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Screening Analysis Motivation: 
Role of H2 in Energy Storage Market
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Source: DOE Global Energy Storage Database: https://www.energystorageexchange.org/

Global Energy Storage Inventory: 
• 95% is pumped hydro serving diurnal operation
• Batteries typically provide few hours of storage
• Thermal storage is predominantly molten salt for concentrated solar  
• Fly wheels provide very short duration storage (frequency regulation)

Pumped hydro
96%

https://www.energystorageexchange.org/


Screening Analysis Scope

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future3

System Energy storage options Performance & cost metrics

H2 & fuel cell  Tank storage Salt domes Current status Future potential

Battery, lithium ion Battery Current status Future potential

Analyzed Components:
• Rectifier
• Electrolyzer
• Hydrogen compressors
• Hydrogen storage

• tank storage
• salt domes (geologic, 3 in USA)

• Batteries
• lithium ion

• Power generation
• fuel cell

• Inverter

Cost and performance parameters were 
extensively peer reviewed by battery and 

hydrogen technology experts.

Current timeframe assumes 6¢/kWh 
electricity cost for storage recharging.

Future timeframe assumes 3¢/kWh electricity 
cost for storage recharging.



Electrolyzer

Diagrams of Storage 
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Simple Benchmark Profile
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Simple diurnal cycle:
 4 hours power generation 
 8 hours storage recharge
 12 hours stand-by 

Interest focus: long duration storage capability

Simple cycle provides a 
transparent and intuitive 
means of benchmarking 
energy storage systems.



Capital Cost Summary
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Technology Timeframe
Assumption

Charging
($/kW)

Storage
($/kWh)

Discharging
($/kW)

Battery Current  196 218 60

Battery Future Potential 183 80 60 
Hydrogen in tanks Current 942 35 574 
Hydrogen in tanks Future Potential 432 18 300

Hydrogen in salt domes Current 942 0.08 574
Hydrogen in salt domes Future Potential 432 0.08 300

Hydrogen storage provides: 
• lowest cost of stored energy
• more expensive charging and discharging capital
• lower round-trip efficiency

Charging capital: Rectifier, Electrolyzer, Compressor
Storage capital: Batteries, H2 storage tanks, salt dome
Discharging capital: Inverter, fuel cell 



H2FAST Model Used For Levelized Cost Analysis
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• Equipment sizing
• Cost estimation
• Efficiency estimation

• Energy Use
• Energy Costs
• Financial Assumptions

Techno-economic assessment is made based 
on minimal equipment sizing to achieve 

benchmark cycle.  H2FAST model was used 
to evaluate levelized cost of peak power.

Preliminary

https://www.nrel.gov/hydrogen/h2fast.html



Levelized Cost of Energy vs. Duration of
Storage Li-Ion Battery

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6 7

Financing

Maintenance

Installation

Discharging capital

Storage capital

Charging capital

Operating cost

LC
O

E 
of

 p
ea

k 
po

w
er

 (2
01

6$
/k

W
h)

Storage duration (days)

Purchased electricity

Excellent round-trip efficiency (95%) minimizes operating costs (purchase of 
electricity @ 6¢/kWh).  Capital intensity is dominated by battery module cost.
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Preliminary



Levelized Cost of Energy vs. Duration of 
H2 Storage (FC + Tanks)
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Preliminary

Lower round-trip efficiency (35%) induces higher operating costs.  Lower capital 
cost for storage reduces total cost escalation for long duration storage.
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Fuel cells + geologic storage

• Below ~13h with current technology, batteries have economic advantage.  
• Durations over ~13h favor hydrogen technologies.
• Windows of cost use 6¢/kWh electricity for current timeframe and 3¢/kWh for future timeframe.

Economic Performance Benchmark Current 
& Future Hydrogen and Batteries
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Preliminary
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Hydrogen Co-Production Opportunity

Simple diurnal cycle:
 4 hours power generation 
 8 hours storage recharge
 12 hours stand-by
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H2 co-production would improve 
economics if H2 price exceeds 
variable operating costs. 
O2 co-production may also bear 
value.

hydrogen co-production



Take-aways
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1. Hydrogen energy storage technologies have economic 
advantage for long-duration storage
 Above ~13h of storage with current tech

2. Round-trip efficiency disadvantage over batteries can 
be overcome for storage durations greater than ~12h

3. Additional work is needed to understand the potential 
revenue (avoided cost) of long-duration storage

4. Energy storage system economics can be improved 
with H2 co-production
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Parity Duration Sensitivity vs. Techno-Economic 
Parameters (Current, H2 vs. Batteries)

Round-trip efficiency improvements are most important
• Electrolyzer, compressor, fuel cell
• Above uses 6¢/kWh
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Means of Improving Round Trip Efficiency

Increased efficiency can be traded for capital 
expenses

1. Increase electrolysis & fuel cell active area
2. Consider solid oxide electrolysis (SOEC)
3. Consider SOEC with thermal storage (store waste heat from power 

generation and use for thermal needs in electrolysis)
4. Consider high pressure electrolysis (reduce compression needs)
5. Consider compression energy recovery with turbo expander

Round trip efficiency is more important than capital cost.  
Improving efficiency can be traded for increased capital cost.
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Technoeconomic Parameter Details
Techno-Economic Parameters Current status Future potential Reference

Rectifiers
Rectifier efficiency 98.4% 98.4% [2]
Rectifier cost ($/kW AC) 196$                    183$                      [3]
Total installation cost factor (% of equipment capital) 57% 57% [3]
System O&M (% of capital cost) 1% 1% assumption

Electrolyzers
Electrolyzer power use (kWh DC/kg) 54.3 50.2 [3]
Electrolyzer cost ($/kW DC) 737$                    232$                      [3]
System life (years) 20 20 [4]
System O&M (% of capital cost) 8% 9% [3]
Total installation cost factor (% of equipment capital) 57% 57% [3]

Compressors
Power use (kWh AC/kg) 1.42 1.42 [5]
Compressor cost factor A (equation form c=A*p^B; where p is power) 2290 2061 [5]
Compressor cost exponent B (equation form c=A*p^B; where p is power) 0.8225                0.8225                   [5]
Total installation cost factor (% of equipment capital) 187% 187% [5]
System O&M (% of capital cost) 4% 4% [5]

Storage
Terrestrial storage installed cost ($/kg) 1,168                  600                         [5], [6]
Terrestrial storage installed cost ($/kWh LHV) 35                        18                           assumes 33 kWh/kg H2
Terrestrial storage O&M (% of capital cost) 1% 1% [5]
Geologic storage installed cost ($/kg) 2.69                     2.69                       [5]
Geologic storage installed cost ($/kWh LHV) 0.08                     0.08                       assumes 33 kWh/kg H2
Geologic storage O&M (% of capital cost) 4% 4% [5]
Cushion gas (%) 17.1% 17.1% [5]
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Technoeconomic Parameter Details

Techno-Economic Parameters Current status Future potential Reference

Fuel cells
Fuel cell power production (kWh DC/kg) 20.0                     23.3                       [7]
Fuel cell cost ($/kW DC) 507                      237                         [8]
Total installation cost factor (% of equipment capital) 20% 20% assumption
System O&M (% of capital cost) 6% 6% [8]

Inverters
Inverter efficiency (%) 98.6% 98.6% [9]
Inverter installed cost ($/kW) 60$                      60$                         [10]
Total installation cost factor (% of equipment capital) 20% 20% assumption
System O&M (% of capital cost) 1% 1% assumption

Batteries
Charging efficiency 98.3% 99.4% [11]
Discharging efficiency 98.1% 99.4% [11]
Cost ($/kWh) 217.5 80 [12], [13]
System life (years) 10 10 [14]
System O&M (% of capital cost) 1.0% 1.0% assumption
Total installation cost factor (% of equipment capital) 20% 20% assumption
System O&M (% of capital cost) 1% 1% assumption

Feedstock
Electricity cost ($/kWh) 0.060 0.030 assumption
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Technoeconomic Parameter Details

Total tax rate (statefederallocal)
General inflation rate
Depreciation method

Depreciation period
Leveraged after-tax nominal discount rate
Debt/equity financing

Debt type
Debt interest rate (compounded monthly)

Cash on hand (% of monthly expenses)

21.00%

100%
3.70%

Revolving debt
1.50                                                                                                 

10.0%
5  year                                                                                             
MACRS

1.90%
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Long duration storage benefit
• Present work shows likely cost advantage of long duration hydrogen storage 

compared to other storage technologies

• Additional cost advantages may include revenue from hydrogen and avoided 
costs.

To understand competitiveness of long duration storage, we can perform 
cost/benefit comparison using LCOE and avoided costs (LACE)

Preliminary Results – Do not cite
• Previous work has 

shown that market for 
multi-day storage is 
currently limited

• Using power system 
models, we can 
calculate the benefit 
(avoided cost) of 
operating the storage Preliminary results from the EPRI-DOE H2@Scale CRADA Project 

show how storage can be used as renewable penetration increases. 
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