Scalable Electrolytic Systems for Renewable Hydrogen Production

Guido Bender
National Renewable Energy Laboratory
April 30, 2019

DOE Hydrogen and Fuel Cells Program
2019 Annual Merit Review and Peer Evaluation Meeting

Project ID: H2001

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline and Budget

• Project start date: 02/26/18
• Project end date: 05/01/19
• Total project budget: $150k
 – Total recipient share: $25k
 – Total federal share: $25k
 – Total DOE funds spent*: $25k

* As of 3/01/19

Barriers

• Utilization of remote off-shore wind resources
• Capital cost reduction

Partners

• GTA
• NREL
• Relevance (H2@Scale CRADA call)
 – Support development of multi-MW (typically 10-12 MW) low temperature water electrolysis system that integrates with off-shore wind farm

• Objectives:
 – Verify technology at TRL4 level
 – Create input for advancement to TRL5 level
Analysis of Electrolyzer-Based Hydrogen Production Costs

• In one H2@scale future scenario 12.8 quad of wind electrical power is added
 (B. Pivovar, DOE FCTO webinar, “H2@scale: Deeply Decarbonizing Our Energy System”, July 28th 2016)
• 12.8 quad = 58 million metric tons H₂/year @ 60% conversion efficiency
• Red square area needed for 12.8 quad/year of electrical power offshore wind energy
• 12.8 quad/year require for example 94,800 wind turbines at 10 MW each; capacity factor = 0.45
Approach - Technology

How offshore floating wind farms work

1. Huge floating wind turbines — each about 600 feet tall — are grouped together and anchored to the ocean floor.
2. Electricity from the turbines is transmitted to a floating substation.
3. The electricity then flows through a buried cable to an onshore power plant.

Cost of Cable Damage

- Niels Kragelund - Head of Wind Energy at Danish Insurers Codan says.....
 - "cables account for 90% of the number of offshore wind claims"
 - "cables account for 70% of the actual cost of claims"
- Tim Haiperin-Smith - Director at Global Insurance brokers Willis says
 - "of all the offshore wind claims his firm receives, most incidents occur during installation, half of them due to human error"

High-Voltage Export Cables Cost

- 25% CAPEX
- 30% of OPEX are cable related liability insurance premiums:
 - 90% legal challenges
 - 70% of those are actual cash settlements

Wind turbine operating models

- Electricity single product
- Demand vs. supply challenge
- Typically one customer
- Benefits from value-added H2
Approach - Technology

Fixed Base Turbines

Floating Turbines

- Offshore wind turbine options:
 - Fixed platform
 - Floating spar buoy
- Hydrogen production at wind turbine site
- Minimal electrical power transfer loss from turbine to electrolyzer
- Hydrogen delivery via gas pipelines
Approach - Project

• Project leveraged NREL in-situ testing capabilities
• GTA provided prototype electrolysis cell of ≤700W and other specific laboratory equipment as needed
• NREL integrated and commissioned test equipment
• NREL conducted a series of performance tests
• NREL conducted trace gas analysis on the product hydrogen
• GTA utilized information from exchange into next development step
Accomplishments and Progress

Test setup

• Received, assembled and commissioned at NREL
• Integrated into NREL’s laboratory environment
• Refined with
 – Thermocouple testing
 – Automated performance experiments
 – Automated data collection
 – Backpressure control
Accomplishments and Progress

Verification of Operation

- Electrolyzer performance measured with and without oxygen scrubber
- Performance difference observed between GTA & NREL
 - Assigned to NREL elevation with ambient pressure of 12 psia
 - Bubble size effect expected
 - Only 5 psi gauge pressure operation was available with hardware
- Pressure adjusted to sea level ambient pressures and slightly elevated pressure for fuel quality experiments
Trace Gas Analysis

- Electrolyzer operated with sample cylinder collecting gas samples with and without oxygen scrubber
- Gas analyzed towards SAE J2719 fuels purity standard
- Hydrogen fuel purity reported by GTA verified at NREL
Accomplishments & Progress

Characterization of H₂ purity

- Gas collection with custom containers for Hydrogen fuels purity characterization from Smart Chemistry
- Hydrogen purity as measured = 99.96681%
- H₂O, O₂, and CO₂ as measured are above the stringent SAE J2719 fueling standards
- Gas purity met the expectations and are sufficient for many hydrogen applications for H2@scale objectives
- Simple upgrades could be implemented to meet the SAE J2719 fueling standard
- Removing the H₂O, O₂, and N₂, the hydrogen purity would increase to be above 99.999%
Accomplishments and Progress

TRL4 to TRL5 Transition

• Component validation in relevant environment
• Simulated off-shore operation by submersion of electrolysis stack in seawater
• Redesign of stack for TRL5 demonstration
• Successful operation of submerged system
• Screening test of various diaphragm materials underway
Collaboration and Coordination

• Industry partner: GTA
 – Defined objectives
 – Defined operating conditions
 – Provided information about specific operating procedures
 – Provided specialized equipment
 – Provided data measured at GTA

• National lab partner: NREL
 – Performed system setup in NREL lab for ≤700W cell
 – Performed refinements to experimental setup
 – Confirmed GTA performance
 – Characterized hydrogen quality via trace gas analysis for GTA
Remaining Challenges and Barriers

• Scope of project completed
• No challenges remain within the scope of the project
Proposed Future Work

• Project completed
• No future work planned within this project

• Future work outside this project
 – Demonstrate functionality in various scenarios:
 • Simulated ocean floor pressure submersed in seawater
 • Actual off-shore environment
 – Investigate performance improvement through
 • Pressure operation
 • Electrode optimization
Technology Transfer Activities

- This project did not result in any technology transfer
Responses to Previous Year
Reviewer’s Comments

• Project was not reviewed last year
Summary

• NREL and GTA successfully collaborated on verification and characterization of GTA’s submersible electrolyzer technology for off-shore operation

• Verification of performance data at NREL

• Successful characterization of hydrogen fuels purity
 — Hydrogen purity as measured = 99.97%
 — Theoretical purity above 99.999% after removal of H₂O, O₂, and N₂
Acknowledgements

GTA

• Elias Greenbaum, Industry Partner PI

NREL

• Matthew Post, system integration sub-lead