Mechanical-ECT Coupling Approach

In FY18, we implemented the above computational scheme using:
• High-fidelity battery level data as input to module level simulations, the approach provides alternatives to developing time-consuming material models, if the user chooses to do so.
• Mechanical response at abuse-temperatures
 • All composite level test data available that is only obtained at high-temperature effects.
 • For the first time, in FY18, we collected stress-strain data at temperatures as high as 120°C, making the constitutive models relevant to simulate
 • in-service conditions.

High-Speed Digital Image Correlation Data

In addition to the 10 stress-strain curves, high speed digital image correlation data (obtained at 20000 fps) showing complex fracture evolution patterns at high strain-rates was also collected.
• We are pursuing Approach 1 of the multi-cell validation of the MECT models for this complex data set as a very challenging task.

Mechanical Response at Abuse-Temperatures

If for this dataset, the mechanical response was dominated by the properties of the prismatic cell case.
• The temperature response was controlled very well during the propagation simulations – thermal aspects of the cells contributed to the mitigation strategy.
• These models do not capture failure of the separator and anode material on the cathode side; therefore, the experimental data was not used at this time.
• Coupling ECT simulations currently being implemented using the above approach and Multi-cell simulations outlined above.

Other Validation Studies Underway

• GSP module tested in earlier phase
• Experimental data already available
• Multi-cell level module mechanical-temperature simulations were completed under CAEBAT
• Coupling with ECT simulations currently being implemented using the above approach and Multi-cell simulations outlined above.

MILESTONES

FUTURE WORK

• In FY19, the team will complete validation studies for multi-cell case data.
• We plan on making a database of mechanical response for cell components at various strain-rates and temperatures available.
• To the best of our knowledge, the high strain-rate data and high-temperature data presented in here is the most comprehensive characterization of mechanical properties of battery electrodes.
• We are planning a few more publications to include results from complex loading, high strain-rate tests.
• Beyond 2020, with decommissioning of CAEBAT underway, we are working to disseminate the CAEBAT database into various focused material programs initiated by the DOE.

SUMMARY

• Beyond 2020, with decommissioning of CAEBAT underway, we are working to disseminate the CAEBAT database into various focused material programs initiated by the DOE.

• These models do not capture fracture of complex loading, high strain-rate results.

TECHNICAL ACCOMPLISHMENTS

Sample Results - Blunt-rod Test Simulations

• 4S5P modules tested in earlier phase
• Experimental data already available
• Multi-cell level module mechanical-temperature simulations were completed under CAEBAT
• Coupling with ECT simulations currently being implemented using the above approach and Multi-cell simulations outlined above.

MULTI-CELL VALIDATION CASE STUDIES

• Four different sets of experimental data are currently being used towards multi-cell validation of the MECT models.

EPILOGUE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

ACKNOWLEDGEMENTS

Funding provided by the US Department of Energy’s Vehicle Technologies Office – Energy Storage Program
• David Howell
• Brian Cunningham
• Searra Gibert

2019 Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting
• June 10-13, 2019
• Virginia