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NREL Battery Modeling 
Capabilities

• Microstructure
– Tomography
– Homogenization, analysis
– 3D echem simulation
– Stochastic reconstruction

• Macro-homogeneous modeling
– Dual electrode
– Half cell
– Electrochemical parameter ID

• MSMD 3D cell & pack level
– Thermal/electrical design

• Safety
– Thermal runaway (TR)
– Internal short circuit (ISC)
– Mechanical abuse

• Life
– Physics-based surrogate models
– System design and real-time control

ce cs
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Integrated Multiphysics Modeling for Li-Ion Battery 
Safety Engineering

• Battery CAE tools are effective in evaluating
battery safety design
– Insightful understanding of failure thresholds
– Failure propagation mechanism for each

component within a unit
– Better explanation of test data results in

testing recommendations
– Reducing design cycles and expense, and

accelerating battery production development.

Swelling of a Pouch Cell During 
a Hot-Box Test

von Mises Stress Contours for 
Side Vs Edge Impact on Module

Potential under ISC

TR Propagation

TMS
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Linking Protocol
• NREL EDM – Fluent API

CDM
• SPPC CDM-electrothermal

model in ANSYS® Fluent®

MSMD-module

EDM- Electrochemical : NTGK

EDM- Abuse Reaction Kinetics
EDM- Internal Short Circuit (ISC)

NREL EDM Library

Integrated MSMD-Safety Strategy

EDM

CDM
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Investigation of Thermal Runaway Tests 

• 3Ah LCO Pouch Cell with an initial SoC 100%
• 5 Cells packed closely without electrical connection
• Trigger cell is a edge cell, failure initiated by a mechanical nail penetration along

width axis of edge cell within 1.25 second

Case Passive Thermal Management

Baseline No thermal management

A1 3.2 mm Al plates

A2 1.6 mm Al plates

A3 0.8 mm Al plates

Tests done by BATlab in Sandia 
National Laboratories 
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Effect of Heat Sink on TR Propagation

Baseline, no mitigation A1, successful mitigation

• Model validated again testing results for successful and non-successful cases
• Thermal mass is vital for passive control of thermal runaway.
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Effect of Thermal Contact Resistance (TCR)

0
20
40
60
80

100
120
140
160
180

-0.02 0 0.02 0.04 0.06 0.08

Te
m

pe
ra

tr
ue

 (°
C)

Thickness Direction (m)

Cell1 Cell5

Reading of TC-7 case A1

Temperature Distribution along Center Line

• Thermal contact resistance between cell
and heat sink cannot be neglected in the
3D simulation of thermal runaway
propagation

• It is valuable in reducing the severity of
thermal shock.
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Geometric Shape Study
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Case No. A1 B2

Thickness 3.2mm 0.8
Surface 

Area 0.005054 m2 0.020216 m2

Thermal 
Mass Ratio 0.64 0.64

• Case A1 and  B2 both mitigate thermal runaway propagation successfully
• Aluminum fin can be geometrically optimized to enhance heat dissipation out of the

system.

Convective heat 
transfer

Plate ->cell2

cell1-> plate
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Linking Protocol
• NREL EDM – Fluent API

CDM
• SPPC CDM-electrothermal

model in ANSYS® Fluent®

MSMD-module

EDM- Electrochemical : NTGK

EDM- Abuse Reaction Kinetics
EDM- Internal Short Circuit (ISC)

NREL EDM Library

Integrated MSMD-Safety Strategy

EDM

CDM

EDM- Gas Kinetics
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ARC Testing of NMC 18650 Cells

Vent at ~128 ⁰C

ARC testing with canister 
gives repeatable results

before

after

• Mass loss affected by cell SOC and
volumetric energy density
– Might associated with peak

temperatures
• Ejecta includes gases, solids and fluids.

DPA reveals substantial melting of
aluminum current collector, ejected out
of the can.

DPA
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Gas Generation Analysis

50% SOC vs. 100% SOC • Chronological order
– Vent opened (1)  Rapid TR (2) Max

temperature (3) Max pressure (4) 
Max amount of gas (5)  end (6)

• Measured pressure and temperature,
calculated amount of gas generated

– Assumed ideal gas behavior
– Might not apply between 2 and 3 during

very dynamic pressure change)

• Temperature measured on cell skin
might not represent the real gas

• Gas generation continued after peak
temperature

• High pressure hot gas condensed into
liquid (5 6).



NREL    |    12

Reactions and Events during ARC Testing

~85 ºC, SEI decomp
~125 ºC, Anode-electrolyte

~200 ºC, Cathode decomp
~175 ºC, Electrolyte begins decomp

>200 ºC, Electrolyte partial combustion partial

~175ºC, Separator breakdown -> short circuit

Vent -> open system

Low-rate heat/gas generation

High-rate heat/gas generation -> significant ejection / 
rapid disassembly
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ARC Tests vs ISC Conditions

• ARC testing of cell components not providing
all insights on full cell behaviors

• Battery responses to ARC testing and ISC
conditions are different
– ARC testing: cell-wide uniform response.

Vent triggered by some solvent
vaporization and SEI decomposition

– ISC: local failure, gas generated by local
electrolyte vaporization and
decomposition reactions.

Internal T External T

E.Peter Roth, SNL ECS Transactions 11(19)2008

From components to full cells,
Superposition principle may not work

Local defects -> ISC -> local hot spot -> gas generation
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Identifying Worst-Case Failure Scenarios

• Investigated by NASA JSC, NREL and UCL
• Vary the location of the internal short circuiting

(ISC) device to identify worst-case failure
scenarios

– likely to cause side-wall ruptures
– likely to cause vent clogging and bursting

• 18650 cells were manufactured with the ISC
device placed at 3 different longitudinal locations
at 2 different radial depths

Internal short circuiting device Bursting and breach at top
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Modeling Thermal Stress and Bursting Pressure

Based on temperature-dependent tensile strength 
properties for S350GD mild steel

Reaction kinetics -> Can 
temperature -> Burst pressure

• Bust pressures can reach < 1.5
MPa for temperatures > 650 °C

• If a cell produces 6 L of gas, and
is clogged, the internal pressure
could reach 30 MPa

• Lower temperatures are
reached for initiation at the
middle. The highest risk
scenarios for pressure-induced
breaches are initiation of TR
near end of the 18650 cell.
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Modeling External Hot Gas Flow 

Single jellyroll (JR)
With fine mesh

Output
Reaction conversion &
Heat generation rate

Step 1: Internal gas flow modeling

Yes

OUTPUT
Temperature, pressure and 
velocity distribution during 

the abuse event  

Single jellyroll abuse 
simulation (i.e. internal 

short circuit)

Criteria allowing 
sequential modeling 

approach

Input
Gas generation rate
Heat generation rate

Module-level venting 
simulation

Step 2: External gas flow modeling

Venting surfaces

Internal - Jellyroll

Module
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Mass and Heat Transfer in Ejection

Top view

To can

To other cells

More than half 
of the heat 
dissipated to the 
can. 

Mass Ejection

Heat Ejection

Video credits:  NREL– Donal Finegan
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Vent Pressure and Cell Conditions
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• Results correlate module safety vent 
design with single cell transient failure

• Left figures show a example to use 
modeling results for vent design 

• If the vent opens at 5 bar, 
temperatures of hot gas in the 
trigger cell and module free space 
are both 40 ºC respectively

• Gas generated due to local thermal 
runaway within the ISC jellyroll can 
trigger the vent despite that 
average jellyroll  temperature rises 
moderately. 

In trigger jellyroll  

Hot gas in free-
space of the module
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• Confirm Model Assumptions
• Provide Model Input

• Identify Critical Parameters
• Provide Complete Data Set for

Non-Measurable Quantities

• Multiphysics ISC modeling
• Understanding behaviors

ISC Experimental Study 

ISC Modeling Study

High speed x-ray video credits: 
NREL– Donal Finegan

Gas Kinetics in 18650 Cells (Ongoing)
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Summary

• An integrated safety modeling approach established under CAEBAT project

• The safety model can be used as a predictive tool for battery pack safety 
engineering
– Its functionality was demonstrated with thermal runaway mitigation 

tests

• For high energy cells, mass and heat transfer through ejection becomes 
significant. Gas kinetics model is being incorporated in the integrated 
approach to address these behaviors
– A sequential approach is suggested for module-level simulation

• Combined techniques including multi-physics modeling, calorimetry,  ISC 
devices, high-speed X-ray imaging and thermal imaging enhance 
understanding of battery safety behaviors. 
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