

Optimizing Fleet Operations in Automated Mobility Districts Serving On-Demand Mobility with Automated Electric Shuttles

Presented by Venu Garikapati, Ph.D. (Venu.Garikapati.nrel.gov)

Joint work conducted by ORNL, NREL, University of Tennessee-Knoxville, and University of South Carolina

Contributors:

Husain M. Abdul Aziz (<u>azizh@ornl.gov</u>) Tony Rodriguez (<u>trodrig5@vols.utk.edu</u>) Lei Zhu (<u>Lei.Zhu@nrel.gov</u>) Stanley Young (<u>Stanley.Young@nrel.gov</u>) Yuche Chen (<u>chenyuc@cec.sc.edu</u>)

Background

On-demand transportation services have seen a dramatic rise in the past decade, thanks to technology.

Connected and automated vehicle (CAV) technology holds potential for a major transformation in the on-demand mobility services landscape.

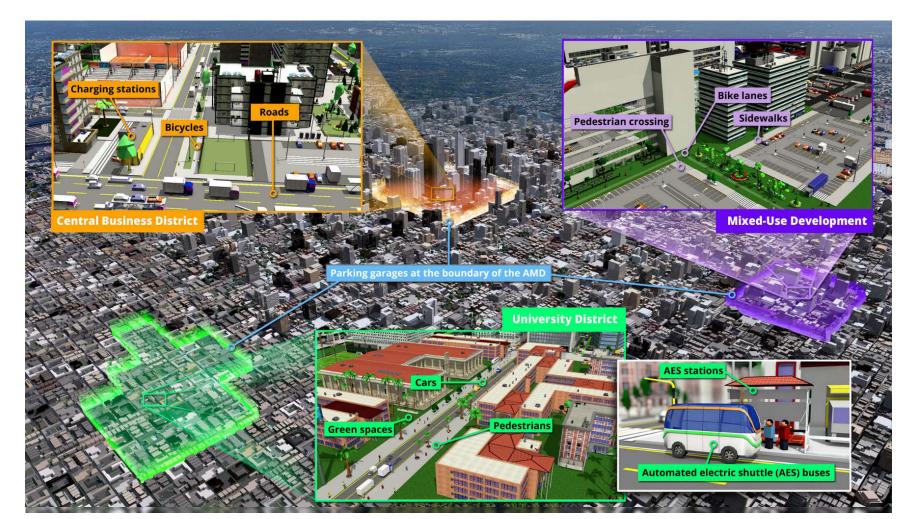
The timeline for fully automated vehicles (AVs) to reach the critical market share is still uncertain.

In the short term, many cities in the United States and abroad are testing low-speed automated electric shuttles (AES) as a shared on-demand mobility service in geo-fenced regions.

Automated Mobility District (AMD)

What is an Automated Mobility District?

An AMD is a campus-sized implementation of CAV technology to realize the full benefits of a fully electric automated mobility service within a confined region or district.



Real-World AMD Demonstrations

Find out when driverless vehicles will be hitting the streets of this North Texas city

BY BILL HANNA JUNE 13, 2018 06:00 AM, UPDATED JUNE 13, 2018 12:57 PM

9 f 🗹 🆻

Source: https://www.star-telegram.com/news/local/community/arlington/article213011984.html

Self-driving shuttles to start circling Scioto Mile soon

Source: https://www.bizjournals.com/columbus/news/2018/12/04/self-driving-shuttles-to-start-circling-scioto.html

Source: http://www.aaahoponlasvegas.com/

Automated Mobility Districts

Characteristics

Fully automated and driverless cars

Service constrained to an area with high trip demand

Mix of on-demand and fixed route services

Multi-modal access within/at the perimeter

Operational Challenges

Fleet size

Operational configuration: Fixed route vs. on-demand

Battery capacity

Mobility/energy impacts

Current State of AMD Modeling

Where We Are

Existing tools primarily emphasize:

- The road network, with minimal to no consideration for pedestrian/bike/transit
- Privately owned vehicles, but do not model shared economies
- Solutions not customized to guide early-stage deployments

Where We Want To Be

Need modeling tools that:

- Capture private as well as shared economies in vehicles
- Are built from field deployments of emerging transportation technology
- Can quantify energy & emission as well as mobility benefits

AMD Simulation Toolkit: Model Flow

Travel Demand

 Origin-destination data from regional travel demand model

• Local surveys or counts

Induced travel demand

behavior; adoption

Passenger travel

rates

SUMO

(Mobility Analysis)

- Simulator of Urban Mobility (SUMO)
- Carries out the network simulation of vehicles
- SUMO will output travel trajectories

FASTSim

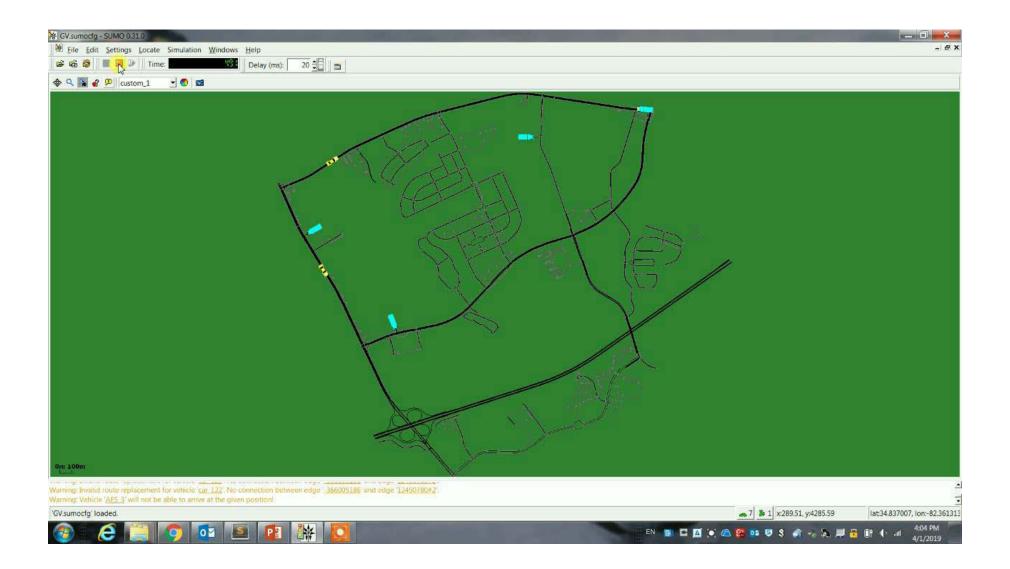
(Energy Analysis)

- Future Automotive Systems Technology Simulator (FASTSim)
- FASTSim will output vehicle energy consumption

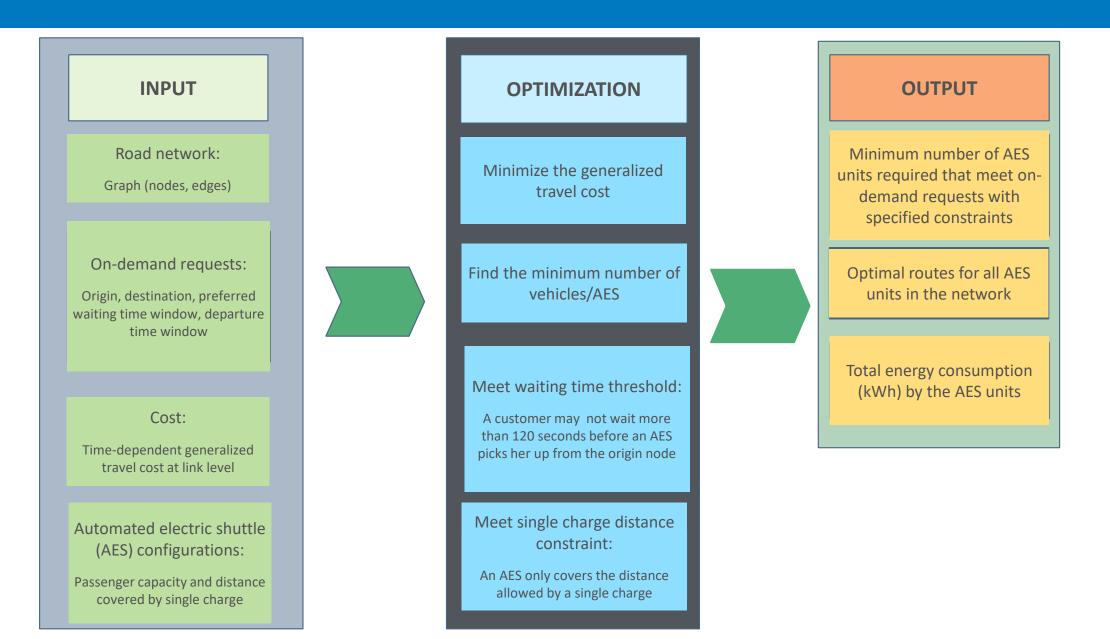
Optimization Module

- How many electric shuttle units?
- What are the optimal routes?
- How to meet customers' desired level of service?

AMD Simulation Sample



Optimization Framework: Workflow



Optimization Model

Formulation

- The problem is formulated as a constrained mixed integer program
- Decision variables are integers
- Set of constraints are linear in nature
- Combinatorial problem

Challenges

- General solution approaches include branchand-bound and cutting-plane methods
- Smaller networks can be solved using commercial solvers such IBM CPLEX and Gurobi
- Computational complexity rises with size of the graph (network) and the number of ondemand requests
- Exact solution methods are not scalable for large networks

Solution Approach: Tabu Search

• Two-phase heuristic:

A. Initial routes construction

- B. Refinement satisfying the constraints
- Provides a feasible and near-optimal solution within acceptable time range
- To find the minimum number of vehicles required, we start with an upper bound and apply a bi-section search to obtain the solution

Comparison to exact-solution method

Test case	On- Demand Requests	Fleet Size	Cost (CPLEX)	Cost (Tabu Search)
А	6	2	48	49
В	6	3	59	59
С	7	2	50	51

We compared the solutions from the proposed Tabu search technique with the solutions obtained from applying an exact method using the CPLEX solver.

Both sets of solutions are obtained for a 15-by-15 grid network with origin-destination pairs set at the four corner points.

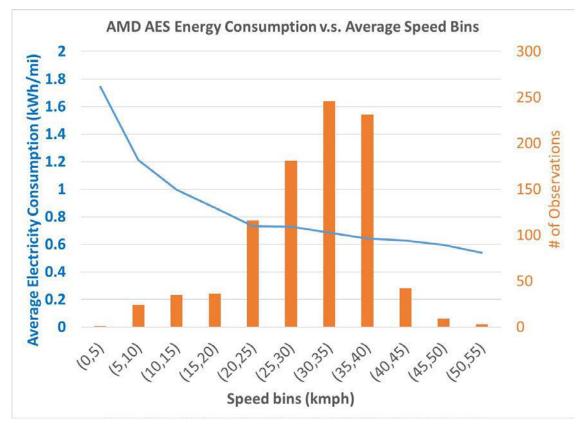
Case Study: Greenville, South Carolina

- Location: Greenville, South
 Carolina
- Analysis period: a.m. peak hour
 (6 a.m.-9 a.m.)
- The time-dependent demand distribution:
 - Known and deterministic
 - Total 378 trips
 - AMD share is about 50%
 - Distributed among eight traffic analysis zones
- AES configuration:
 - Capacity: 2, 4, and 8 passengers
 - Range: 20, 30, and 50 km

Greenville, South Carolina, network has 554 nodes and 1,340 edges

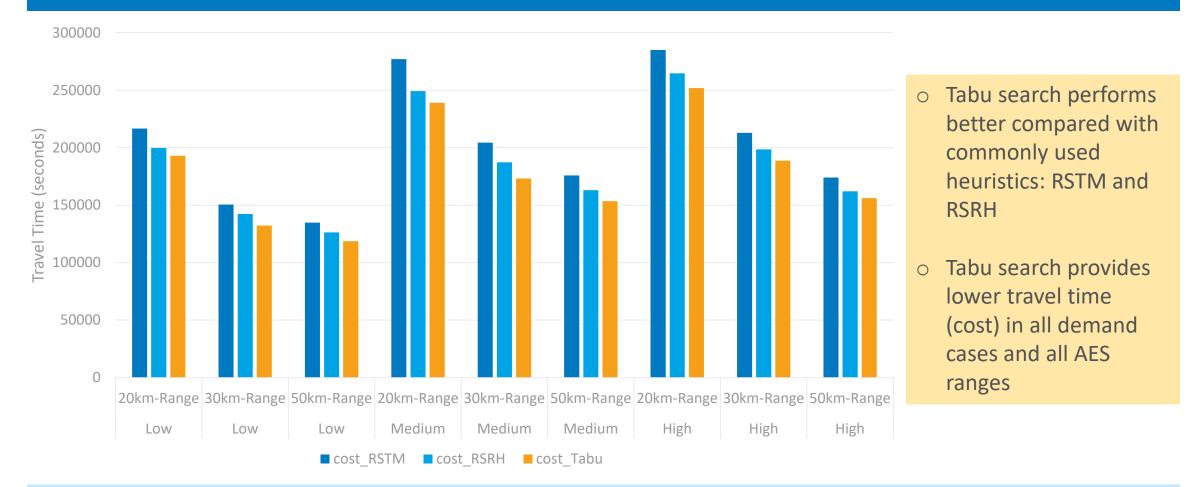
Travel Cost and Energy Consumption

- Link travel time data are obtained from the microscopic traffic simulation tool, SUMO, at a resolution of 15 minutes
- We model the a.m. peak hour (6 a.m.–9 a.m.) in the Greenville, South Carolina, network
- We assume dynamic travel time that changes each 15-minute interval. Thus, we have (180/15) or 12 interval horizons
- An average speed and energy look-up table is developed using FASTSim**
- A relationship between average driving speed and energy consumption rate is developed using SUMO



**Brooker, A., Gonder, J., Wang, L., Wood, E. et al., "FASTSim: A Model to Estimate Vehicle Efficiency, Cost, and Performance," SAE Technical Paper 2015-01-0973, 2015, doi:10.4271/2015-01-0973.

Findings: Travel Time (Cost)



RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. When a trip request is made at any point of time, the routing algorithm finds the nearest on-route vehicle that may satisfy all constraints such as capacity, charging distance, and customer waiting time.

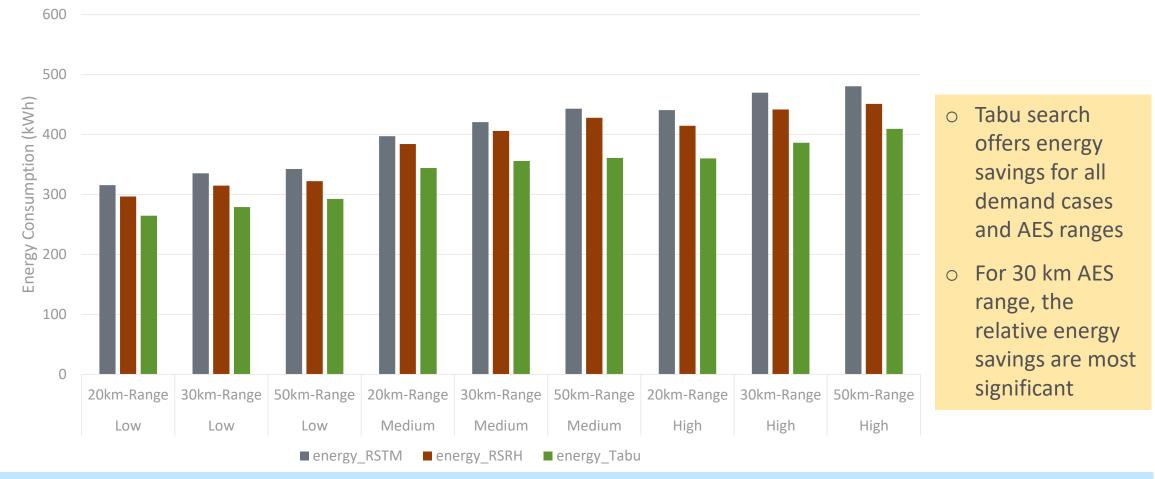
RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited information about future requests from the customers. The technique can adapt a flexible rolling-horizon depending on the data available and the prediction model in effect.

Findings: Minimum Number of Vehicles Required



- The results are intuitive and conform to general expectations
- The minimum number of vehicles required rises with higher demand and shorter AES range

Findings: Energy Consumption



RSTM: Real-time solution with trip matching (RSTM) does not use any information regarding future demand for the AMD service. When a trip request is made at any point of time, the routing algorithm finds the nearest on-route vehicle that may satisfy all constraints such as capacity, charging distance, and customer waiting time.

RSRH: Real-time solution with rolling horizon (RSRH) routing uses limited information about future requests from the customers. The technique can adapt a flexible rolling-horizon depending on the data available and the prediction model in effect.

Next Steps

- GUI building for the ease of sensitivity analyses and on-demand mobility service operations
- Integration of more constraints
 - Soft time window for waiting time
 - Trip duration threshold for group rides
- Distributed optimization for scalability
- Extend to additional deployment/demonstration zones
- Release of open source AMD modeling and simulation package

Thank you

www.nrel.gov

NREL/PR-5400-73631

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY