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Background 

On-demand transportation services have seen a dramatic rise 
in the past decade, thanks to technology.

Connected and automated vehicle (CAV) technology holds 
potential for a major transformation in the on-demand mobility 
services landscape.

The timeline for fully automated vehicles (AVs) to reach the 
critical market share is still uncertain.

In the short term, many cities in the United States and abroad 
are testing low-speed automated electric shuttles (AES) as a 
shared on-demand mobility service in geo-fenced regions.

Automated Mobility District (AMD)
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What is an Automated Mobility District?

An AMD is a campus-sized implementation of CAV technology to realize the full benefits of a fully 
electric automated mobility service within a confined region or district.
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Real-World AMD Demonstrations

Source: https://www.star-telegram.com/news/local/community/arlington/article213011984.html Source: https://www.bizjournals.com/columbus/news/2018/12/04/self-driving-shuttles-to-start-circling-scioto.html

Source: http://www.aaahoponlasvegas.com/
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Automated Mobility Districts

Fully automated and driverless 
cars

Service constrained to an area 
with high trip demand

Mix of on-demand and fixed 
route services

Multi-modal access within/at 
the perimeter

Characteristics Operational Challenges 

Customer demand (adoption rate)

Fleet size

Operational configuration: 
Fixed route vs. on-demand 

Battery capacity

Mobility/energy impacts



NREL    |    6

Current State of AMD Modeling

Where We Are Where We Want To Be
Existing tools primarily emphasize:

• The road network, with minimal 
to no consideration for 
pedestrian/bike/transit

• Privately owned vehicles, but 
do not model shared 
economies

• Solutions not customized to 
guide early-stage deployments

Need modeling tools that:

• Capture private as well as 
shared economies in vehicles 

• Are built from field 
deployments of emerging 
transportation technology

• Can quantify energy & emission 
as well as mobility benefits
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AMD Simulation Toolkit: Model Flow

Travel Demand
• Origin-destination data 

from regional travel 
demand model

• Local surveys or counts
• Induced travel demand
• Passenger travel 

behavior; adoption 
rates

SUMO
(Mobility Analysis)

• Simulator of Urban 
Mobility (SUMO)

• Carries out the network 
simulation of vehicles

• SUMO will output travel 
trajectories

FASTSim
(Energy Analysis)

• Future Automotive 
Systems Technology 
Simulator (FASTSim)

• FASTSim will output 
vehicle energy 
consumption

Optimization Module
• How many electric shuttle units?
• What are the optimal routes?
• How to meet customers’ desired level of service?
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AMD Simulation Sample
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Optimization Framework: Workflow

INPUT

Road network:

Graph (nodes, edges)

On-demand requests: 

Origin, destination, preferred 
waiting time window, departure 

time window

Cost:

Time-dependent generalized 
travel cost at link level

Automated electric shuttle
(AES) configurations:

Passenger capacity and distance 
covered by single charge

OPTIMIZATION

Minimize the generalized 
travel cost 

Find the minimum number of 
vehicles/AES

Meet waiting time threshold:

A customer may not wait more 
than 120 seconds before an AES 

picks her up from the origin node

Meet single charge distance 
constraint:

An AES only covers the distance 
allowed by a single charge

OUTPUT

Minimum number of AES 
units required that meet on-

demand requests with 
specified constraints

Optimal routes for all AES 
units in the network

Total energy consumption 
(kWh) by the AES units 
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Optimization Model

Formulation
• The problem is formulated as a 

constrained mixed integer 
program

• Decision variables are integers
• Set of constraints are linear in 

nature
• Combinatorial problem

Challenges 
• General solution approaches include branch-

and-bound and cutting-plane methods
• Smaller networks can be solved using 

commercial solvers such IBM CPLEX and 
Gurobi

• Computational complexity rises with size of 
the graph (network) and the number of on-
demand requests

• Exact solution methods are not scalable for 
large networks
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Solution Approach: Tabu Search

• Two-phase heuristic: 
A. Initial routes construction  
B. Refinement satisfying the constraints

• Provides a feasible and near-optimal 
solution within acceptable time range

• To find the minimum number of vehicles 
required, we start with an upper bound 
and apply a bi-section search to obtain 
the solution We compared the solutions from the proposed Tabu search 

technique with the solutions obtained from applying an 
exact method using the CPLEX solver. 

Both sets of solutions are obtained for a 15-by-15 grid 
network with origin-destination pairs set at the four corner 
points.

Test case On-
Demand 
Requests

Fleet Size Cost 
(CPLEX)

Cost (Tabu 
Search)

A 6 2 48 49

B 6 3 59 59

C 7 2 50 51

Comparison to exact-solution method
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Case Study: Greenville, South Carolina

Greenville, South Carolina, network has 554 nodes and 1,340 edges

o Location: Greenville, South 
Carolina

o Analysis period: a.m. peak hour 
(6 a.m.–9 a.m.) 

o The time-dependent demand 
distribution:
• Known and deterministic 
• Total 378 trips
• AMD share is about 50%
• Distributed among eight traffic 

analysis zones
o AES configuration:

• Capacity: 2, 4, and 8 passengers
• Range: 20, 30, and 50 km
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Travel Cost and Energy Consumption

o Link travel time data are obtained from the 
microscopic traffic simulation tool, SUMO, at a 
resolution of 15 minutes

o We model the a.m. peak hour (6 a.m.–9 a.m.) 
in the Greenville, South Carolina, network 

o We assume dynamic travel time that changes 
each 15-minute interval. Thus, we have 
(180/15) or 12 interval horizons

o An average speed and energy look-up table is 
developed using FASTSim**

o A relationship between average driving speed 
and energy consumption rate is developed 
using SUMO

**Brooker, A., Gonder, J., Wang, L., Wood, E. et al., "FASTSim: A Model to Estimate Vehicle Efficiency, 
Cost, and Performance," SAE Technical Paper 2015-01-0973, 2015, doi:10.4271/2015-01-0973.
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Findings: Travel Time (Cost) 

o Tabu search performs 
better compared with 
commonly used 
heuristics: RSTM and 
RSRH

o Tabu search provides 
lower travel time 
(cost) in all demand 
cases and all AES 
ranges 

RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. When a trip request is made at any point of 
time, the routing algorithm finds the nearest on-route vehicle that may satisfy all constraints such as capacity, charging distance, and customer waiting time.

RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited  information about future requests from the customers. The technique can adapt a flexible rolling-
horizon depending on the data available and the prediction model in effect.
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Findings: Minimum Number of Vehicles Required

o The results are intuitive and 
conform to general expectations 

o The minimum number of 
vehicles required rises with 
higher demand and shorter AES 
range

29

19

16

36

24

20

38

27

21

0 5 10 15 20 25 30 35 40

20KM-RANGE

30KM-RANGE

50KM-RANGE

20KM-RANGE

30KM-RANGE

50KM-RANGE

20KM-RANGE

30KM-RANGE

50KM-RANGE

LO
W

LO
W

LO
W

M
ED

IU
M

M
ED

IU
M

M
ED

IU
M

HI
GH

HI
GH

HI
GH



NREL    |    16

Findings: Energy Consumption

o Tabu search 
offers energy 
savings for all 
demand cases 
and AES ranges

o For 30 km AES 
range, the 
relative energy 
savings are most 
significant
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RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. When a trip request is made at any point of 
time, the routing algorithm finds the nearest on-route vehicle that may satisfy all constraints such as capacity, charging distance, and customer waiting time.

RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited  information about future requests from the customers. The technique can adapt a flexible rolling-
horizon depending on the data available and the prediction model in effect.
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Next Steps

• GUI building for the ease of sensitivity analyses and on-demand mobility service 

operations

• Integration of more constraints

• Soft time window for waiting time

• Trip duration threshold for group rides

• Distributed optimization for scalability

• Extend to additional deployment/demonstration zones

• Release of open source AMD modeling and simulation package
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