle
assembly), road components cost (ground assembly and
installation), vehicle range, downtime, energy consumption,
etc. As it can be noticed, implementing in-route WPT system
shows moderate total cost since the high road component cost
is compensated with the low vehicle component cost. Addi-
tionally, it presents less energy consumption, zero downtime,
infinite range and it is the most convenient for autonomous
vehicles due to being automatic. The stationary WPT option
shows that most expensive solution due to the requirement of
large on-board battery and high-power ground assembly and
vehicle assembly.

VII. CONCLUSION
The paper introduces an effective design methodology for
the critical parameters of wireless charging infrastructure
for SAEVs. The design approach is based on the WPTSim
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tool, which integrates traffic data along with vehicle and
charger energy models. The tool considered the impact of the
misalignment in the travel and lane directions on the power
transfer capability. A multi-objective optimization problem
was formulated to solve the tradeoff between maximizing the
benefits of wireless technology (achieving charge sustaining
with minimum battery capacity) and minimizing the initial
investment for constructing the wireless charging infrastruc-
ture. The optimization goal was to find the best combina-
tion of battery capacity and wireless charger characteristics
(positions, length, and rate). The outcomes indicated that the
proper design of parameters leads to a significant reduction
in the battery capacity compared with the one installed by
the manufacturer. They also show that few well-positioned
wireless chargers with high rate and minimum length enable
the vehicle to realize charge sustaining operation at the
most cost-effective in comparison with the other charging
technologies, including stationary WPT and DCFC. Even
though in this study the proposed methodology is applied to
a hypothetical AMD network, it is still applicable to differ-
ent/larger networks. As long as the vehicle routes are known,
the potential locations for wireless charging will be defined
on these routes, and the algorithm will be able to optimize
the design parameters based on the pre-defined objectives and
constraints.
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