May 2019

IEA Wind TCP Task 37

Systems Engineering in Wind Energy - WP2.1 Reference Wind Turbines

Technical Report

NOTICE

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.

NREL prints on paper that contains recycled content.

IEA Wind Task 37 on Systems Engineering in Wind Energy WP2.1 Reference Wind Turbines

Pietro Bortolotti¹, Helena Canet Tarrés², Katherine Dykes¹, Karl Merz³, Latha Sethuraman¹, David Verelst⁴, and Frederik Zahle⁴

¹National Renewable Energy Laboratory, Golden CO, USA ²Wind Energy Institute, Technische Universität München, Germany ³SINTEF Energy Research AS, Trondheim, Norway ⁴Wind Energy Department, Technical University of Denmark, Roskilde, Denmark

May 23, 2019

Abstract

This report describes two wind turbine models developed within the second work package (WP2) of IEA Wind Task 37 on Wind Energy Systems Engineering: Integrated RD&D. The wind turbine models can be used as references for future research projects on wind energy, representing a modern land-based wind turbine and a latest generation offshore wind turbine. The land-based design is a class IIIA geared configuration with a rated electrical power of 3.4-MW, a rotor diameter of 130 m, and a hub height of 110 m. The offshore design is a class IA configuration with a rated electrical power of 10.0 MW, a rotor diameter of 198 m, and a hub height of 119 m. The offshore turbine employs a direct-drive generator.

Contents

1	Introduction	9
2	Survey on Reference Turbine Use Cases and Needs 2.1 Historical Reference Turbine Use and Evaluation 2.1.1 NREL 5-MW Reference Turbine 2.1.2 DTU 10-MW Reference Turbine 2.2 Specifications for New Reference Wind Turbines 2.2.1 Land-Based Reference Wind Turbine 2.2.2 Offshore Reference Wind Turbine	11 11 12 13 14 14 15
3	Design Tools and Methodologies3.1Cp-Max - TUM3.2HAWTOpt2 - DTU3.3WISDEM - NREL	16 16 16 18
4	3.4-MW Land-Based Wind Turbine 4.1 Design Process 4.2 Rotor Aerodynamics 4.3 Rotor Structure 4.4 Hub, Drivetrain, Generator, and Nacelle Properties 4.4.1 Drivetrain 4.4.2 Generator 4.4.3 Nacelle 4.5 Tower Properties 4.6 Control and Actuators 4.7 Frequency Analysis 4.8 Load Assessment and Design Drivers	19 19 20 22 26 26 27 27 27 29 31 33 35
5	10-MW Offshore Wind Turbine5.1Design Process5.2Airfoil Data5.3Rotor Aerodynamics5.4Rotor Structure5.4.1Structural Layout5.4.2Material Properties5.4.3Material Layup5.5Hub, Shaft, Nacelle, and Generator Properties5.5.1Hub, Shaft and Nacelle5.5.2Direct-Drive Generator5.6Tower and Offshore Support Structure Properties5.7Controller Properties5.8Load Assessment	$\begin{array}{c} {\bf 36} \\ {\bf 36} \\ {\bf 37} \\ {\bf 37} \\ {\bf 39} \\ {\bf 39} \\ {\bf 42} \\ {\bf 42} \\ {\bf 42} \\ {\bf 45} \\ {\bf 45} \\ {\bf 46} \\ {\bf 51} \\ {\bf 51} \\ {\bf 54} \end{array}$
6	Conclusions	58
A	ppendices	63

Appendices

\mathbf{A}	Land-Based Reference Turbine Detailed Properties and Loads				63
	A.1 Blade Aerodynamic Shape				63
	A.2 Airfoil Data				65
	A.3 Blade Structure				78
	A.4 Nacelle Assembly				87
	A.5 Tower Structure				88
	A.6 Loads Tables				90
в	Offshore Reference Turbine Detailed Properties and Loads				94
В	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape				94 94
в	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data	•	 	•••	94 94 96
В	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data B.3 Blade Structure	•	 	•••	94 94 96 112
в	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data B.3 Blade Structure B.4 Nacelle Assembly		 	•••	94 94 96 112 122
в	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data B.3 Blade Structure B.4 Nacelle Assembly B.5 Generator		 	•••	94 96 112 122 125
в	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data B.3 Blade Structure B.4 Nacelle Assembly B.5 Generator B.6 Controller Inputs		 	• •	94 96 112 122 125 127
в	Offshore Reference Turbine Detailed Properties and Loads B.1 Blade Aerodynamic Shape B.2 Airfoil Data B.3 Blade Structure B.4 Nacelle Assembly B.5 Generator B.6 Controller Inputs B.7 Tower Structure		· · · · · · · · ·	· · ·	94 94 96 112 122 125 127 129

List of Tables

1	Survey on reference turbine use cases
2	Summary of the configuration of the land-based wind turbine
3	Set of airfoils used in the rotor aerodynamic design of the 3.4-MW wind turbine
4	Mechanical properties of the composite materials used in the blade
5	Drivetrain properties
6	Static and fatigue mechanical properties of the steel used in the tower of the 3.4-MW wind
	turbine
7	Operational data of the rotor
8	Natural frequencies of the land-based wind turbine. Legend: OoP - out-of-plane, IP - in-plane,
	asym asymmetrical. edge - edgewise. hor horizontal. vert vertical. FA - Fore-Aft. SS -
	Side-side
9	Key parameters of the new 10-MW compared to the original DTU 10-MW RWT
10	Design variables used in the optimization
11	Overall properties of internal structure
12	Fiber orientation and apparent mechanical properties of the multidirectional plies Repro-
14	duced from [4]
13	Mechanical properties of balsa wood [52] [53] The indices 1 2 and 3 refer to the blade's
10	longitudinal transverse and out of plane direction respectively. Reproduced from [4]
14	Characteristic values of the longitudinal tensile and compressive strain to failure of the mul
14	tidirectional plies (5% fractile values with a confidence level of 05%). Reproduced from [4]
15	Some key properties and dimensions of the tower and foundation $[4]$.
16	Operational summary of the 10 MW rotor
17	Operational data of the 10 MW rotor
18	Considered Design Lead Cases from the IEC standard according to [54] Note that DI Chy is
10	considered Design Load Cases from the IEC standard according to [34]. Note that DECOX is
10	Accodynamic shape of the land based wind turbine blade Part I
19	Accodynamic shape of the land-based wind turbine blade - 1 art I
20 91	Airfoil shape. Post sizels
21 99	Airfoil shape - ROOUCITCIE
22 92	Airfoil shape - FX77 W 400
20 94	Alloli shape $- F \Lambda / / - W - 400 \dots 00$
24 25	Airfoil shape - DU07 W 200
20 96	Alfoli shape $-$ DU91-W-500
20 97	Alfioli shape $-$ DU91-W2-250
21	Airfoil snape - D008-W-210
28	Airfoil aerodynamic coefficients - Root circle
29	Airfoil aerodynamic coefficients - $FX(I-W-500)$
3U 91	Airfoil aerodynamic coefficients - $FX/7-W-400$
31	Airfoil aerodynamic coefficients - $DU00$ - W 2-350
32	Airfoil aerodynamic coefficients - $DU9/-W-300$
33	Airfoil aerodynamic coefficients - DU91-W2-250
34	Airfoil aerodynamic coefficients - DU08-W-210
35	Position in respect to blade pitch axis of the structural components of the blade - Part I
36	Position in respect to blade pitch axis of the structural components of the blade - Part II 79
37	Thickness of the structural components of the blade - Part I
38	Thickness of the structural components of the blade - Part II
39	Thickness of the core in the sandwich panels of the blade
40	Mass and stiffness properties of the blade - Part I
41	Mass and stiffness properties of the blade - Part II
42	Mass and stiffness properties of the blade - Part III
43	Mass and stiffness properties of the blade - Part IV

44	Aeroelastic modeling of the nacelle of the land-based wind turbine	87
45	Structure of the tower of the land-based wind turbine.	88
46	Elastic properties of the tower of the land-based wind turbine.	89
47	Load envelope at blade root. Safety factors already applied. Reference coordinate system: x	
	- flapwise direction, y - edgewise direction, z - blade pitch axis.	90
48	Load envelope at hub center. Safety factors already applied. Reference coordinate system: x	
	- aligned with the shaft, pointing downwind, y - in the rotor plane, z - in the rotor plane.	91
49	Load envelope at tower base. Safety factors already applied. Reference coordinate system: x	
	- aligned with the ground, pointing downwind, y - side, z - aligned with the tower, pointing	
	upwards	92
50	Weibull weighted damage equivalent loads (DEL) for a number of cycles equal to 10^6	93
51	Aerodynamic shape of the offshore wind turbine blade. Part I	94
52	Aerodynamic shape of the offshore wind turbine blade. Part II	95
53	Airfoil shape - FFA-W3-211 21.10% airfoil	97
54	Airfoil shape - FFA-W3-241 24.10% airfoil	98
55	Airfoil shape - FFA-W3-270 blend 27.00% airfoil	99
56	Airfoil shape - FFA-W3-301 30.10% airfoil	100
57	Airfoil shape - FFA-W3-330blend 33.00% airfoil	101
58	Airfoil shape - FFA-W3-360 36.00% airfoil	102
59	Airfoil shape - Interpolated 48 48.00% airfoil	103
60	Airfoil shape - Interpolated 72 72.00% airfoil	104
61	Airfoil aerodynamic coefficients - FFA-W3-211 (Re=1.00e+07)	105
62	Airfoil aerodynamic coefficients - FFA-W3-241 (Re=1.00e+07)	106
63	Airfoil aerodynamic coefficients - FFA-W3-270blend (Re=1.00e+07)	107
64	Airfoil aerodynamic coefficients - FFA-W3-301 (Re=1.00e+07)	108
65	Airfoil aerodynamic coefficients - FFA-W3-330blend (Re=1.00e+07)	109
66	Airfoil aerodynamic coefficients - FFA-W3-360 (Re=1.00e+07)	110
67	Airfoil aerodynamic coefficients - Cylinder	111
68	Beam structural properties of the blade in HAWC2 format	113
69	Beam structural properties of the blade in HAWC2 format	114
70	Position of the structural components with regard to the structural reference plane	115
71	Beam structural properties of the nacelle, turret, shaft, and hub assembly in HAWC2 format.	115
72	Beam structural properties of the nacelle, turret, shaft, and hub assembly in HAWC2 format.	116
73	Cross section stiffness and mass properties of the tower. Reproduced from [4]	116
74	Material thicknesses in the trailing-edge reinforcement region (DP00-DP02 and DP15-DP17	115
	In Figure 23). \dots	117
75	Material thicknesses in the main-panel region (DP02-DP04 and DP13-DP15 in Figure 23)	118
76	Material thicknesses in the spar cap region (DP04-DP07 and DP10-DP13 in Figure 23)	118
77	Material thicknesses in the leading-panel region (DP07-DP08 and DP09-DP10 in Figure 23).	119
(8 70	Material thicknesses in the leading-edge reinforcement region (DP08-DP09 in Figure 23).	119
79	Material thicknesses in the trailing-edge (DP17-DP00 in Figure 23).	120
80	Material thicknesses in the ait snear web (DP05-DP14 in Figure 23)	120
81	Material thicknesses in the spar cap art shear web (DP05-DP12 in Figure 23)	121
04 02	Fourier lent more properties of the possible accombly of the 10 MW offshare mind turbine	121
00	Equivalent point mass properties of the facence assembly of the 10-MW offshore wind turble.	
	I he reference frame is focated at lower top with z angled with the tower axis pointing upwards,	
	y pointing upwind toward the wind parallel to the ground, and x pointing sideways parallel to the ground, and stands for contor of mass and I for area moment of inertia	100
	to the ground, cog stands for center of mass and 1 for area moment of mertia	122

84	Lumped masses for the nacelle assembly in HAWC2 coordinates of the tower top (see red coordinate system with subscript $_{TT}$ in Fig. 37). Note that the total mass of the nacelle assembly for the HAWC2 model is separated out into the lumped massed from this table, and the distributed properties for the beams as defined in Table 86	122
85	Lumped masses for the nacelle assembly in HAWC2 coordinates of the shaft and which is tilted 6 degrees with respect to the horizontal (see red coordinate system with subscript $_{shaft}$ in Fig. 37). Note that the total mass of the nacelle assembly for the HAWC2 model is separated out into the lumped massed from this table, and the distributed properties for the beams as defined in Table 86	199
86	Equivalent elastic properties of the shaft of the 10-MW offshore wind turbine. r is the coordinate along the shaft axis, where the 0 is at the main bearing and 5.4 m at the hub connection.	122
	The beam assumes the Timoshenko formulation used in HAWC2 [18]	124
87	Electromagnetic design of the 10-MW reference direct-drive generator.	125
88	Structural design of the 10-MW reference direct-drive generator.	126
89	Physical parameters for the converter and transformer of the 10-MW RWT	126
90	Wall thickness distribution of the tower. Reproduced from [4]	129
91	Loads envelope at blade root projected onto 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise	
	direction, z - blade pitch axis.	130
92	Loads envelope at a blade station 0.7 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	130
93	Loads envelope at a blade station 2.9 m from the root, projected into 12 loading directions	
	in the $M_x/M - y$ plane. Safety factors already applied. Reference coordinate system: x -	
	flapwise direction, y - edgewise direction, z - blade pitch axis.	131
94	Loads envelope at a blade station 4.8 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	131
95	Loads envelope at a blade station 9.7 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis.	131
96	Loads envelope at a blade station 14.5 m from the root, projected into 12 loading directions in	
	the M_r/M_u plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis.	132
97	Loads envelope at a blade station 19.3 m from the root, projected into 12 loading directions in	
	the M_r/M_u plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis.	132
98	Loads envelope at a blade station 24.2 m from the root projected into 12 loading directions in	10-
00	the $M_{\rm e}/M_{\rm e}$ plane. Safety factors already applied. Reference coordinate system: x - flanwise	
	direction y_{-} adgewise direction z_{-} blade pitch axis	139
00	Loads anyclope at a blade station 31.4 m from the root, projected into 12 loading directions in	102
33	Loads envelope at a blade station 51.4 in nom the root, projected into 12 loading directions in the M/M plane. Safety factors already applied. Beforence coordinate system: y flappyice	
	the M_x/M_y plane. Salety factors already applied. Reference coordinate system. x - hapwise	199
100	Leads envelope at a blade station 28.7 m from the past projected into 12 leading directions in	100
100	Loads envelope at a blade station 58.7 in from the root, projected into 12 loading directions in $(M - M - M - M - M - M - M - M - M - M -$	
	the M_x/M_y plane. Salety factors already applied. Reference coordinate system: x - flapwise	100
1.01	direction, y - edgewise direction, z - blade pitch axis.	133
101	Loads envelope at a blade station 45.9 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	133

102	Loads envelope at a blade station 53.2 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis.	134
103	Loads envelope at a blade station 60.4 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	134
104	Loads envelope at a blade station 67.7 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	134
105	Loads envelope at a blade station 74.9 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	135
106	Loads envelope at a blade station 82.1 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	135
107	Loads envelope at a blade station 89.3 m from the root, projected into 12 loading directions in	
	the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise	
	direction, y - edgewise direction, z - blade pitch axis	135
108	Tower base load envelope projected into 4 loading directions in the $M_x/M - y$ plane. Safety	
	factors already applied. Reference coordinate system: x - for-aft direction, y - side-side	
	direction, z - tower torsion axis.	136
109	Tower top load envelope projected into 4 loading directions in the $M_x/M - y$ plane. Safety	
	factors already applied. Reference coordinate system: x - for-aft direction, y - side-side	
	direction, z - tower torsion axis.	136

List of Figures

1	Percentage of respondents by organization type. Only one respondent chose to abstain from	
T	providing their organization type.	11
2	Input into the new land-based RWT design in terms of rated power and specific power	14
3	Input into the new offshore RWT design in terms of rated power and specific power	15
4	Algorithmic structure of Cp-Max	17
5	Extended design structure matrix diagram of the workflow of HAWTOpt2.	17
6	The Wind-Plant Integrated System Design and Engineering Model	18
7	View from the pressure side and from the LE of the land-based wind turbine blade	20
8	Aerodynamic blade shape of the land-based wind turbine	21
9	Positions along blade span of the various structural components.	23
10	Thicknesses of the structural components of the blade of the land-based wind turbine	23
11	Thicknesses of the core in the sandwich panels of the blade of the land-based wind turbine.	23
12	Sectional references frames. Aerodynamic: x_A , y_A ; structural: x_S , y_S	24
13	Drivetrain layout	26
14	DFIG module within GeneratorSE. Design dimensions and CAD illustration reproduced from [28].	27
15	Structural design of the tower for the land-based wind turbine.	29
16	Elastic properties of the tower for the land-based wind turbine.	30
17	Operational data of the land-based wind turbine	32
18	Simplified Campbell diagram for the land-based wind turbine. The horizontal lines represent	
	the modes listed in Table 8	34
19	Optimized 10-MW blade planform compared to the baseline DTU 10-MW RWT	38
20	View from the pressure side and from the LE of the offshore wind turbine blade	39
21	Top view of the 10-MW blade showing internal structural geometry.	40
22	Tip view of the 10-MW blade showing internal structural geometry.	40

23	Schematic showing the geometric parameterisation of the blade structure for the 10-MW rotor,				
	reporting 17 division points (DP) used to define the various laminate sequences along the profile.	41			
24	Schematic showing the definition of the structural angle for the 10-MW rotor	41			
25 Material stacking sequence for each region along the optimized blade. The x-axis represents					
	the non-dimensional blade span.	44			
26	A sketch of the nacelle layout of the 10-MW direct-drive wind turbine, not to scale with struc-				
	tural details omitted. Blades (not shown), hub, shaft, and generator rotor rotate. Bearings				
	are shaded grey.	45			
27	A CAD illustration of the bedplate.	46			
28	Outer rotor direct-drive generator. A CAD illustration.	47			
29	Electromagnetic (and structural) design parameters.	48			
30	Structural design parameters.	49			
31	Analysis of the electromagnetic design.	50			
32	Analysis of the structural design.	50			
33	Steady-state performance and operation of the 10-MW rotor.	53			
34	Loads envelope at blade root. Black star refers to the projected load	56			
35	Loads envelope at tower bottom. Black star refers to the projected load	56			
36	Loads envelope at tower top. Black star refers to the projected load	57			
37	Beam model representation of the nacelle assembly. The location of the lumped masses are				
	given in blue.	123			

1 Introduction

During the design of complex systems such as wind turbines, innovations, improved methods, and research findings are often made at the level of a single component, or discipline. One must then determine whether there will be any positive impact on the rest of the system, if any. If this evaluation can be made by modifying a reference system, whose behavior has been well characterized, then the results may be readily understood and compared against other relevant results. This helps to solidify the scientific basis, such as reproducibility and benchmarking, of the findings. Also, from a purely practical standpoint, adopting reference configurations helps all reporting activities.

Reference wind turbines (RWT) have aided the research community for some time. One of the most well known RWT is the NREL 5-MW, developed in 2005 using a combination of commercial turbine data and parameters of other RWTs available at the time [1]. Designers and researchers around the world have used this RWT, and while there are a number of turbine manufacturers who have developed 5-MW models (Repower, Areva, Bard, XEMC, Goldwind, and Gamesa), all of these turbines vary in rotor size (115-152 m) from the original reference.

However, wind turbine technology has significantly advanced since 2005, making the 5-MW RWT less useful as a reference for modern technology. In addition, current offshore technology has scaled beyond 5-MW. Siemens-Gamesa, and GE have deployed a 6-MW turbine, while Samsung and Vestas have 7- and 8-MW models, respectively, and MHI (a Mitsubishi and Vestas joint venture) is now selling an 8-MW turbine [2]. 10-MW turbines have been proposed by Senvion, AMSC and Siemens Gamesa. Most recently, GE has introduced their Haliade-X 12-MW design that they expect to commercialize in the coming years [3]. The 5-MW RWT has a high-speed drivetrain, while most offshore wind turbines have moved toward medium-speed or direct-drive architectures. The 5-MW reference also has a high specific power of nearly 400 W/m^2 , which will skew the predicted annual energy production (AEP) leading to higher levelized cost of energy (COE) estimates when this turbine is used as the basis for economic assessments. In contrast, the new Haliade-X proposed by GE has a specific power of 315 W/m^2 and an estimated capacity factor of 63% when placed on a tower of approximately 150 m in height [3]. Structurally, the RWT rotor and nacelle are also much heavier than modern turbine designs, having implications in tower and support structure design. In addition, the design was always intended as an offshore wind turbine but has been used extensively for land-based research studies due to the lack of alternatives. For both land-based and offshore applications, there is a need for new RWTs that better reflect current technology.

In 2013, Denmark Technical University (DTU) Wind Energy released the DTU 10-MW RWT, which is a class IA offshore turbine [4]. The turbine was not designed to represent the state of the art or incorporate innovative technologies, but was meant to be a baseline for benchmarking new technologies. The turbine is described with high detail, including blade geometrical data needed for both blade-element-momentum theory (BEM) based and computational-fluid-dynamics (CFD) tools, as well as detailed structural data relevant for finite-element-modeling (FEM) codes. The turbine is widely used in the research community and as of April 2018 had over 1000 users. It has been used and adapted in a number of Danish national and European projects, such as INNWIND, MareWint and IRPWind. However, early use of the DTU 10-MW RWT found some shortcomings, in particular the too high the specific power of 400 W/m². This further motivates the need for updated references for large-scale offshore wind turbine applications.

One of the core activities of the IEA Wind Task 37 Integrated RD&D [5] is to develop RWTs that reflect current wind turbine technology. The consortium, that includes research and industry partners from China, Denmark, Germany, The Netherlands, Norway, Spain, United Kingdom, and USA reached a broad agreement on the typical application areas and top-level characteristics of two RWTs that could be used immediately by the research and broader wind community, including:

- Onshore locations with moderate winds: a 3-MW class III turbine, with a large rotor for a high capacity factor, and a geared drivetrain.
- Latest generation of offshore wind turbines: a 10-MW class I turbine with both a geared and directdrive configuration.

A survey was conducted to further explore the use cases and needs for RWT designs for research and development applications and to more specifically define the design characteristics of each RWT. Having defined the specifics of the configurations for each turbine based on input from the research community and industry, a team of IEA Wind Task 37 participants developed the turbines in an iterative process with design reviews held at intermediate points along the development path. This report is meant to detail the development process and two resulting IEA Wind Task RWTs. For further details and data on the designs see the IEA Wind Task 37 software and data website or go to http://github.com/IEAWindTask37. It is important to note that as the task continues its work, there are plans to develop additional RWTs that align with evolving trends in commercial wind technology for land-based and offshore applications. The two described in this document are the first in the series of IEA Wind Task 37 RWTs.

This document first reviews the results of the survey in Sect. 2 and then introduces in Sect. 3 the design tools and methodologies used in the design development of the wind turbine models. Then, the land-based configuration is presented in Sect. 4, whereas the offshore configuration is presented in Sect. 5.

2 Survey on Reference Turbine Use Cases and Needs

In the fall of 2016, a survey was conducted to identify the use cases and needs for RWTs in research and development applications. In total, 81 respondents completed the survey, which represents a broad cross section of users from universities, research institutes, wind turbine manufacturers, wind farm developers, and consultancies. The bulk of the responses came from universities and research institutes, which have historically been the largest user groups for RWT designs. Fig. 1 shows the breakdown of respondents by organizational affiliation type.

Figure 1: Percentage of respondents by organization type. Only one respondent chose to abstain from providing their organization type.

In terms of application, a large number of respondents work in the fields of aerodynamics, aeroelastics and loads analysis, controls engineering, offshore support structure design and analysis, and multidisciplinary design, analysis and optimization (MDAO) and systems engineering for wind energy.

Respondents were first asked to identify the RWTs they had used in the past and to characterize the strengths and weaknesses of those designs. In a second section, respondents were asked to provide input to the key turbine configuration characteristics they would like to see for the new set of RWTs developed under the IEA Wind Task 37.

2.1 Historical Reference Turbine Use and Evaluation

Of the 81 responses, 78 respondents had prior experience using a RWT. 65 respondents had experience with the NREL 5-MW RWT, and 55 had experience with the DTU 10-MW RWT. A small number of respondents had used other RWT designs including variants of the DTU 10-MW design used by European research projects as well as older designs from the early 2000s and before (notably the NREL Phase VI turbine [6] and WindPACT 1.5-MW RWT [7]).

The majority of respondents, 76, had used the RWTs for research purposes whereas almost half, 34, had also used them for educational purposes. Only a small number, 13, had used them for commercial applications. This reflects the survey demographics since only 16 of the survey respondents were from commercial organizations.

In terms of use cases, a broad set of applications was returned. Respondents were able to select multiple use cases and the majority selected 2 or more. The dominant uses, not surprisingly, were in aeroelastic analysis, structural analysis, and aerodynamic studies. Historic RWT designs have focused on the aeroelastic description of the machine to enable analysis of machine performance and loads. The second most dominant area of use was in the offshore support structure and tower/foundation design. RWTs are particularly valuable as test cases for design of these major components since the detailed aspects of commercial wind turbine designs are often not available. Beyond these primary use cases, other notable uses include blade design, controller design, and MDAO where RWTs provide test beds or baselines for design activities. Less common responses included plant flow, wake, and wind farm modeling, which could be due to selection bias in the survey respondent set or reflects the fact that these are new and growing research areas where the detailed aspects of the turbine design were less important. As the emphasis on modeling wind plants with higher-fidelity wind turbines grows, we expect the user base at the plant modeling-level to grow and this trend has been seen in the last several years in the wind research community. Table 1 summarizes the results from the respondents on use cases for RWTs.

Use Case	Users
Aerodynamics study	34
Aeroelastic analysis	48
Blade design study	25
Controller design	25
Drivetrain design	7
Tower/foundation design	21
Offshore support structure design	38
Structural analysis	40
Multidisciplinary design/analysis (MDAO)	22
Wake modelling	14
Plant flow modelling and controls	3
Wind farm design	10
Cost modelling	14

Table 1: Survey on reference turbine use cases.

Thus, the respondents of the survey have had significant experience with RWTs for a variety of use cases and with the dominant two open-source designs of NREL 5-MW and DTU 10-MW RWTs. An extensive number of research papers used the RWTs. In just this survey alone, nearly 250 conference papers and journal articles were identified by respondents that leverage one or more RWTs. This is likely a small sample of the actual number. The next series of questions focused on the evaluation of these two historical RWT designs.

2.1.1 NREL 5-MW Reference Turbine

Each RWT was evaluated based on its sufficiency of scope (in terms of the sub-systems modeled) and model fidelity. For the NREL 5-MW RWT, the vast majority of respondents found that the rotor aerodynamic design was sufficiently specified while most also found the rotor structure, controller, drivetrain, and tower design to be sufficiently specified. On the other hand, a larger number of respondents, 30% and 23% respectively, found the controller and drivetrain designs to be under specified.

Specific critiques of the NREL 5-MW design included:

- The blade design as provided in original documentation included only the blade properties and not details of the geometric design. Sandia National Laboratories reverse engineered a blade design later on, but this was seen as a short-coming of the original design. [8]
- One respondent described the model's controller to be "jurassic" and many others critiqued the lack of detail on the controller and electrical design. A more detailed controller was later provided by Bossanyi, but again not part of the original design. [9]
- Details of the hub design dimensions and blade root mass being too small; the blade torsional stiffness being unrealistic; displacement response of dampers that does not match higher fidelity models; use of older airfoil families; blades being too heavy for modern designs; and a specific rating that is too high.
- Detailed reporting of the fatigue analysis was cited as something that would be useful for future designs.
- Lack of version control when releasing the design.

No RWT will ever be perfect nor exactly reflect commercial wind turbine designs along with full design specifications, but all of these insights are helpful in terms of the development of new reference designs. Many respondents created their own variations of the NREL 5-MW RWT design to address the shortcomings as described above.

2.1.2 DTU 10-MW Reference Turbine

The DTU 10-MW RWT was much more recently developed than the NREL 5-MW and also developed using a formal optimization framework. Thus, it was expected that the design would be evaluated more favorably. Indeed, over 90% of respondents found the aerodynamic design to be sufficiently specified and over 75% found the rest of the machine, blade structure, controller, drivetrain, and tower design, to be sufficiently specified. This reflects the improved capabilities in developing RWTs that represent current technology with sufficient detail.

However, even given the strengths of the design, respondents found several areas for potential improvement, including:

- Many respondents still found the controller to not be sufficiently developed and also wanted the controller to be available in different file formats.
- The design lacks a detailed drivetrain design which impedes its utility in cost analysis. Users would also like to see a direct-drive version of the design.
- The detailed structural design of the blade was said to be unrealistic by a few users without further reasoning. One respondent suggested Reynolds number dependent airfoil polars would be a useful addition.
- Some respondents wanted more clear and more consistent documentation and also found the CAD files to be problematic. Some also expressed a desire for CFD meshes to be provided. The same comment about version control was also expressed.

While some of these critiques may be disputable, a few have surfaced multiple times, including the need for a better controller for RWT designs, more detailed blade structural design information, more detailed drivetrain designs, and better documentation and version control. The team tried to address several of these common criticisms in the development of the IEA Wind Task 37 RWTs.

2.2 Specifications for New Reference Wind Turbines

Having evaluated past designs, the respondents were next asked to provide their input on the characteristics of a new RWT design. This included the high-level configuration for the turbine including rated power, rotor diameter, specific power, maximum tip speed, hub height, and drivetrain design as well as additional design considerations.

2.2.1 Land-Based Reference Wind Turbine

For the land-based RWT, Fig. 2 shows the results for the key turbine configuration parameters of rated power and associated specific power.

Figure 2: Input into the new land-based RWT design in terms of rated power and specific power.

The majority of respondents suggested a 3-MW or 3- to 4-MW rated power for the new RWT which aligns well with many of the recent commercial product offerings that turbine manufacturers have introduced in the last several years. For specific power, most respondents suggested a lower specific power of under 250 W/m^2 or even less. This also shows the trend toward low-wind-speed turbines in industry with much higher capacity factors and better performance in low-wind-speed sites. Ranges for suggested rotor diameters fell between 100 and 170 m and generally aligned with respondents suggestions about appropriate rated power and specific power combinations.

For drivetrain design, most respondents surprisingly favored a direct-drive configuration, with the second highest-scoring design configuration a high-speed geared configuration with a doubly-fed induction generator (DFIG). Maximum tip speed was recommended by most respondents to be between 80 and 90 m/s and hub height was recommended to be between 120 and 150 m. The latter suggestion for the hub height aligns with developments especially in Europe where tall towers are increasingly used. However, design challenges for tall towers and the use of novel configurations called into question whether such a large height were warranted for the reference design.

To further inform the design specifications, the responses from the larger survey were used to solicit input from a small number of industry representatives. The results of that process finalized the RWT design configuration. The final design would be a 3- to 4-MW range for rated power with a lower specific power (at most 250 W/m²), a maximum tip speed up to 90 m/s, and a geared drivetrain with DFIG and a hub height of approximately 100 m. Final design decisions related to the specific values of the turbine were left to the lead engineer for the RWT development.

2.2.2 Offshore Reference Wind Turbine

For the offshore RWT, Fig. 3 shows the results for the key turbine configuration parameters of rated power and associated specific power.

Figure 3: Input into the new offshore RWT design in terms of rated power and specific power.

For offshore, there was quite a range of interest in rated power from 8 MW all the way to 20 MW. Many respondents recommended a 10- to 12-MW turbine while quite a large number recommended even larger sizes of 15 to 20 MW. For the first design iteration, given limited resources, a redesign of the DTU 10-MW RWT rather than a completely new larger design was decided. The development of a larger RWT will likely follow. For specific power, most respondents suggested a value lower than 350 W/m². Thus, the most significant change to the DTU 10-MW RWT was to reduce the specific power from the current value of 400 W/m². For maximum tip speed, between 90 to 110 m/s was recommended and a hub height of 140 m was the most popular response. Over half of the respondents recommend a drivetrain configuration of direct-drive with a synchronous generator, though about a third of respondents also suggested a medium-speed geared drivetrain with a synchronous generator.

Taking into account additional input from IEA Wind Task 37 industry participants, the final design was chosen for the DTU 10-MW RWT with a specific power of under 350 W/m^2 , a maximum allowable tip speed of up to 110 m/s, and a direct-drive drive train with a synchronous generator. Final design decisions related to the exact values for the configuration were left to the lead engineer for the RWT development.

Note that the design of the support structure was not discussed here and is an important consideration for the overall design. The RWT developed by DTU used a land-based tower and the reference wind plant track within IEA Wind Task 37 (work package 2.2) is developing a tower/monopile support structure for the turbine in 30 m of water depth using site-specific metocean conditions. That design will be handled in a separate report.

3 Design Tools and Methodologies

The design of a wind turbine is a complex task that has to account for the tight interactions existing among multiple disciplines and the presence of several concurrent and often contrasting design requirements. For such a challenge, automated systems engineering tools greatly simplify and speed up the exploration of the solution space, and improve the understanding of the effects of design choices and trade-offs across various subsystems of the turbine. For the development of the RWT, formal MDAO methods were employed to more closely mimic commercial wind turbine designs than past RWT designs.

In this project, three frameworks have been used to develop the RWTs: the Code for Performance Maximization Cp-Max ([10, 11, 12, 13, 14] among others) developed at the Wind Energy Institute of Technische Universität München (TUM), the Multidisciplinary Horizontal Axis Wind Turbine Optimization Tool HAWTOpt2 [15] developed by DTU and the Wind-Plant Integrated System Design and Engineering Model WISDEM [16] developed by the National Renewable Energy Laboratory (NREL) in the U.S. The frameworks are described shortly in the paragraphs below; readers interested in the details of the formulations should refer to the publicly available bibliography.

3.1 Cp-Max - TUM

The design methodologies implemented in the Cp-Max framework, which is continuously upgraded and expanded, perform the overall sizing of a wind turbine in terms of rotor diameter and tower height, while simultaneously generating a detailed sizing of the aerodynamic and structural components of the machine, ultimately aiming at the minimization of the COE. During the design process, the control laws governing the machine are updated automatically, as they play a central role in determining the performance and loading of a wind turbine. The design approach is based on multifidelity modeling of the system, where 2-D cross sectional models, multibody-based aeroservoelastic models and full 3-D FEM models are used at different stages of the overall process. The use of the various fidelity models is motivated by the need to balance accuracy with computational cost. The optimization is built in a nested structure, with an outer optimization loop and multiple sub-optimization loops. The main motivation for this structure is to define well-posed optimization algorithms that can converge quickly and accurately to unique solutions. All loops have so far used gradient-based solvers.

The design methodology respects the certification guidelines prescribed by international standards [17]. The output of Cp-Max is a complete aeroservoelastic model of the machine together with its control laws, the associated FEM models, the detailed geometry, and material properties of rotor and tower (including a bill of materials), and all relevant performance information, including nominal and turbulent power curves, ultimate and fatigue loads at a user-defined number of control points on the machine, a complete vibratory analysis including a Campbell diagram, acoustic emissions, as well as COE and its breakdown according to a cost model. The code has been recently upgraded with new modules to further enlarge its scope and generality. The latest additions include the possibility to model and optimize the prebend curvature of the blades, the modeling of arbitrary blade sweep, and the ability to treat composite materials as design variables.

3.2 HAWTOpt2 - DTU

HAWTOpt2 is a multidisciplinary design tool built for analysis codes for prediction of the structural properties of the turbine and the aeroelastic response of the turbine. For the aeroelastic analysis, HAWTOpt2 has interfaces to HAWC2 [18] and HAWCStab2 [19], which are both developed at DTU. For prediction of the structural properties of the turbine, HAWTOpt2 interfaces to BECAS [20, 21], which is a finite element cross sectional tool. To handle the definition of the optimization problem, workflow, dataflow and parallelization of simulation cases, HAWTOpt2 uses OpenMDAO v1.x [22], which is a Python-based open-source framework. Using this framework allows us to efficiently make use of high-performance computing clusters, with MPI parallelisation of both cases within the objective function (e.g. design load cases), as well as the evaluation of finite difference gradients. OpenMDAO provides an interface to PyOptSparse [23], which has

Figure 4: Algorithmic structure of Cp-Max.

wrappers for several optimization algorithms. In this work, the open-source gradient-based interior point optimizer IPOPT [24] is used. Ultimate load simulations within the optimization loop are carried out using the aero-hydro-servo-elastic software package HAWC2 on a reduced set of design load cases as per IEC 61400-1 Ed3, while the final designs are evaluated using the full design load basis described in ref. [25].

Fig. 5 shows a so-called extended design structure matrix diagram of the workflow in HAWTOpt2. Overlaid boxes indicate components that are executed in parallel for each cross section/load case. At the upper level, the entire workflow is parallelised to enable parallel gradient evaluation. A typical optimization will use 20 cores per objective function evaluation, and be parallelized according to the available resource with n number of concurrent gradient evaluations via finite differencing.

Figure 5: Extended design structure matrix diagram of the workflow of HAWTOpt2.

3.3 WISDEM - NREL

The WISDEM toolkit for MDAO of wind turbines and plants is a completely open-source toolkit (see http://github.com/WISDEM) that incorporates a set of models for wind turbine and plant design for cost of energy, and whose software modules have been tailored in their development to optimization applications. There are models for each of the turbine subsystems as well as turbine capex, plant costs, plant energy production and links to dynamic models for load analysis. Fig. 6 shows the full set of models within the WISDEM framework. Each model can be used in a stand-alone mode or coupled with other models based on the user's particular analysis or design problem. Furthermore, WISDEM is developed to use the Framework for Unified Systems Engineering and Design of Wind Plants (FUSED-Wind) which has been co-developed by NREL and DTU Wind Energy with contributions from other organizations as well [26]. This framework helps standardize the flow of information in MDAO workflows for wind energy applications for improved model interchangeability and sharing of data. Underlying WISDEM and FUSED-Wind is OpenMDAO, a software environment to support MDAO developed by NASA Glenn Laboratories [22]. As mentioned previously, OpenMDAO supports optimization applications with many different disciplines and fidelity levels involved.

Figure 6: The Wind-Plant Integrated System Design and Engineering Model.

For the purposes of the RWT development, NREL was responsible for the development of the drivetrain designs for both of the turbines. The two models from the WISDEM framework employed for the drivetrain design are DriveSE that sizes the major load-bearing components of a geared drivetrain [27], and GeneratorSE that can be used to design multiple types of generators including both synchronous, and induction-type generators [28]. Details of the drivetrain modeling can be found in the subsequent sections on individual turbine design.

4 3.4-MW Land-Based Wind Turbine

Cp-Max was the tool mostly used in the development activities of the land-based wind turbine. Here, the design work aimed at developing a class 3A land-based wind turbine model with a rated electrical power of 3.37 MW, a rated aerodynamic power of 3.6 MW, a rotor diameter of 130 m and a hub height of 110 m. These values were selected by the project partners with the expectation that they will establish as standards within the land-based wind energy market. The optimization was run for minimum COE, estimated by a cost model developed at NREL [29].

4.1 Design Process

The wind turbine was designed against a set of critical design load cases (DLCs), selected to be run within the structural optimization loop of Cp-Max, including standard operating conditions in normal turbulence (1.1), operation under extreme turbulence (1.3), shut down cases in turbulent wind (2.1), and steady wind with gusts (2.3), as well as storm conditions (6.1, 6.2, 6.3) [17]. DLC 1.1 and DLC 1.3 were realized with three turbulent seeds, while the others with one, for a total of 151 dynamic simulations.

The aerodynamic design included 24 optimization variables describing twist at eight stations, chord at nine stations, and the position of the seven airfoils along blade span. The structural design was based on 50 variables parameterizing the skin, the two spar caps, the two webs, and the leading-edge (LE) and trailing-edge (TE) reinforcements at nine stations along blade span, as well as the diameter and wall thickness of ten tower sectors. In this reference design, the mechanical properties of the composites were kept fixed, while sweep curvature, angles in the composite fibers, and offset in the spar cap positions were all set to zero. After a total computational time of approximately 100 hours running on a workstation equipped with 56 logical processors, Cp-Max converged to the solution that is presented here.

The main wind turbine characteristics are summarized in Table 2. Notably, the table reports the values of initial capital cost (ICC) and COE that drove the optimization. The next section presents all the details of the design in terms of rotor aerodynamics, rotor structure, hub, drivetrain, nacelle, tower, and controller.

Data	Value	Data	Value
Wind class	IEC 3A	Rated electrical power	$3.37 \ \mathrm{MW}$
Rated aerodynamic power	$3.60 \ \mathrm{MW}$	DT & Gen. efficiency	93.6%
Hub height	$110.0~\mathrm{m}$	Rotor diameter	$130.0~\mathrm{m}$
Cut-in	4 m/s	Cut-out	$25 \mathrm{~m/s}$
Rotor cone angle	$3.0 \deg$	Nacelle uptilt angle	$5.0 \deg$
Rotor solidity	4.09%	Max V_{tip}	$80.0 \mathrm{m/s}$
Blade mass	$16{,}441~\rm kg$	Tower mass	553 ton
Blade cost	120.9 k\$	Tower cost	$829.7 \ k$
Aerodynamic AEP	$14.99~\mathrm{GWh}$	Electrical AEP	$13.94~\mathrm{GWh}$
ICC	4,142.1 k $$$	COE	44.18 $/MWh$

Table 2: Summary of the configuration of the land-based wind turbine.

4.2 Rotor Aerodynamics

The rotor aerodynamic design of the land-based wind turbine was developed with a set of predefined airfoils, which are reported in Table 3 and whose coordinates and polars can be found in Appendix A.2 in Tables 21-67. The spanwise positions of each profile were automatically adjusted by the aerodynamic design procedure. In addition, a value of 2.6 m was assumed for the blade root diameter.

Airfoil	Thickness	Airfoil	Thickness
Root circle	0.0%	FX77-W-500	50.0%
FX77-W-400	40.0%	DU00-W2-350	35.0%
DU97-W-300	30.0%	DU91-W2-250	25.0%
DU08-W-210	21.0%	DU08-W-180	18.0%

Table 3: Set of airfoils used in the rotor aerodynamic design of the 3.4-MW wind turbine.

The planar shape identified by Cp-Max as aerostructural optimum is shown in Fig. 7. The blade aerodynamic shape is described by chord, twist, relative thickness, absolute thickness, pitch axis positioning, and prebend distributions along blade span as reported in Fig. 8. It is worth highlighting here that chord and prebend, reported respectively in Fig. 8a and Fig. 8f, were constrained by assumed maximum allowable values of 4.3 m and 2.5 m, respectively, chosen to ensure transportability. In addition, the aerodynamic optimizer of Cp-Max discarded airfoil DU08-W-180, favoring thicker airfoils. As shown in Fig. 8c, the minimum relative thickness along the blade is 21%, a value that guarantees a better trade-off between aerodynamic and structural performance compared to thinner profiles. Moreover, the blade is modeled with no sweep, while the non-monotonic distribution reported in Fig. 8e of the pitch axis positioning along blade span was adjusted to guarantee a straight LE from blade root to blade tip.

Figure 7: View from the pressure side and from the LE of the land-based wind turbine blade.

Figure 8: Aerodynamic blade shape of the land-based wind turbine.

4.3 Rotor Structure

The structural design process employed the materials used in the blade of the INNWIND.EU 10-MW wind turbine [30]. The data for the composite laminates are listed in Table 4. In terms of blade topology, the structural components are the same as for a 2-MW wind turbine described in Ref. [14], i.e. a traditional configuration with two spar caps and two webs running from 10% to 94% of blade span. Webs are modeled as straight and are placed perpendicular to the chord line at the point of maximum chord along blade span (η =0.26). In addition, LE and TE reinforcements are modeled running between 10% and 80% of blade span. The chordwise positions of spar caps and webs as well as the extensions from the LE and the TE of the LE and TE reinforcements were scaled linearly with the rotor diameter from the values of the 2-MW wind turbine. These values are reported in Tables 35 and 36 in the Appendix. In addition, a lower bound of 65 mm for the composite laminate at blade root was assumed to guarantee a sufficient thickness to host the bolted connections.

The structural optimization module of Cp-Max converged to the composite thicknesses reported in Tables 37 and 38 and shown in Fig. 10. A panel-based formulation estimated the nonstructural masses sizing the necessary core to prevent buckling of the sandwich panels in both the outer blade surface and in the two shear webs. The thicknesses are reported in Table 39 and shown in Fig. 11.

For this blade structural layout, the 2-D cross sectional solver ANBA, which implements the theory of Giavotto et al., 1983 [31], predicted the stiffness and mass properties listed in Tables 40, 41, 42 and 43. The mass distribution listed in Table 40 also included the distribution of non-structural masses (sandwich core, paint, resin uptake, bonding lines, lightning protection) predicted by Cp-Max. The structural characteristics are expressed in the structural reference frame (see Fig. 12), whose axes are twisted with respect to the aerodynamic axes by the angle $\Delta\Theta$.

- T_{11} = edgewise shear stiffness [N] along the x_S axis;
- T_{22} = flapwise shear stiffness [N] along the y_S axis;
- EA = axial stiffness [N];
- $E_{11} = \text{flapwise stiffness } [Nm^2];$
- $E_{22} = edgewise stiffness [Nm^2];$
- $GJ = torsional stiffness [Nm^2];$
- Centroid = coordinates of the centroid with regard to the structural reference frame [m];
- $\Delta \Theta$ = angle between the aerodynamic and the structural reference frames [deg];
- Shear Center = coordinates of the shear center with regard to the structural reference frame [m];
- Mass = masses [kg/m];
- J = moments of inertia $[kgm^2/m]$, along the axis normal to the section (i.e. polar inertia) and the two structural axes, respectively;
- Center Of Mass = coordinates of the center of mass with regard to the structural reference frame [m];

The blade was modeled without point masses along blade span.

Figure 9: Positions along blade span of the various structural components.

Figure 10: Thicknesses of the structural components of the blade of the land-based wind turbine.

Figure 11: Thicknesses of the core in the sandwich panels of the blade of the land-based wind turbine.

Figure 12: Sectional references frames. Aerodynamic: x_A, y_A ; structural: x_S, y_S .

Value		Outer Shell Skin Triax GFRP	Spar Caps UD GFRP	Webs Skin Biax GFRP	TE-LE Reinf. UD GFRP
E_{11}	[MPa]	21790	42000	13920	41630
E_{22}	[MPa]	14670	12300	13920	14930
v ₁₂	[-]	0.48	0.31	0.53	0.24
G_{12}	[MPa]	9413	3470	11500	5047
$\sigma_{11, \text{ tension}}$	[MPa]	480.4	868.0	223.2	876.1
$\sigma_{11, \text{ compression}}$	[MPa]	393.0	869.0	209.2	625.8
$\sigma_{22, \text{ tension}}$	[MPa]	90.4	53.7	223.2	74.0
$\sigma_{22, \text{ compression}}$	[MPa]	152.7	160.0	209.2	189.4
$ au_{ m max}$	[MPa]	114.0	45.8	140.3	56.6
$\epsilon_{11, \text{ tension}}$	[%]	2.20	2.19	1.60	2.10
$\epsilon_{11, \text{ compression}}$	[%]	1.80	2.00	1.50	1.50
$\epsilon_{22, \text{ tension}}$	[%]	0.62	0.49	1.60	0.50
$\epsilon_{22, \text{ compression}}$	[%]	1.04	2.19	1.50	1.27
$\gamma_{ m max}$	[%]	1.21	5.00	1.22	1.12
Wöhler exp.	[-]	10	10	10	10
fvf	[-]	0.48	0.53	0.48	0.53
$ ho_{ m epoxy}$	$[kg/m^3]$	1150	1180	1150	1150
$ ho_{ m fabric}$	$[kg/m^3]$	2600	2620	2600	2600
$ ho_{ m laminate}$	$[kg/m^3]$	1845	1940	1845	1916
s_{epoxy}	[\$/kg]	4.67	4.67	4.67	4.67
$f_{\rm fabric}$	[\$/kg]	2.97	2.11	2.97	2.11

Table 4: Mechanical properties of the composite materials used in the blade.

4.4 Hub, Drivetrain, Generator, and Nacelle Properties

In parallel to the design of rotor and tower obtained via Cp-Max, the design of hub and nacelle assembly was carried out. For the hub, a simplified redesign was obtained thanks to empirical trends, which have been used to scale the mass and the moments of inertia. This resulted in a hub mass of 27.975 ton and a moment of inertia around the rotor axis of 300650 kg m². The center of mass was assumed at the rotor center. A more detailed design of the nacelle assembly was instead developed by coupling two of NREL's systems engineering sizing tools: DriveSE and GeneratorSE [16]. Sections 4.4.1 and 4.4.2 elaborate on the drivetrain and on the generator designs respectively, while the overall masses composing the nacelle assembly are reported in Sect. 4.4.3.

4.4.1 Drivetrain

The aerodynamic loads measured at the hub were the main inputs to design a four-point suspension drivetrain, a common configuration choice in the wind industry for turbines rated 2 MW and beyond. The four-point suspension is a separated design characterized by a main shaft supported by two main bearings. Torque arms resist the torque while the remaining loads travel to the bedframe via the main bearings. The main bearings were assumed to be of standard spherical roller configurations. Fig. 13 shows the layout of the nacelle.

Figure 13: Drivetrain layout.

The gearbox was assumed to be a typical three-stage gearbox, with two-stage planetary and one parallel shaft arrangement. The high-speed shaft was coupled to a DFIG controlled by a partial-rated power electronic converter. An uptower transformer was assumed to step up the generator voltage to the grid.

DriveSE employed analytical models for sizing the major load-bearing components (the low-speed shaft, main bearings gearbox, and bedplate) and provided mass properties for the overall nacelle including the yaw system using system configuration parameters as well as the aerodynamic loads from the rotor. DriveSE accepted maximum rotor loads measured at the hub and gearbox design inputs for main bearings, transformer, and gearbox location. The main shaft and bearing were sized first by determining the length from deflection limitations imposed by main bearings, which are selected based on shaft geometry. Each component within DriveSE was designed based on a set of assumptions, design variables, and constraints for allowable stress (using industry-recommended safety factors), deflection (to ensure proper geometric alignment with bearing and gear-tooth meshing) and center of mass (CM) of nacelle to optimize each subcomponent for the minimum weight. The gearbox design was optimized for the minimum weight by optimizing the speed ratio of each stage, up to three stages, with different combinations of planetary and parallel stages. The bedplate size was approximated as two parallel I-beams carrying the weight of the drivetrain components. The yaw system was modelled with a friction plate bearing at the nacelle tower and several yaw motors. For more information on the model formulation, interested readers should refer to the DriveSE model report [27].

4.4.2 Generator

The high-speed section of the gearbox was coupled to GeneratorSE that provided estimates for a DFIG optimized for the drivetrain.

A decoupled approach [32] to independently optimize the designs of the drivetrain and the generator was used, with the overall gear ratio used as the main parameter linking the two designs. The optimization was based on the premise that the lightest generator design resulted in the lightest nacelle mass. This decoupled optimization accepts design variables to size the gearbox, the other mechanical elements and the generator through a nested approach where the main components were sized with their own sub-optimization routines. This approach represents a more traditional design process that best reflects the current industry practice.

For the drivetrain, the overall gear ratio was chosen upfront to be 1:97. For the generator, the airgap radius, core length, maximum slip, magnetic loading, and excitation were allowed to vary, satisfying requirements for minimum overall efficiency and terminal voltage.

Figure 14: DFIG module within GeneratorSE. Design dimensions and CAD illustration reproduced from [28].

Fig. 14 shows the CAD illustration of the main design dimensions of the DFIG as used by GeneratorSE [28]. For the given power rating, the high-speed shaft speed (determined by the gear ratio) was the fundamental element used to calculate the torque and the design dimensions required to overcome the tangential stress measured on the rotor of the generator.

4.4.3 Nacelle

Table 5 summarizes the mass properties of the main elements of the drivetrain and generator system. The electrical efficiency of the generator was assumed equal to 98.08%, while the mechanical efficiency of the drivetrain system was assumed equal to 95.5%.

For the aeroelastic modeling, Cp-Max combined elastic beams and rigid bodies to represent the nacelle assembly. Each blade was connected via a rigid body to the hub, which was also modeled as rigid. The hub was connected via a flexible shaft to the generator, which was in turn connected to a rigid body representing

Component	Mass [ton]
Main bearing 1	4.08
Main bearing 2	4.08
Low speed shaft	26.55
Gearbox	41.05
Generator	16.89
Transformer	10.4
Bedplate	60.99
HVAC system	0.28
Nacelle cover	9.23
Yaw system	4.46
Overall nacelle	191.85

Table 5: Drivetrain properties.

the nacelle. The nacelle was finally connected to the tower via the yaw system, which was modeled with a spring-damper system. The aeroelastic properties associated with the nacelle assembly are listed in Table 44. Please note that the stiffness of the equivalent beams was assumed to be artificially high.

4.5 Tower Properties

The tower of the land-based wind turbine was modeled as a sequence of steel hollow conical sectors. The properties of the material are reported in Table 6. Notably, the density of the material was artificially increased to account for some secondary structures such as ladders, elevator, external paint, etc. The structural design of the tower in terms of sector diameters and wall thicknesses are shown in Fig. 15 and reported in Table 45, while the resulting stiffness and mass properties are shown in Fig. 16 and reported in Table 46.

Figure 15: Structural design of the tower for the land-based wind turbine.

Table 6: Static and fatigue mechanical properties of the steel used in the tower of the 3.4-MW wind turbine.

Data Static	Value	Data Fatigue	Value
Youngs Modulus [GPa]	210	Cycles number in S-N diagram at slope change [-]	5.00E + 06
Poisson Coefficient	0.3	Normal stress value in S-N diagram at slope change [MPa]	65.7
Density $[kg/m^3]$	8500	Slope of first part of S-N diagram [-]	3
Yield Strength [MPa]	355	Slope of second part of S-N diagram [-]	5
Ultimate Strength [MPa]	400	Cycles number in S-N diagram at cut-off [-]	1.00E + 08
		Shear Stress value in S-N diagram at cut-off [MPa]	46.2

Figure 16: Elastic properties of the tower for the land-based wind turbine.

4.6 Control and Actuators

The design of the land-based wind turbine was supported by a model-based controller, which is described in details in Ref. [33]. The controller used a constant tip speed ratio (TSR) - pitch strategy below rated conditions (region II) and a constant power strategy above rated conditions (region III). It also assumed a maximum allowable blade tip speed of 80 m/s by imposing a region II¹/₂, where C_p was maximized while maintaining constant rotational speed Ω . An overview of the operational data of the rotor is reported in Table 7 and graphically shown in Fig. 17.

Data	Value	Data	Value
Maximum C _p [-]	0.481	Pitch Rated [deg]	1.09
TSR Rated [-]	8.16	Omega Rated [rpm]	11.75
Torque Rated [MNm]	2.925	Max Tip Speed [m/s]	80.0
Cut-in Wind Speed [m/s]	4.0	Cut-out Wind Speed [m/s]	25.0
Wind Speed Region II1/2 [m/s]	9.3	Rated Wind Speed [m/s]	9.8
Min Rotor Speed [rpm]	3.8	Max Rotor Speed [rpm]	12.9

Table 7: Operational data of the rotor.

The turbine employed collective pitch control with a maximum pitch rate of 7 deg/s and a maximum yaw rate of 0.25 deg/s. The pitch actuators were modelled as second order actuators with a natural circular frequency ω_n of 10 and a damping factor ζ of 0.8:

$$\ddot{y} + 2\zeta \omega \dot{y} = \omega^2 (x - y),\tag{1}$$

where x is the actuator input and y the actuator output. The generator and the yaw actuator were instead modeled as first order systems:

$$\tau \dot{y} + y = Gx,\tag{2}$$

where τ is the actuator time constant and G the output gain. τ and G were assumed equal to 0.01 and 1 in the generator model and 0 and 1 in the yaw actuator respectively.

At the time of publication, a FAST8 model representing the land-based wind turbine model was generated. This model will be used by researchers in the area of control of wind turbines at the Technical University of Delft and at the Technical University of Stuttgart to develop open-source advanced controllers.

Figure 17: Operational data of the land-based wind turbine.

4.7 Frequency Analysis

A frequency analysis of the land-based wind turbine was performed with the multibody-based aeroelastic solver Cp-Lambda. The results of the simplified analysis, which does not include the whirling modes, are listed in Table 8 and in Fig. 18.

Table 8: Natural frequencies of the land-based wind turbine.	Legend: OoP - out-of-plane, IP - in-plane,
asym asymmetrical, edge - edgewise, hor horizontal, vert.	- vertical, FA - Fore-Aft, SS - Side-side.

Rotor speed	Tower FA 1^{st}	Tower SS 1^{st}	Rotor 1^{st}	Rotor 1^{st}	Rotor 1 st
			OoP asym. yaw	OoP asym. tilt	collective OoP
[rpm]	[Hz]	[Hz]	[Hz]	[Hz]	[Hz]
0.00	0.305	0.310	0.601	0.622	0.660
11.5	0.306	0.310	0.638	0.663	0.704
	D i st	D i st		D and	D and
	Rotor 1 st	Rotor 1^{st}	Drive-train	Rotor 2 nd	Rotor 2 nd
	IP edge vert.	IP edge hor.	assembly	OoP asym. yaw	OoP asym. tilt
0.00	0.809	0.813	1.552	1.623	1.665
11.5	0.823	0.828	1.593	1.675	1.714
	Botor 2 nd	Tower SS 2 nd	Tower FA 2^{nd}	Botor 2 nd	Botor 2 nd
	acillactive OoP	10wci 55 2	10wci 171 2	ID adre vent	ID odgo hor
	conective Oor			ir edge vert.	IF edge nor.
0.00	1.786	2.147	2.177	2.359	2.368
11.5	1.843	2.150	2.190	2.392	2.401

Figure 18: Simplified Campbell diagram for the land-based wind turbine. The horizontal lines represent the modes listed in Table 8.
4.8 Load Assessment and Design Drivers

As discussed in Sect. 4.1, the design of the land-based turbine was obtained by running a subset of 151 aeroelastic simulations. The loads obtained during these simulations were used to size the various components. The most important design drivers that were identified are:

- Blade: Maximum tip deflection, equal to 10.3 m and 1.51 m in flapwise and edgewise directions respectively, drove the blade's flapwise stiffness and therefore the design of the spar caps. A second design driver was generated by natural frequency of the blade, which was imposed 16% above the 3P frequency. As visible in Fig. 18, this design driver was active in influencing the blade structure, especially in the spar caps. In addition, fatigue damage determined the thickness of the skin of the shear webs and of the outer shell, while foam core was sized to prevent buckling of the sandwich panels. Ultimate loads did not generate any active design driver.
- Tower: Fatigue drove the thickness of the steel sections. In the lower section of the tower, diameters were constrained by the upper bound of 6 m. Finally, in order of importance, buckling and ultimate loads were the following design drivers. These were not active however.
- Gearbox and Generator: The rated torque drove the design of the wind turbine gearbox and generator. The design criteria for the gearbox was the surface durability recommended by the ISO/AGMA standards. The key criteria for generator sizing was the maximum shear stress required at rated torque on the generator rotor.
- Low-speed shaft and main bearings: The design of the main shaft and main bearings were driven by extreme rotor aerodynamic loads and gravity. The main shaft was designed to meet the requirements on deflections and rigidity. Stress calculations were performed for both upwind and downwind bearings and bearings were selected with bore diameters that matched the shaft diameter.

A very limited list of key ultimate and fatigue loads is reported in Tables 47, 48, 49 and 50.

5 10-MW Offshore Wind Turbine

The overall characteristics of the offshore turbine designed for the IEA Wind Task 37 were based on the feedback gained from the many users of the DTU 10-MW RWT, as well as the surveys carried out by the IEA Task 37 project group. The turbine was developed to have a rated electrical power of 10 MW, and designed for the IEC class 1A, but unlike the DTU 10-MW RWT, this turbine features a direct-drive generator.

5.1 Design Process

The wind turbine was not designed in a fully integrated manner, in that the rotor aerostructural design was made first, using the DTU 10-MW RWT platform and overall loads envelope as guidance, followed by the design of a new drivetrain. The new rotor design is in several ways based on the experience with the design process and use of the DTU 10-MW RWT, and the several design studies carried out after its release. However, contrary to the design of the DTU 10-MW RWT rotor, which was aerodynamically optimized followed by the structural design, this design was developed using an integrated design tool, ensuring a more balanced aerostructural design tailored to minimize loads.

Parameter	Value	Comment
Wind Regime	IEC class 1A	Same as DTU 10-MW RWT
Rotor Orientation	Clockwise rotation - Upwind	Same as DTU 10-MW RWT
Control	Variable Speed	Same as DTU 10-MW RWT
	Collective Pitch	Same as DTU 10-MW RWT
Cut-in wind speed	4 m/s	Same as DTU 10-MW RWT
Cut-out wind speed	25 m/s	Same as DTU 10-MW RWT
Rated wind speed	11 m/s	Optimized
Rated electrical power	10 MW	Same as DTU 10-MW RWT
Number of blades	3	Same as DTU 10-MW RWT
Rotor Diameter	198.0	Optimized
Airfoil series	FFA-W3	Same as DTU 10-MW RWT
Hub Diameter	4.6 m	Reduced from 5.4 m
Hub Height	119.0 m	Same as DTU 10-MW RWT
Drivetrain	Direct-drive	Changed from Medium Speed, Multiple-
		Stage Gearbox
Minimum Rotor Speed	6.0 rpm	Same as DTU 10-MW RWT
Maximum Rotor Speed	8.68 rpm	Constrained by max tip speed
Gearbox Ratio	N/A	Direct-drive
Maximum Tip Speed	90.0 m/s	Same as DTU 10-MW RWT
Hub Overhang	7.1 m	Same as DTU 10-MW RWT
Shaft Tilt Angle	6.0 deg.	Increased from 5 deg
Rotor Precone Angle	-4 deg.	Increased from -2.5 deg
Blade Prebend	6.2 m	Increased from 3.2 m
Blade Mass	47,700 kg	12% increase from DTU 10-MW RWT
Nacelle Mass	542.600 kg	See Section 5.5
Tower Mass	628,442 kg	Provisional, same as DTU 10-MW RWT

Table 9: Key parameters of the new 10-MW compared to the original DTU 10-MW RWT.

The rotor was designed to maximize AEP with blade length as a free parameter, subject to constraints on several load sensors, ensuring that these loads did not exceed the envelope of the original DTU 10-MW RWT. Additionally, necessary constraints on material strength and blade tip to tower clearance were enforced. The design load cases used in the optimization loop were greatly simplified compared to a full IEC design load basis, but included gust response in normal operation and during fault situations, as well as standstill cases, all simulated without time-resolved turbulent inflow.

The parameterized description of the aerodynamic and structural geometry of the blade used a total of 52 design variables, all simultaneously active during the numerical optimization process. Seventeen related to the aerodynamic geometry, 34 related to the structural geometry, and one related to the power regulation of the turbine, namely the TSR. These design variables are summarized in Table 10.

Parameter	# of DVs	Comment
Chord	5	Root chord fixed
Twist	4	Root twist fixed
Relative thickness	4	Root and tip relative thickness fixed
Blade prebend shape	3	-
Blade length	1	-
Tip-speed ratio	1	-
TE uniax	3	Symmetric lower/Upper side
TE triax	3	Symmetric lower/Upper side
Trailing-panel triax	3	Symmetric lower/Upper side
Spar cap uniax	6	Symmetric lower/Upper side
Leading-panel triax	3	Symmetric lower/Upper side
Leading-panel uniax	3	Symmetric lower/Upper side
LE triax	3	Symmetric lower/Upper side
LE uniax	3	Symmetric lower/Upper side
Spar cap width	2	Linear taper from root to tip
Spar cap offset upper	2	Linear offset from root to tip
Spar cap offset lower	2	Linear offset from root to tip
Mold angle	1	Reference system angle for laying out spar cap and webs
Total	52	

Table 10: Design variables used in the optimization.

The design is based on a converged optimization using IPOPT which after 120 major iterations did not improve the objective function further. The overall design was not modified significantly in postprocessing, with only small smoothening of the root transition. The materials in the blade were also based directly on the optimization results, with only minor smoothing, leaving the thicknesses of laminates as continuous quantities, and therefore not directly realizable.

5.2 Airfoil Data

Airfoil data for each of the FFA-W3 airfoils was generated for a target Reynolds number of $Re = 10 \times 10^6$. To compute the aerodynamic coefficients in the range of -32 to 32 deg., the 2-D incompressible Navier-Stokes solver EllipSys2D was used [43, 44, 45]. The meshes were generated using the hyperbolic mesh generator HypGrid2D [46], with 512 cells along the surface and 256 cells in the direction normal to the surface. Polars assuming fully turbulent and freely transitioning boundary layers were computed using the $k\omega$ SST turbulence model [47] and the Drela-Giles transition model [48] assuming a turbulence intensity of 0.1%. 360-degree extrapolation was done using AirfoilPreppy [49]. 3-D corrections were not applied to the polars during the design process since the spanwise distribution of relative thickness was a free design variable. Note that two additional polars were also computed for intermediate airfoils of thicknesses 27% and 33%. These were added to ensure relatively smooth transitions in characteristics as function of airfoil relative thickness.

5.3 Rotor Aerodynamics

The blade planform is shown in Fig. 19, with plots of the spanwise distributions of chord, twist, relative and absolute thicknesses, prebend, and chordwise offset as percentage of chord. Also included in the plots are the equivalent quantities of the DTU 10-MW RWT for comparison. Fig. 20 shows the lofted shape of the blade seen from the pressure side and the LE.

Figure 19: Optimized 10-MW blade planform compared to the baseline DTU 10-MW RWT.

The optimized design achieves an 11% increase in blade length, with a significantly more slender chord distribution. The twist distribution is very similar, which is a consequence of using the same airfoil family. The tip twist is, however, different with a sharp decrease in twist, which results in a reduction in loading. The relative thickness distribution favours the thinnest 21% airfoil on only the very outer part of the blade, increasing to 24% at 70 m blade length. At 40 m span, the relative thickness is 33%, significantly higher than that of the DTU 10-MW RWT. Turning to the absolute thickness, it is evident that the optimized blade has an overall lower thickness, which is possible thanks to the design being aerostructurally tailored to reduce peak loads, but also due to the fact that the static tip clearance was increased significantly through increased prebending of the blade, combined with a shaft tilt angle of 6 deg, and a rotor cone angle of 4 deg, leading to a significantly more flexible blade. The chordwise offset of the cross-sections along the blade was also a free parameter in the optimization. This degree of freedom is used to balance the torsional loads and structural characteristics, in particular the shear center, which is further forward compared to the DTU

Figure 20: View from the pressure side and from the LE of the offshore wind turbine blade.

10-MW RWT.

5.4 Rotor Structure

5.4.1 Structural Layout

The structural layout of the blade is fairly traditional, consisting of two main load-carrying spars placed according to a straight line connecting the root and the tip, along with reinforcement along the TE and LE. The blade has three shear webs, two attached to the main spars and one placed aft of these extending from 3% to 50% span. In the terminology used in the parameterization scheme, the TE is also defined as a shear web. Figs. 21 and 22 show a top view and tip view of the blade, respectively.

Spar cap widths	Linear taper 1.44 m (r= 9.6 m) to 0.53 m (tip)
TE panels width (upper+lower)	Linear taper $0.80 \text{ m} (\text{root})$ to $0.2 \text{ m} (\text{tip})$
LE panel width (upper+lower)	Linear taper $1.0 \text{ m} \text{ (root) to } 0.4 \text{ m} \text{ (tip)}$
Shear web angle relative to rotor plane	6.61 deg

Table 11: Overall properties of internal structure.

The internal structure is parameterized according to the schematics in Figs. 23 and 24. To define the structural reference plane, the blade is first rotated by the so-called structural mold angle, defined positive according to the right hand rule around an axis normal to, and centered at the blade root center. The vertical reference plane is then formed that passes through the root center and the blade tip. Note that the structural mold rotation is applied on the lofted blade that includes both aerodynamic twist, prebend, and sweep. The spar caps are then placed on the suction side (SS) and pressure side (PS) with a given horizontal offset with respect to the reference plane. The width of the TE reinforcement is defined relative to the SS and PS TE points, respectively, and the LE reinforcement is placed relative to the LE. The LE is defined as the point along the surface with maximum distance from the TE. The complete data to lay out the main structural components are provided in Appendix B.3.

Top view - Mold orientation 6.6 deg.

Figure 21: Top view of the 10-MW blade showing internal structural geometry.

Figure 22: Tip view of the 10-MW blade showing internal structural geometry.

Figure 23: Schematic showing the geometric parameterisation of the blade structure for the 10-MW rotor, reporting 17 division points (DP) used to define the various laminate sequences along the profile.

Figure 24: Schematic showing the definition of the structural angle for the 10-MW rotor.

5.4.2 Material Properties

The material properties used for the blade were those defined for the DTU 10-MW RWT (for more details, see [4]). Table 12 lists the apparent mechanical properties of the multidirectional plies used and Table 13 lists the properties for the balsa core material.

Multidirectional Ply	Uniax	Biax	Triax	
Fiber volume fraction $V_{\rm f}$	0.55	0.5	0.5	-
0° fibers	95	0	30	%
90° fibers	5	0	0	%
$+45^{\circ}$ fibers	0	50	35	%
-45° fibers	0	50	35	%
Young's modulus E_1	41.63	13.92	21.79	GPa
Young's modulus E_2	14.93	13.92	14.67	GPa
Shear modulus G_{12}	5.047	11.50	9.413	GPa
Poisson's ratio ν_{12}	0.241	0.533	0.478	-
Shear modulus $G_{13} = G_{23}$	5.04698	4.53864	4.53864	GPa
Mass density ρ	1915.5	1845.0	1845.0	kg/m^3

Table 12: Fiber orientation and apparent mechanical properties of the multidirectional plies. Reproduced from [4].

Design strength properties are also defined for these materials and are listed in Table 14.

5.4.3 Material Layup

The material is placed in the blade according to regions that each have a chordwise extent given by the structural layout described in the Section 5.4.1.

Property	Balsa direction	Value	
Young's modulus E_1	radial	0.050	[GPa]
Young's modulus E_2	tangential	0.050	[GPa]
Young's modulus E_3	axial	2.730	[GPa]
Shear modulus $G_{12}^{(a)}$	radial-tangential	0.01667	[GPa]
Shear modulus G_{13}	radial-axial	0.150	[GPa]
Shear modulus G_{23}	tangential-axial	0.150	[GPa]
Poisson's ratio ν_{12}	radial-tangential	0.5	[—]
Poisson's ratio ν_{13}	radial-axial	0.013	[—]
Poisson's ratio ν_{23}	tangential-axial	0.013	[—]
Mass density ρ		110	$[\mathrm{kg}/\mathrm{m}^3]$

^(a) Computed assuming trans. isotropy: $G_{12} = E_1/(2(1 + \nu_{12}))$.

Table 13: Mechanical properties of balsa wood [52] [53]. The indices 1, 2, and 3 refer to the blade's longitudinal, transverse, and out-of-plane direction, respectively. Reproduced from [4].

Multidirectional Ply	Uniax	Biax	Triax	
Longitudinal tensile failure strain ε_1^T	2.10	1.60	2.20	%
Longitudinal compressive failure strain ε_1^C	1.50	1.50	1.80	%

Table 14: Characteristic values of the longitudinal tensile and compressive strain to failure of the multidirectional plies (5% fractile values with a confidence level of 95%). Reproduced from [4].

Figure 25: Material stacking sequence for each region along the optimized blade. The x-axis represents the non-dimensional blade span.

5.5 Hub, Shaft, Nacelle, and Generator Properties

The nacelle assembly was designed combining the results of projects conducted at the Norwegian University of Science and Technology (NTNU) in Norway and at NREL in the U.S.. More specifically, the designs of hub and nacelle have been developed in a series of student projects conducted at NTNU [34, 35, 36]. Based on these designs, a direct-drive generator was sized at NREL via the generator system engineering design tool GeneratorSE [28]. The generator, whose design is based on a range of commercial direct-drive designs and implementations available in the industry at multimegawatt level [36], employs an outer rotor design mounted upwind of the tower. The design includes permanent magnets (PM) mounted on an external rotor with housing supported by the main shaft supported by two main bearings and by an additional bearing mounted outside the nacelle nose. A sketch showing the tower top assembly is reported in Fig. 26. Tables 83, 84, and 85 report the equivalent point mass properties of the nacelle components and finally Table 86 lists the equivalent elastic properties of the shaft.

The next sections briefly explain the design process behind the various components.

5.5.1 Hub, Shaft and Nacelle

The nacelle assembly of the 10-MW offshore wind turbine consists of two main shaft bearings and a bedplate design based on extreme loading from Ref. [36]. The highest acceptable equivalent stress in the component was set to 200 MPa under extreme aerodynamic loads measured during extreme turbulence conditions with

a 50-year recurrence period. Ultimate loads were estimated to represent multi-axial loading under these conditions, as suggested by the IEC 61400-1. Fig. 27 shows the CAD illustration of the final bedplate design.

Figure 27: A CAD illustration of the bedplate.

A basic lifetime estimation using highest encountered design loads obtained from DLC 1.3 was used to determine the main shaft bearing solution. The loads from the aeroelastic simulations were converted into bearing forces, which consist of one axial force and two radial forces. These forces were assumed to be directly transmitted to the bedplate structure. Bearing load calculation followed the method described in the DNV guidelines for wind turbine design. A paired fixed-floating configuration of a double-row tapered bearing and a spherical bearing was proposed. As the loads distributed on the bearings are significantly higher for the front fixed bearing, a smaller bearing is suggested for the floating bearing to reduce weight for the bedplate and main shaft, overall having a significant impact on the tower head weight.

5.5.2 Direct-Drive Generator

NREL's GeneratorSE [28] was used to design and optimize a 10-MW direct-drive synchronous generator adapted from the work performed at NTNU [37]. The generator construction features an external rotor radial flux topology machine with surface-mounted PM. The stator design is realized with fractional slot layout double-layer concentrated coils which allow the fundamental winding factor to be maximized. The

outer rotor construction facilitates a simple and rugged structure allowing easy manufacture, short endwindings, and better heat transfer between windings and teeth [38].

The final design features an overall outer diameter of 10.5 m, a stack length of 1.77 m, and an efficiency of 94.4%. The weight of the generator is estimated to be 357.3 tons, split between 187.7 tons for the inner stator and 169.6 for the outer rotor. The generator design is torque driven and is assumed to transmit the driving torque directly to the bedplate structure. The generator rotor is assumed to load the main shaft and bedplate frame equally.

Figure 28: Outer rotor direct-drive generator. A CAD illustration.

The reference generator design (Fig. 28) is made of electromagnetically active and inactive parts. The main elements are:

- 1. Stator yoke (back iron)
- 2. Stator teeth
- 3. Stator slot winding
- 4. Air gap
- 5. Permanent magnets
- 6. Rotor yoke (back iron)
- 7. Stator inner frame (structure with spokes)

The estimates for the main dimensions of the machine including electromagnetic and structural properties were determined using a hybrid optimization approach combining analytic methods for electromagnetic design and basic thermal design in GeneratorSE and in the commercial finite element software ANSYS for the structural design. This design was an adaptation of NTNU's original design created using SMartMotor (now Rolls Royce) SmartTool generator design software and was updated in order to provide 10 MW at the output terminals when operated with the DTU 10-MW RWT rotor. The primary modification was an increase in the stack length to compensate for a reduction in rotor speed. Other main generator parameters for the active parts were determined from conventional magnetic circuit laws and equivalent circuit models as described in [38] and the generator design handbook [39]. These were optimized satisfying certain electromagnetic performance requirements, such as magnetic loading, and user-specified constraints on generator terminal voltage and efficiency. GeneratorSE provided magnetically required minimum generator dimensions, such as air gap diameter and core length, which were then used to generate, assess, and optimize parameterized spoke arm support structures that provided the required structural integrity and air gap stiffness.

Figure 29: Electromagnetic (and structural) design parameters.

Figs. 29 and 30 show the simplified cross section for the active and structural parts of the generator. The electromagnetic design of the generator depends essentially on the operating modes, power, and output voltage range [39]. Due to these variations, to achieve a practical design the air gap radius, magnet height, pole count, stator slot height, yoke thicknesses, and tooth flux density were treated as design variables. The minimum required efficiency was set at 93% and the generator terminal voltage was constrained to be under 5 kV. To determine the magnetically required generator diameter and stack length, a shear stress of 40 kPa was assumed for the maximum rated torque required by the design. The minimum aspect ratio (core $length/D_g$) was constrained at 15%. Several assumptions were made in deriving the slotting, winding design and pole count. The magnet width was considered to be at least 70% of the pole pitch. Stator slots were designed to accommodate double layer concentrated windings with 65% fill factor. A slot/pole combination of 6/5 with $q_1=0.4$ slots per pole per phase were considered to provide a reasonable trade-off for fundamental winding factor and the need to minimize peak-peak cogging torque [38]. The slot aspect ratio h_s/b_s was limited to be in the range of 4-10. It should be mentioned that GeneratorSE did not consider detailed thermal design as part of the optimization process. However, to limit excessive temperature rise the winding current density and the specific current loading were limited to 6 A/mm² and 60 kA/mm² respectively. Magnetic loading on various parts of the machine was limited to be under 2 Tesla and the minimum required voke thickness was determined. To determine the efficiency, the fundamental core loss and copper losses were the main factors. In addition, the value of 300 W was assumed for specific losses from magnets. Stray losses due to leakage flux contributed up to 20% of iron losses. Mechanical losses from bearings were neglected. Fig. 31

Figure 30: Structural design parameters.

shows the flux density contour obtained from the optimized electromagnetic design using FEMM [40]. The maximum difference in peak magnetic loading was found to be less than 20%.

To determine the structural mass and design (stator and rotor frame thicknesses and spoke dimensions), the magnetically required diameter and yoke thicknesses served as the base dimensions. The stator and rotor frames (thicknesses) and spokes served as additional reinforcements to the yoke. A structural optimization was carried out in ANSYS with frame thickness, number of spokes, spoke arm depths, and thickness as the main design variables to realize overall machine dimensions that withstood magnetic loading, torque and gravitational loading. The minimal required structural stiffness was ensured by limiting the maximum radial deformation to be under 10% of the air gap length, axial deformation to be 20% of the core length, and tangential deformation to be under 0.05° in accordance with [41].

Fig. 32 shows the radial component of structural deformations for the rotor and stator frames obtained from ANSYS. The rotor interior and stator exterior surfaces were subjected to a maximum normal stress of 0.5 MPa from magnetic loading. The maximum radial deformations are within permissible limit of 0.51 mm.

Tables 87 and 88 list the optimized values for the design dimensions and key performance parameters, while Table 89 lists the physical parameters of the converter and transformer needed for an equivalent circuit representation. The shunt impedance of the transformer is neglected.

Figure 31: Analysis of the electromagnetic design.

Figure 32: Analysis of the structural design.

5.6 Tower and Offshore Support Structure Properties

The tower, monopile foundation, and transition piece were designed based on frequency considerations. The expected first natural frequency of 0.24 Hz is placed above the most severe ocean-wave frequency band and below the 3P blade passing frequency, which is 0.3 Hz when the turbine is operating in low-wind conditions, see Fig. 16. The tower height was chosen such that the yaw bearing is located 115.63 m above the ocean surface, giving a hub height of 119 m, which matches the hub height of the DTU 10-MW RWT. The monopile foundation has a diameter of 9 m, nearly the maximum that is available with todays installation technology. Table 15 lists some of the important dimensions and stiffness properties of the combined foundation (including the transition piece) and tower.

Location	\mathbf{Z}	D_o	D_i	$\mathbf{I}_{xx} = \mathbf{I}_{yy}$	J
[-]	[m]	[m]	[m]	$[m^4]$	$[m^4]$
Yaw bearing	145.63	5.5	5.44	2.03	4.07
	134.55	5.79	5.73	2.76	5.52
	124.04	6.07	6.00	3.63	7.26
	113.54	6.35	6.26	4.67	9.35
	103.03	6.63	6.53	5.90	11.80
	92.53	6.91	6.80	7.33	14.67
	82.02	7.19	7.07	8.99	17.98
	71.52	7.46	7.34	10.9	21.80
	61.01	7.74	7.61	13.08	26.15
\uparrow	50.51	8.02	7.88	15.55	31.09
tower	40.00	8.30	8.16	15.55	31.09
foundation	40.00	9.00	8.70	34.84	69.68
\downarrow	38.00	9.00	8.70	35.74	71.48
	36.00	9.00	8.70	36.66	73.32
	34.00	9.00	8.70	37.59	75.18
	32.00	9.00	8.69	38.54	77.08
waterline	30.00	9.00	8.69	39.51	79.01
	28.00	9.00	8.69	40.49	80.97
	26.00	9.00	8.69	41.48	82.97
	24.00	9.00	8.69	42.50	85.00
	22.00	9.00	8.69	43.53	87.05
	20.00	9.00	8.69	44.05	88.10
	16.00	9.00	8.80	28.09	56.18
	12.00	9.00	8.80	28.09	56.18
	8.00	9.00	8.80	28.09	56.18
	4.00	9.00	8.80	28.09	56.18
mudline	0.00	9.00	8.80	28.09	56.18
	-8.40	9.00	8.80	28.09	56.18
	-16.80	9.00	8.80	28.09	56.18
	-25.20	9.00	8.80	28.09	56.18
	-33.60	9.00	8.80	28.09	56.18
	-42.60	9.00	8.80	28.09	56.18

Table 15: Some key properties and dimensions of the tower and foundation.

5.7 Controller Properties

The steady state operational data for the 10-MW turbine is listed in Table 16. The rotor operates with a minimum rotational speed of 6 rpm to avoid interference with the tower natural frequency, and reaches rated rotational speed of 8.68 rpm at 8.5 m/s, resulting in a maximum nominal tip speed of 90 m/s. The rotor

operates with a pitch setting of 0 degrees at design tip speed ratio, but operates with positive pitch at low wind speeds in order to track maximum power. The rotor starts pitching at the rated wind speed of 10.75 m/s.

Data	Value	Data	Value
Maximum C _p [-]	0.49	Design Pitch [deg]	0.
Design TSR [-]	10.58	Omega Rated [rpm]	8.68
Rated Mechanical Power	10.6383	Max Tip Speed [m/s]	90.0
Rated Torque [MNm]	11.7	Cut-out Wind Speed [m/s]	25.0
Cut-in Wind Speed [m/s]	4.0	Rated Wind Speed [m/s]	10.75
Wind Speed Region $II1/2 \text{ [m/s]}$	8.5		
Min Rotor Speed [rpm]	6.0		

Table 16: Operational summary of the 10-MW rotor.

Fig. 33 shows the rotor steady state performance and operation. Table 17 shows the operational data for the rotor computed using HAWCStab2 [19] including deflections.

Wind speed	Pitch	RPM
[m/s]	[deg]	[-]
4.00	2.589	6.000
5.00	1.355	6.000
6.00	0.000	6.123
7.00	0.000	7.144
8.00	0.000	8.165
9.00	0.000	8.684
9.50	0.000	8.684
10.00	0.000	8.684
10.50	0.000	8.684
11.00	2.633	8.684
11.50	4.537	8.684
12.00	5.975	8.684
13.00	8.250	8.684
14.00	10.121	8.684
15.00	11.771	8.684
16.00	13.280	8.684
18.00	16.018	8.684
20.00	18.513	8.684
25.00	24.110	8.684

Table 17: Operational data of the 10-MW rotor.

For the design loads evaluation of the 10-MW turbine, the Basic DTU Wind Energy controller [50] was used. The controller is available open-source, see [51]. For detailed inputs used to evaluate the design loads, see Appendix B.6.

Figure 33: Steady-state performance and operation of the 10-MW rotor.

5.8 Load Assessment

A full design load basis (according to [54]) was computed on the optimized rotor, including the new drivetrain, fitted on the tower designed for the DTU 10-MW RWT using HAWC2. The list of DLCs included are shown in Table 18. For the current report, all load cases of DLC 6x were excluded from the analysis. DLC6 considers various standstill cases at high wind speeds and a wide range of inflow angles. Some of these inflow angles are outside the range for which a BEM code can be considered reliable and trustworthy. The underlying problem is that for example in DLC 62 some inflow cases have large yaw errors, and the resulting load simulations suffer from very high edgewise loading due to an edgewise standstill instability. However, the simplified flow solver is based on 2-D airfoil characteristics and although dynamic stall effects are included, unsteady 3-D flow phenomena (which could determine the flow characteristics) are not included. From a practical point of view one could work around these issues by either having slightly different pitch angles for each of the blades (instead of all blades pitch to feather, or 90 degrees), or carefully select the turbulent seeds such that no edge wise instabilities are observed. Resolving these issues form a practical modelling perspective is referred to future work. Also studying standstill blade vibrations with higher fidelity FSI (fluid-structure-interaction) solvers is necessary in order to investigate if these standstill vibrations can be reproduced.

The load analysis is presented by means of load envelopes and their projection on a set of given angles (see Figs. 34, 35 and 36). The advantage of this process is that a transparent set of loads at a fixed number of angles can be considered. However, since this process is conservative in nature, and depending on the shape of the load cloud, this can result in a much larger load than actually observed. This can be clearly illustrated in Fig. 34 for the blade root bending moment. The tabulated projected load envelopes for all blade stations and tower base/top are given in Appendix B.8.

The load envelopes in Figs. 34, 35 and 36 can be summarized as follows:

- The flapwise and edgewise blade root loads are dominated by DLC 1.3 (normal operation, extreme turbulence).
- The tower base fore-aft loads are dominated by DLC 2.x and DLC 4.x, respectively, while the side-side loads are dominated by DLC 1.x.
- The tower top fore-aft loads are dominated by DLC 1.x while the side-side loads are dominated by DLC 2.x.

Tower clearance is evaluated according to the DNVGL-ST-0376 Rotor blades for wind turbines standard, for which it was assumed that the the necessary measures are taken to allow the clearance to be 20% during operation, compared to the clearance in the unloaded state (see Section 2.5.11 of the DNVGL-ST-0376 standard).

Name	Safety	Description	Turb	Seeds	Gust	Fault
	factor					
DLC12	1.00	Normal production	NTM	6	None	None
DLC13	1.35	Normal production	ETM	6	None	None
DLC14	1.35	Normal production	None	None	ECD	None
DLC15	1.35	Normal production	None	None	EWS	None
DLC21	1.35	Grid loss	NTM	4	None	Grid loss at 10s
DLC22y	1.10	Extreme yaw error	NTM	1	None	Abnormal yaw error
DLC22b	1.10	One blade stuck at min. angle	NTM	12	None	1 blade at fine pitch
DLC23	1.10	Grid loss	None	None	EOG	Grid loss at three
						different times
DLC24	1.35	Production in large yaw error	NTM	3	None	Large yaw error
DLC31	1.00	Start-up	None	None	None	None
DLC32	1.35	Start-up at four diff. times	None	None	EOG	None
DLC33	1.35	Start-up in EDC	None	None	EDC	None
DLC41	1.00	Shut-down	None	None	None	None
DLC42	1.35	Shut-down at six diff. times	None	None	EOG	None
DLC51	1.35	Emergency shut-down	NTM	12	None	None
DLC61	$\frac{1.35}{1.35}$	Parked in extreme wind	0.11	6	None	None
$\overline{\text{DLC62}}$	$\frac{1.10}{1.10}$	Parked grid loss	0.11	1	None	None
$\overline{\text{DLC63}}$	$\frac{1.35}{1.35}$	Parked with large yaw error	0.11	6	None	None
$\overline{\text{DLC64}}$	$\frac{1.00}{1.00}$	Parked	$\overline{\mathrm{NTM}}$	6	None	None
DLC81	1.50	Maintenance	NTM	6	None	Maintenance

Table 18: Considered Design Load Cases from the IEC standard according to [54]. Note that DLC6x is excluded.

Figure 34: Loads envelope at blade root. Black star refers to the projected load.

Figure 35: Loads envelope at tower bottom. Black star refers to the projected load.

Figure 36: Loads envelope at tower top. Black star refers to the projected load.

6 Conclusions

This report documented the development of the first two in a series of RWTs from the IEA Wind Task 37 on integrated wind energy research and development. The turbines were designed to align with current commercial wind turbines available in production, a low-wind-speed land-based 3.4-MW turbine and an offshore 10-MW turbine. As technology changes, new turbines will be developed to reflect the state of the art. All the turbine documentation and detailed design data is available from the organization IEAWindTask37.

Acknowledgments

This work has benefited from all activities related to IEA Wind Task 37, and the authors would like to thank all partners involved in the project for their efforts.

References

- Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. NREL/TP-500-38060, February, 2009. https://www.nrel.gov/docs/ fy09osti/38060.pdf
- [2] Campbell S. Ten of the Biggest Turbines. Windpower Monthly https://www.windpowermonthly.com/ 10-biggest-turbines
- [3] "Haliade-X Offshore Wind Turbine Platform" https://www.gerenewableenergy.com/wind-energy/ turbines/haliade-x-offshore-turbine
- [4] Bak C, Zahle F, Bitsch R, et al. Description of the DTU 10-MW Reference Wind Turbine. DTU Wind Energy Report10092, Technical University of Denmark, Roskilde, 2013.
- [5] Dykes K, Rethore PE, Zahle F, Merz K. Wind Energy Systems Engineering: Integrated RD&D. IEA Task 37 Final Proposal, 2015. https://sites.google.com/site/ieawindtask37/.
- [6] Hand MM, Simms DA, Fingersh LJ, Jager DW, Cotrell JR, Schreck S, Larwood SM. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns. NREL/TP-500-29955. December, 2001. https://www.nrel.gov/docs/fy02osti/29955.pdf
- [7] Rinker J and Dykes K. WindPACT Reference Wind Turbines. NREL/TP-5000-67667, April 2018. https://www.nrel.gov/docs/fy18osti/67667.pdf
- [8] Resor B. Definition of a 5MW/61.5m Wind Turbine Blade Reference Model. SAND2013-2569 April 2013. http://prod.sandia.gov/techlib/access-control.cgi/2013/132569.pdf
- [9] Bossanyi E. Controller for 5MW reference turbine. Project UpWind Report 11593/BR/04, 2009.
- [10] Bottasso CL, Campagnolo F, Croce A. Multi-disciplinary constrained optimization of wind turbines. Multibody Syst. Dyn., 2012;27(1):21-53. doi: 10.1007/s11044-011-9271-x
- [11] Bottasso CL, Campagnolo F, Tibaldi C. Optimization-Based Study of Bend-Twist Coupled Rotor Blades for Passive and Integrated Passive/Active Load Alleviation. Wind Energy, 2013;16(8):1149-1166. doi: 10.1002/we.1543
- [12] Bottasso CL, Campagnolo F, Croce A, Dilli S, Gualdoni F, Nielsen MB. Structural optimization of wind turbine rotor blades by multi-level sectional/multibody/3D-FEM analysis. *Multibody Syst. Dyn.*, 2014;32(1):87-116. doi: 10.1007/s11044-013-9394-3
- [13] Bottasso CL, Bortolotti P, Croce A, Gualdoni, F. Integrated aero-structural optimization of wind turbine rotors. *Multibody Syst. Dyn.*, 2016;38(4):317-344. doi: 10.1007/s11044-015-9488-1
- [14] Bortolotti P, Bottasso CL, Croce A. Combined preliminary-detailed design of wind turbines. Wind Energ. Sci., 2016;1(1):71-88. doi: 10.5194/wes-1-71-2016
- [15] Zahle F, et al. HAWTOpt2 Documentation. 2017. https://gitlab.windenergy.dtu.dk/HAWTOpt2.
- [16] Dykes K, Ning SA, Graf P, et al. WISDEM 0.1.0 Documentation. 2017. http://wisdem.github.io/WISDEM/
- [17] IEC 61400-1. Wind Turbines Part 1: Design Requirements. Ed. 3., International Standard, International Electrotechnical Commission, 2005.
- [18] Larsen T J and Hansen A M 2014 How 2 HAWC2, the user's manual Tech. Rep. Ris-R-1597(ver. 4-5)(EN) Ris National Laboratory www.hawc2.dk

- [19] Hansen M H 2004 Wind Energy 7 133–143 ISSN 1099-1824
- [20] Blasques JP, Stolpe M. 2012 Composite Structures 94 3278 3289 ISSN 0263-8223
- [21] http://becas.dtu.dk/
- [22] http://openmdao.org
- [23] http://pyopt.org/
- [24] Wächter A and Biegler LT 2006 Mathematical Programming **106** 25–57.
- [25] Pavese C, Tibaldi C, Larsen TJ, Kim T and Thomsen K. Reduced design load basis for ultimate blade loads estimation in multidisciplinary design optimization frameworks, *Journal of Physics: Conference Series*, 2016. doi: 10.1088/1742-6596/753/6/062005
- [26] http://fusedwind.org
- [27] Guo Y, King R, Parsons T, et al. DriveSE 0.1.0 Documentation. 2015. http://wisdem.github.io/DriveSE/.
- [28] Sethuraman L, Dykes K. GeneratorSE 0.1.0 Documentation. 2017. http://wisdem.github.io/GeneratorSE/.
- [29] Fingersh L, Hand M, Laxson A. Wind Turbine Design Cost and Scaling Model. Technical Report NREL/TP-500-40566, 2006.
- [30] INNWIND.EU Design of state of the art 10-20MW offshore wind turbines. http://www.innwind.eu/.
- [31] Giavotto V, Borri M, Mantegazza P, Ghiringhelli G. Anisotropic beam theory and applications. Comput. Struct., 1983;16(1-4):403-413. doi: 10.1016/0045-7949(83)90179-7.
- [32] Sethuraman L, Quick J, Dykes K and Guo Y. Exploring Optimization Opportunities in Four-Point Suspension Wind Turbine Drivetrains through Integrated Design Approaches. 2018 Wind Energy Symposium, AIAA SciTech Forum, (AIAA 2018-1000). doi: 10.2514/6.2018-1000
- [33] Bottasso CL, Croce A, Nam Y, Riboldi CED. Power curve tracking in the presence of a tip speed constraint. *Renewable Energy*, 2012;40(1):1-12. doi: 10.1016/j.renene.2011.07.045
- [34] Khan MA. Design of rotor hub for NOWITECH 10MW reference wind turbine. MS Thesis, Norwegian University of Science and Technology, Trondheim, 2012.
- [35] Singh Klair S. Design of Nacelle and Rotor Hub for NOWITECH 10MW Reference Turbine. MS Thesis, Norwegian University of Science and Technology, Trondheim, 2013.
- [36] Smith EB. Design AV Nacelle for EN 10 MW Vind Turbin. MS Thesis, Norwegian University of Science and Technology, June 2012.
- [37] Liseth HE, Nilssen R. 10MW Reference Wind Turbine. Student project at NTNU, 2011 Symposium, AIAA SciTech Forum, (AIAA 2018-1000).
- [38] Hung VX. Modeling of exterior rotor permanent magnet machines with concentrated windings. PhD Thesis, TU Delft, The Netherlands, 2012.
- [39] Boldea I. Electric Generators Handbook, Synchronous Generators. CRC Press, 2015.
- [40] Meeker D. Finite Element Method Magnetics: Version 4.2Users Manual. http://www.femm.info/wiki/ Documentation/

- [41] McDonald AS. Structural Analysis of Low Speed, High Torque Electrical Generators for Direct Drive Renewable Energy Converters. *PhD Thesis*, University of Edinburgh, 2008.
- [42] Merz K. Pitch actuator and generator models for wind turbine control system studies. SINTEF Energy Research, Trondheim, Norway, 2015.
- [43] Michelsen J. Basis3D a Platform for Development of Multiblock PDE Solvers, Tech. Rep. AFM 92-05, Department of Fluid Mechanics, Technical University of Denmark, 1992.
- [44] Michelsen J. Block structured multigrid solution of 2D and 3D elliptic PDE's, Tech. Rep. AFM 94-06, Department of Fluid Mechanics, Technical University of Denmark, 1994.
- [45] Sørensen N. General purpose flow solver applied to flow over hills, Ph.D. thesis, . Risø National Laboratory, Frederiksborgvej 399, 4000 Roskilde, 1995.
- [46] Sørensen N. HypGrid2D. A 2-d mesh generator, Tech. Rep. Ris-R-1035(EN), Risø National Laboratory, 1998.
- [47] Menter F. Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows, 24th Fluid dynamics conference, 1993.
- [48] Drela M, Giles MB. Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA Journal, 25(10):1347–1355, 1987.
- [49] https://github.com/WISDEM/AirfoilPreppy
- [50] Hansen MH, Henriksen LC. Basic DTU Wind Energy controller. Technical Report DTU Wind Energy E-0018, Technical University of Denmark, 2013.
- [51] Hansen MH, et al. 2018. https://github.com/DTUWindEnergy/BasicDTUController
- [52] Ashby MF. Materials Selection in Mechanical Design Fourth Edition. Elsevier, 2011.
- [53] Easterling KE, Harrysson R, Gibson LJ, Ashby MF. On the mechanics of balsa and other woods. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982;383(1784):31-41. doi: 10.1098/rspa.1982.0118
- [54] Hansen MH, Thomsen Κ, Natarajan Anand, Barlas Α. Design Load for Onshore Turbines. DTUNo. E-0133, Basis Wind Energy Report http://orbit.dtu.dk/files/126478218/DTUoffshore_pesign_oad_Basis_Rev_0.pdf

Appendices

These sections contain the necessary data for modeling both the 3.4-MW land-based model and the 10-MW offshore model aerodynamically and structurally. The data is also available in digital form on Github at https://github.com/IEAWindTask37/IEA-3.4-130-RWT and https://github.com/IEAWindTask37/IEA-10. 0-198-RWT, including aeroelastic models equipped with open-source controllers. Should any inconsistencies in the data be identified, the digital versions will be updated. Therefore, always refer to the digital data for the latest versions.

A Land-Based Reference Turbine Detailed Properties and Loads

A.1 Blade Aerodynamic Shape

η	Chord	Twist	Rel. Thick	Abs. Thick.	PreBend	Sweep	Pitch Ax.	Aero. Center Ax.
[-]	[mm]	[deg]	[%]	[mm]	[mm]	[mm]	[%]	[%]
0.000	2600.0	20.00	100.00	2600.0	0.0	0.0	50.00	50.00
0.010	2600.0	19.87	100.00	2600.0	0.0	0.0	49.65	50.00
0.020	2600.0	19.73	100.00	2600.0	0.0	0.0	49.30	50.00
0.030	2620.6	19.56	99.12	2597.6	0.0	0.0	48.57	49.48
0.040	2680.1	19.39	96.68	2591.1	0.0	0.0	47.16	48.06
0.050	2776.7	19.20	92.96	2581.1	0.0	0.0	45.19	45.92
0.060	2910.6	18.99	88.25	2568.6	0.0	0.0	42.80	43.24
0.070	3032.4	18.76	82.84	2512.0	0.0	0.0	40.78	40.22
0.080	3155.4	18.51	77.01	2430.1	0.0	0.0	38.91	37.04
0.100	3400.0	17.94	65.28	2219.4	0.0	0.0	35.57	30.94
0.120	3618.0	17.07	55.34	2002.0	1.3	0.0	32.93	26.44
0.140	3803.9	15.81	49.44	1880.6	5.5	0.0	30.84	25.00
0.160	3958.7	14.37	45.94	1818.7	10.9	0.0	29.18	25.00
0.180	4083.2	12.95	43.11	1760.5	17.5	0.0	27.85	25.00
0.200	4178.5	11.75	40.96	1711.4	25.3	0.0	26.78	25.00
0.220	4245.5	10.73	39.44	1674.3	34.4	0.0	25.93	25.00
0.240	4285.1	9.71	38.23	1638.3	44.9	0.0	25.27	25.00
0.260	4298.4	8.71	37.23	1600.2	56.7	0.0	24.77	25.00
0.280	4286.7	7.74	36.38	1559.4	69.9	0.0	24.42	25.00
0.300	4252.0	6.81	35.64	1515.3	84.6	0.0	24.19	25.00
0.320	4196.1	5.93	34.96	1467.0	100.8	0.0	24.08	25.00
0.340	4121.1	5.12	34.34	1415.2	118.7	0.0	24.08	25.00
0.360	4028.7	4.39	33.79	1361.2	138.1	0.0	24.18	25.00
0.380	3921.1	3.75	33.29	1305.3	159.3	0.0	24.38	25.00
0.400	3800.0	3.21	32.83	1247.5	182.3	0.0	24.68	25.00
0.420	3667.7	2.76	32.39	1188.1	207.0	0.0	25.08	25.00
0.440	3527.8	2.38	31.97	1127.8	233.9	0.0	25.56	25.00
0.460	3384.0	2.05	31.54	1067.4	262.7	0.0	26.11	25.00
0.480	3240.1	1.77	31.10	1007.6	293.7	0.0	26.72	25.00
0.500	3100.0	1.53	30.62	949.3	326.9	0.0	27.34	25.00
0.520	2966.8	1.32	30.10	893.0	362.5	0.0	27.96	25.00
0.540	2841.2	1.13	29.51	838.5	400.6	0.0	28.55	25.00
0.560	2723.1	0.95	28.86	785.9	441.3	0.0	29.13	25.00
0.580	2612.7	0.78	28.16	735.8	484.7	0.0	29.67	25.00

Table 19: Aerodynamic shape of the land-based wind turbine blade - Part I.

η	Chord	Twist	Rel. Thick	Abs. Thick.	PreBend	Sweep	Pitch Ax.	Aero. Center Ax.
[-]	[mm]	[deg]	[%]	[mm]	[mm]	[mm]	[%]	[%]
0.600	2509.8	0.60	27.45	688.9	530.9	0.0	30.16	25.00
0.620	2414.5	0.42	26.75	645.8	580.3	0.0	30.60	25.00
0.640	2326.9	0.27	26.08	606.8	632.8	0.0	30.98	25.00
0.660	2246.8	0.13	25.47	572.3	688.8	0.0	31.28	25.00
0.680	2174.3	0.01	24.96	542.6	748.3	0.0	31.49	25.00
0.700	2109.5	-0.11	24.47	516.1	811.8	0.0	31.59	25.00
0.720	2052.3	-0.22	23.97	491.9	879.1	0.0	31.79	25.00
0.740	2002.8	-0.34	23.46	469.9	951.1	0.0	31.73	25.00
0.760	1960.9	-0.47	22.98	450.5	1027.4	0.0	31.57	25.00
0.780	1926.6	-0.60	22.51	433.7	1109.0	0.0	31.26	25.00
0.800	1900.0	-0.75	22.09	419.7	1195.8	0.0	30.80	25.00
0.820	1879.2	-0.91	21.72	408.1	1288.4	0.0	30.21	25.00
0.840	1854.9	-1.07	21.41	397.1	1387.4	0.0	29.56	25.00
0.860	1816.1	-1.24	21.18	384.6	1493.1	0.0	28.87	25.00
0.880	1751.5	-1.45	21.04	368.5	1606.2	0.0	28.24	25.00
0.900	1650.0	-1.70	21.00	346.5	1727.8	0.0	27.67	25.00
0.920	1500.5	-2.05	21.00	315.1	1858.3	0.0	27.25	25.00
0.940	1291.9	-2.54	21.00	271.3	1998.7	0.0	26.92	25.00
0.960	1013.1	-3.14	21.00	212.7	2150.5	0.0	26.71	25.00
0.980	652.8	-3.84	21.00	137.1	2315.1	0.0	26.44	25.00
1.000	200.0	-4.62	21.00	42.0	2500.0	0.0	25.00	25.00

Table 20: Aerodynamic shape of the land-based wind turbine blade - Part II.

A.2 Airfoil Data

ID	х	У	ID	х	У	ID	х	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	0.0000	26	0.2132	0.4096	51	0.2966	-0.4568
2	0.9981	0.0436	27	0.1786	0.3830	52	0.3372	-0.4728
3	0.9924	0.0868	28	0.1464	0.3536	53	0.3790	-0.4851
4	0.9830	0.1294	29	0.1170	0.3214	54	0.4218	-0.4938
5	0.9698	0.1710	30	0.0904	0.2868	55	0.4651	-0.4988
6	0.9532	0.2113	31	0.0670	0.2500	56	0.5087	-0.4999
7	0.9330	0.2500	32	0.0468	0.2113	57	0.5523	-0.4973
8	0.9096	0.2868	33	0.0302	0.1710	58	0.5954	-0.4908
9	0.8830	0.3214	34	0.0170	0.1294	59	0.6378	-0.4806
10	0.8536	0.3536	35	0.0076	0.0868	60	0.6792	-0.4668
11	0.8214	0.3830	36	0.0019	0.0436	61	0.7192	-0.4494
12	0.7868	0.4096	37	0.0000	0.0000	62	0.7575	-0.4286
13	0.7500	0.4330	38	0.0001	-0.0087	63	0.7939	-0.4045
14	0.7113	0.4532	39	0.0027	-0.0523	64	0.8280	-0.3774
15	0.6710	0.4698	40	0.0092	-0.0954	65	0.8597	-0.3473
16	0.6294	0.4830	41	0.0194	-0.1378	66	0.8886	-0.3147
17	0.5868	0.4924	42	0.0332	-0.1792	67	0.9145	-0.2796
18	0.5436	0.4981	43	0.0506	-0.2192	68	0.9373	-0.2424
19	0.5000	0.5000	44	0.0714	-0.2575	69	0.9568	-0.2034
20	0.4564	0.4981	45	0.0955	-0.2939	70	0.9728	-0.1628
21	0.4132	0.4924	46	0.1226	-0.3280	71	0.9851	-0.1210
22	0.3706	0.4830	47	0.1527	-0.3597	72	0.9938	-0.0782
23	0.3290	0.4698	48	0.1853	-0.3886	73	0.9988	-0.0349
24	0.2887	0.4532	49	0.2204	-0.4145	74	1.0000	0.0000
25	0.2500	0.4330	50	0.2576	-0.4373			

Table 21: Airfoil shape - Root circle

Table 22: Airfoil shape - FX77-W-500

ID	х	У									
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	-0.0594	18	0.3634	0.2452	35	0.0016	-0.0880	52	0.4486	-0.2466
2	0.9950	-0.0044	19	0.3230	0.2373	36	0.0062	-0.0991	53	0.4931	-0.2499
3	0.9900	0.0556	20	0.2843	0.2256	37	0.0140	-0.1143	54	0.5386	-0.2511
4	0.9820	0.1056	21	0.2476	0.2122	38	0.0248	-0.1257	55	0.5850	-0.2517
5	0.9603	0.1129	22	0.2129	0.1958	39	0.0386	-0.1383	56	0.6319	-0.2496
6	0.9148	0.1282	23	0.1803	0.1784	40	0.0553	-0.1484	57	0.6792	-0.2466
7	0.8685	0.1444	24	0.1502	0.1582	41	0.0749	-0.1602	58	0.7267	-0.2413
8	0.8216	0.1596	25	0.1225	0.1380	42	0.0974	-0.1700	59	0.7743	-0.2351
9	0.7743	0.1755	26	0.0974	0.1155	43	0.1225	-0.1809	60	0.8216	-0.2257
10	0.7267	0.1903	27	0.0749	0.0938	44	0.1502	-0.1902	61	0.8685	-0.2148
11	0.6792	0.2054	28	0.0553	0.0703	45	0.1803	-0.2003	62	0.9148	-0.2002
12	0.6319	0.2189	29	0.0386	0.0489	46	0.2129	-0.2086	63	0.9603	-0.1861
13	0.5850	0.2322	30	0.0248	0.0263	47	0.2476	-0.2174	64	0.9800	-0.1734
14	0.5386	0.2426	31	0.0140	0.0069	48	0.2843	-0.2246	65	0.9900	-0.1244
15	0.4931	0.2498	32	0.0062	-0.0147	49	0.3230	-0.2319	66	1.0000	-0.0844
16	0.4486	0.2517	33	0.0016	-0.0333	50	0.3634	-0.2375			
17	0.4053	0.2506	34	0.0000	-0.0644	51	0.4053	-0.2430			

Table 23: Airfoil shape - FX77-W-400

ID	х	У									
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	-0.0466	20	0.3945	0.1998	39	0.0000	-0.0516	58	0.3945	-0.1999
2	0.9950	-0.0016	21	0.3589	0.2014	40	0.0012	-0.0704	59	0.4309	-0.2009
3	0.9800	0.0171	22	0.3243	0.2005	41	0.0050	-0.0793	60	0.4680	-0.2014
4	0.9647	0.0255	23	0.2907	0.1962	42	0.0112	-0.0914	61	0.5055	-0.1997
5	0.9353	0.0344	24	0.2584	0.1898	43	0.0198	-0.1006	62	0.5434	-0.1973
6	0.9044	0.0444	25	0.2275	0.1804	44	0.0308	-0.1106	63	0.5814	-0.1931
7	0.8721	0.0547	26	0.1981	0.1698	45	0.0443	-0.1187	64	0.6194	-0.1881
8	0.8385	0.0662	27	0.1703	0.1566	46	0.0600	-0.1281	65	0.6573	-0.1805
9	0.8039	0.0778	28	0.1443	0.1428	47	0.0779	-0.1360	66	0.6948	-0.1718
10	0.7683	0.0903	29	0.1201	0.1266	48	0.0980	-0.1447	67	0.7319	-0.1602
11	0.7319	0.1026	30	0.0980	0.1104	49	0.1201	-0.1521	68	0.7683	-0.1488
12	0.6948	0.1155	31	0.0779	0.0924	50	0.1443	-0.1602	69	0.8039	-0.1374
13	0.6573	0.1276	32	0.0600	0.0750	51	0.1703	-0.1669	70	0.8385	-0.1273
14	0.6194	0.1404	33	0.0443	0.0562	52	0.1981	-0.1740	71	0.8721	-0.1178
15	0.5814	0.1522	34	0.0308	0.0391	53	0.2275	-0.1797	72	0.9044	-0.1096
16	0.5434	0.1643	35	0.0198	0.0210	54	0.2584	-0.1855	73	0.9353	-0.1022
17	0.5055	0.1751	36	0.0112	0.0056	55	0.2907	-0.1900	74	0.9647	-0.0961
18	0.4680	0.1858	37	0.0050	-0.0118	56	0.3243	-0.1944	75	0.9925	-0.0905
19	0.4309	0.1941	38	0.0012	-0.0267	57	0.3589	-0.1973	76	1.0000	-0.0616

Table 24: Airfoil shape - DU00-W2-350

ID	x	У	ID	х	У	ID	х	У	ID	х	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	0.0050	41	0.2252	0.1613	81	0.0045	-0.0272	121	0.4193	-0.1727
2	0.9893	0.0082	42	0.2110	0.1591	82	0.0062	-0.0321	122	0.4338	-0.1700
3	0.9731	0.0130	43	0.1971	0.1566	83	0.0082	-0.0370	123	0.4485	-0.1669
4	0.9526	0.0190	44	0.1836	0.1537	84	0.0106	-0.0420	124	0.4633	-0.1634
5	0.9305	0.0254	45	0.1704	0.1505	85	0.0134	-0.0471	125	0.4781	-0.1594
6	0.9080	0.0320	46	0.1577	0.1469	86	0.0167	-0.0524	126	0.4931	-0.1550
7	0.8854	0.0387	47	0.1453	0.1431	87	0.0203	-0.0577	127	0.5085	-0.1501
8	0.8628	0.0454	48	0.1334	0.1389	88	0.0245	-0.0632	128	0.5241	-0.1447
9	0.8400	0.0522	49	0.1219	0.1345	89	0.0292	-0.0688	129	0.5402	-0.1387
10	0.8169	0.0592	50	0.1109	0.1298	90	0.0347	-0.0747	130	0.5569	-0.1322
11	0.7937	0.0662	51	0.1005	0.1249	91	0.0407	-0.0807	131	0.5744	-0.1250
12	0.7707	0.0731	52	0.0907	0.1199	92	0.0475	-0.0869	132	0.5925	-0.1172
13	0.7479	0.0799	53	0.0815	0.1146	93	0.0549	-0.0932	133	0.6114	-0.1088
14	0.7252	0.0866	54	0.0728	0.1093	94	0.0630	-0.0994	134	0.6314	-0.0997
15	0.7029	0.0932	55	0.0647	0.1038	95	0.0717	-0.1057	135	0.6524	-0.0901
16	0.6809	0.0996	56	0.0571	0.0982	96	0.0811	-0.1118	136	0.6738	-0.0802
17	0.6590	0.1058	57	0.0501	0.0926	97	0.0909	-0.1179	137	0.6948	-0.0705
18	0.6376	0.1118	58	0.0436	0.0869	98	0.1013	-0.1237	138	0.7147	-0.0614
19	0.6165	0.1175	59	0.0376	0.0811	99	0.1122	-0.1293	139	0.7337	-0.0530
20	0.5957	0.1230	60	0.0321	0.0754	100	0.1237	-0.1348	140	0.7517	-0.0453
21	0.5752	0.1282	61	0.0272	0.0697	101	0.1357	-0.1400	141	0.7689	-0.0382
22	0.5549	0.1331	62	0.0228	0.0640	102	0.1482	-0.1450	142	0.7855	-0.0317
23	0.5350	0.1377	63	0.0188	0.0585	103	0.1612	-0.1498	143	0.8013	-0.0258
24	0.5155	0.1420	64	0.0153	0.0531	104	0.1745	-0.1542	144	0.8165	-0.0206
25	0.4963	0.1460	65	0.0123	0.0477	105	0.1882	-0.1583	145	0.8311	-0.0160
26	0.4773	0.1496	66	0.0096	0.0425	106	0.2023	-0.1621	146	0.8452	-0.0120
27	0.4585	0.1529	67	0.0074	0.0375	107	0.2167	-0.1656	147	0.8587	-0.0085
28	0.4400	0.1559	68	0.0055	0.0326	108	0.2313	-0.1687	148	0.8719	-0.0055
29	0.4216	0.1585	69	0.0040	0.0277	109	0.2460	-0.1714	149	0.8847	-0.0031
30	0.4036	0.1608	70	0.0028	0.0226	110	0.2609	-0.1737	150	0.8972	-0.0011
31	0.3858	0.1627	71	0.0018	0.0173	111	0.2758	-0.1757	151	0.9094	0.0004
32	0.3684	0.1642	72	0.0010	0.0122	112	0.2907	-0.1772	152	0.9212	0.0014
33	0.3513	0.1654	73	0.0004	0.0076	113	0.3056	-0.1784	153	0.9325	0.0020
34	0.3345	0.1662	74	0.0001	0.0034	114	0.3204	-0.1791	154	0.9432	0.0022
35	0.3180	0.1666	75	0.0000	-0.0004	115	0.3350	-0.1794	155	0.9533	0.0020
36	0.3017	0.1666	76	0.0001	-0.0042	116	0.3493	-0.1794	156	0.9631	0.0013
37	0.2857	0.1663	77	0.0005	-0.0082	117	0.3633	-0.1789	157	0.9724	0.0003
38	0.2700	0.1656	78	0.0012	-0.0127	118	0.3770	-0.1780	158	0.9818	-0.0011
39	0.2547	0.1645	79	0.0021	-0.0174	119	0.3908	-0.1767	159	0.9911	-0.0029
40	0.2398	0.1631	80	0.0032	-0.0223	120	0.4049	-0.1749	160	1.0000	-0.0050

Table 25: Airfoil shape - DU97-W-300

ID x y ID x y ID x	y ID x y
[-] [-] [-] [-] [-] [-] [-]	[-] [-] [-]
1 1.0000 0.0087 51 0.3035 0.1343 101 0.003	2 -0.0161 151 0.4107 -0.1464
2 0.9935 0.0105 52 0.2912 0.1340 102 0.004	5 -0.0193 152 0.4232 -0.1428
3 0.9848 0.0129 53 0.2792 0.1336 103 0.006	0 -0.0226 153 0.4358 -0.1391
4 0.9739 0.0158 54 0.2674 0.1329 104 0.007	9 -0.0261 154 0.4487 -0.1351
5 0.9613 0.0191 55 0.2559 0.1320 105 0.010	2 - 0.0298 155 0.4618 - 0.1309
6 0.9477 0.0226 56 0.2447 0.1310 106 0.012	-0.0339 156 0.4751 -0.1266
7 0.9332 0.0262 57 0.2337 0.1296 107 0.016	2 -0.0383 157 0.4887 -0.1220
8 0.9184 0.0298 58 0.2228 0.1281 108 0.019	9 - 0.0431 158 0.5025 - 0.1172
9 0.9033 0.0335 59 0.2119 0.1263 109 0.024	3 -0.0482 159 0.5165 -0.1123
10 0.8882 0.0372 60 0.2010 0.1242 110 0.029	2 -0.0536 160 0.5306 -0.1073
11 0.8730 0.0409 61 0.1902 0.1219 111 0.034	-0.0593 161 0.5449 -0.1022
12 0.8579 0.0446 62 0.1793 0.1194 112 0.040	9 -0.0652 162 0.5592 -0.0970
13 0.8427 0.0482 63 0.1686 0.1166 113 0.047	5 - 0.0712 163 0.5737 - 0.0917
14 0.8277 0.0519 64 0.1580 0.1137 114 0.054	5 - 0.0772 164 0.5883 - 0.0864
15 0.8126 0.0554 65 0.1475 0.1105 115 0.062	-0.0832 165 0.6030 -0.0810
16 0.7976 0.0590 66 0.1372 0.1071 116 0.069	8 -0.0891 166 0.6176 -0.0757
17 0.7826 0.0625 67 0.1271 0.1035 117 0.078	-0.0949 167 0.6321 -0.0704
18 0.7677 0.0660 68 0.1172 0.0997 118 0.086	4 -0.1007 168 0.6464 -0.0652
19 0.7528 0.0694 69 0.1076 0.0957 119 0.095	52 - 0.1063 - 169 - 0.6606 - 0.0602
20 0.7379 0.0728 70 0.0983 0.0916 120 0.104	-0.1117 170 0.6747 -0.0552
21 0.7230 0.0761 71 0.0892 0.0873 121 0.115	2 -0.1169 171 0.6885 -0.0503
22 0.7082 0.0794 72 0.0805 0.0829 122 0.122	4 - 0.1219 172 0.7022 - 0.0457
23 0.6934 0.0826 73 0.0722 0.0784 123 0.131	8 -0.1267 173 0.7158 -0.0411
24 0.6786 0.0858 74 0.0643 0.0738 124 0.141	3 -0.1312 174 0.7291 -0.0368
25 - 0.6639 - 0.0889 - 75 - 0.0568 - 0.0691 - 125 - 0.150	-0.1355 175 0.7423 -0.0326
26 - 0.6492 - 0.0920 - 76 - 0.0497 - 0.0644 - 126 - 0.160	5 -0.1396 176 0.7552 -0.0287
27 0.6346 0.0949 77 0.0432 0.0597 127 0.170	3 - 0.1434 177 0.7679 - 0.0249
28 0.6200 0.0978 78 0.0371 0.0550 128 0.180	0 -0.1469 178 0.7803 -0.0215
29 0.6054 0.1007 79 0.0316 0.0504 129 0.180	7 -0.1502 179 0.7926 -0.0182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 0.1531 180 0.8046 - 0.0152
31 0.5765 0.1061 81 0.0223 0.0418 131 0.208	9 -0.1558 181 0.8165 -0.0125
32 - 0.5621 - 0.1087 - 82 - 0.0185 - 0.0377 - 132 - 0.218	3 -0.1581 182 0.8282 -0.0100
33 0.5477 0.1111 83 0.0151 0.0339 133 0.227	7 -0.1601 183 0.8398 -0.0078
34 0.5334 0.1135 84 0.0122 0.0302 134 0.236	9 -0.1618 184 0.8511 -0.0058
35 0.5191 0.1158 85 0.0097 0.0268 135 0.246	0 -0.1632 = 185 = 0.8623 -0.0041
36 0.5049 0.1180 86 0.0075 0.0236 136 0.255	2^{2} -0.1643 186 0.8733 -0.0027
37 0.4908 0.1200 87 0.0057 0.0206 137 0.264	4 -0.1652 187 0.8842 -0.0015
38 0.4767 0.1220 88 0.0042 0.0178 138 0.275	6 -0.1657 188 0.8950 -0.0006
39 0.4627 0.1238 89 0.0030 0.0150 139 0.282	-0.1660 189 0.9056 0.0000
40 0.4488 0.1255 90 0.0020 0.0124 140 0.292	4 - 0.1659 190 0.9161 0.0004
41 0.4350 0.1271 91 0.0012 0.0098 141 0.301	9 -0.1656 191 0.9263 0.0005
42 0.4213 0.1286 92 0.0006 0.0073 142 0.311	7 -0.1650 192 0.9363 0.0004
43 0.4077 0.1298 93 0.0003 0.0048 143 0.321	7 -0.1641 193 0.9458 0.0000
44 0.3942 0.1310 94 0.0001 0.0023 144 0.331	9 -0.1629 194 0.9549 -0.0006
45 0.3808 0.1320 95 0.0000 -0.0001 145 0.342	4 -0.1614 195 0.9636 -0.0015
46 0.3676 0.1328 96 0.0001 -0.0025 146 0.355	-0.1597 196 0.9720 -0.0027
47 0.3545 0.1335 97 0.0003 -0.0050 147 0.364	0 -0.1576 197 0.9799 -0.0040
48 0.3415 0.1339 98 0.0007 -0.0076 148 0.375	3 -0.1552 198 0.9872 -0.0055
49 0.3286 0.1342 99 0.0013 -0.0103 149 0.386	68 -0.1526 199 0.9940 -0.0071
	6 -0.1496 200 1.0000 -0.0087

Table 26: Airfoil shape - DU91-W2-250

ID	x	У	ID	x	У	ID	x	У	ID	x	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	0.0033	53	0.2100	0.1144	105	0.0002	-0.0039	157	0.2500	-0.1207
2	0.9900	0.0061	54	0.2000	0.1122	106	0.0003	-0.0047	158	0.2600	-0.1214
3	0.9800	0.0089	55	0.1900	0.1099	107	0.0004	-0.0055	159	0.2700	-0.1219
4	0.9700	0.0116	56	0.1800	0.1075	108	0.0005	-0.0062	160	0.2800	-0.1223
5	0.9600	0.0142	57	0.1700	0.1049	109	0.0008	-0.0076	161	0.2900	-0.1225
6	0.9500	0.0168	58	0.1600	0.1021	110	0.0010	-0.0088	162	0.3000	-0.1226
7	0.9400	0.0194	59	0.1500	0.0991	111	0.0013	-0.0098	163	0.3100	-0.1225
8	0.9300	0.0219	60	0.1400	0.0959	112	0.0015	-0.0108	164	0.3200	-0.1223
9	0.9200	0.0245	61	0.1300	0.0926	113	0.0017	-0.0117	165	0.3300	-0.1219
10	0.9100	0.0270	62	0.1200	0.0890	114	0.0020	-0.0125	166	0.3400	-0.1214
11	0.9000	0.0295	63	0.1100	0.0852	115	0.0030	-0.0153	167	0.3500	-0.1207
12	0.8750	0.0358	64	0.1000	0.0812	116	0.0040	-0.0177	168	0.3600	-0.1199
13	0.8500	0.0420	65	0.0950	0.0791	117	0.0050	-0.0197	169	0.3700	-0.1189
14	0.8250	0.0482	66	0.0900	0.0769	118	0.0060	-0.0216	170	0.3800	-0.1179
15	0.8000	0.0543	67	0.0850	0.0746	119	0.0070	-0.0233	171	0.3900	-0.1166
16	0.7750	0.0603	68	0.0800	0.0723	120	0.0080	-0.0249	172	0.4000	-0.1153
17	0.7500	0.0662	69	0.0750	0.0699	121	0.0090	-0.0263	173	0.4100	-0.1138
18	0.7250	0.0720	70	0.0700	0.0673	122	0.0100	-0.0278	174	0.4200	-0.1122
19	0.7000	0.0777	71	0.0650	0.0647	123	0.0125	-0.0310	175	0.4300	-0.1105
20	0.6750	0.0833	72	0.0600	0.0620	124	0.0150	-0.0340	176	0.4400	-0.1086
21	0.6500	0.0887	73	0.0550	0.0592	125	0.0175	-0.0368	177	0.4500	-0.1066
22	0.6250	0.0940	74	0.0500	0.0562	126	0.0200	-0.0394	178	0.4750	-0.1010
23	0.6000	0.0990	75	0.0450	0.0531	127	0.0250	-0.0443	179	0.5000	-0.0947
24	0.5750	0.1037	76	0.0400	0.0498	128	0.0300	-0.0486	180	0.5250	-0.0877
25	0.5500	0.1082	77	0.0350	0.0463	129	0.0350	-0.0526	181	0.5500	-0.0801
26^{-5}	0.5250	0.1124	78	0.0300	0.0426	130	0.0400	-0.0563	182	0.5750	-0.0721
27^{-5}	0.5000	0.1162	79	0.0250	0.0387	131	0.0450	-0.0597	183	0.6000	-0.0636
$\frac{-}{28}$	0.4750	0.1197	80	0.0200	0.0344	132	0.0500	-0.0629	184	0.6250	-0.0549
29	0.4500	0.1227	81	0.0175	0.0320	133	0.0550	-0.0659	185	0.6500	-0.0460
30	0.4400	0.1237	82	0.0150	0.0296	134	0.0600	-0.0688	186	0.6750	-0.0372
31	0.4300	0.1247	83	0.0125	0.0270	135	0.0650	-0.0715	187	0.7000	-0.0287
32	0.4200	0.1256	84	0.0100	0.0241	136	0.0700	-0.0740	188	0.7250	-0.0206
33	0.4100	0.1264	85	0.0090	0.0229	137	0.0750	-0.0765	189	0.7500	-0.0131
34	0.4000	0.1271	86	0.0080	0.0216	138	0.0800	-0.0789	190	0.7750	-0.0065
35	0.3900	0.1277	87	0.0070	0.0203	139	0.0850	-0.0811	191	0.8000	-0.0009
36	0.3800	0.1282	88	0.0060	0.0189	140	0.0900	-0.0833	192	0.8250	0.0035
37	0.3700	0.1285	89	0.0050	0.0174	141	0.0950	-0.0854	193	0.8500	0.0066
38	0.3600	0.1288	90	0.0040	0.0157	142	0.1000	-0.0874	194	0.8750	0.0084
39	0.3500	0.1289	91	0.0030	0.0139	143	0.1100	-0.0913	195	0.9000	0.0088
40	0.3400	0.1288	92	0.0020	0.0116	144	0.1200	-0.0948	196	0.9100	0.0085
41	0.3300	0.1286	93	0.0017	0.0110	145	0.1300	-0.0981	197	0.9200	0.0080
42	0.3200	0.1282	94	0.0015	0.0102	146	0.1400	-0.1011	198	0.9300	0.0073
43	0.3100	0.1277	95	0.0013	0.0094	147	0.1500	-0.1039	199	0.9400	0.0063
44	0.3000	0.1270	96	0.0010	0.0085	148	0.1600	-0.1064	200	0.9500	0.0051
45	0.2900	0.1262	97	0.0008	0.0074	149	0.1700	-0.1088	201	0.9600	0.0036
46	0.2800	0.1252	98	0.0005	0.0060	150	0.1800	-0.1109	202	0.9700	0.0021
47	0.2700	0.1241	99	0.0004	0.0054	151	0.1900	-0.1129	203	0.9800	0.0000
48	0.2600	0.1228	100	0.0003	0.0046	152	0.2000	-0.1146	204	0.9900	-0.0010
49	0.2500	0.1214	101	0.0002	0.0038	153	0.2100	-0.1162	205	1.0000	0.0000
50	0.2400	0.1199	102	0.0001	0.0027	154	0.2200	-0.1176			
51	0.2300	0.1182	103	0.0000	0.0000	155	0.2300	-0.1188			
52	0.2200	0.1164	104	0.0001	-0.0027	156	0.2400	-0.1198			

Table 27: Airfoil shape - DU08-W-210

ID	x	У	ID	x	У	ID	x	У	ID	x	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
1	1.0000	0.0014	53	0.2100	0.1100	105	0.0002	-0.0028	157	0.2500	-0.0882
2	0.9900	0.0040	54	0.2000	0.1080	106	0.0003	-0.0034	158	0.2600	-0.0885
3	0.9800	0.0066	55	0.1900	0.1058	107	0.0004	-0.0039	159	0.2700	-0.0886
4	0.9700	0.0091	56	0.1800	0.1000	108	0.0005	-0.0044	160	0.2800	-0.0886
5	0.9600	0.0116	57	0.1000	0.1000	109	0.0008	-0.0054	161	0.2900	-0.0885
6	0.9500	0.0140	58	0.1600	0.0983	110	0.0010	-0.0062	162	0.3000	-0.0883
7	0.9400	0.01164	59	0.1500	0.0000	111	0.0013	-0.0070	163	0.3100	-0.0879
8	0.9300	0.0189	60	0.1400	0.0924	112	0.0015	-0.0076	164	0.3200	-0.0874
g	0.9200	0.0103	61	0.1300	0.0321	112	0.0018	-0.0083	165	0.3300	-0.0868
10	0.0200	0.0210 0.0237	62	0.1000	0.0052 0.0857	114	0.0010	-0.0088	166	0.3400	-0.0861
11	0.0100	0.0261	63	0.1200	0.0820	115	0.0020	-0.0100	167	0.0100	-0.0853
19	0.3000	0.0201 0.0321	64	0.1100	0.0020	116	0.0000	0.0105	168	0.3600	-0.0803
12	0.8700	0.0321	65	0.1000	0.0761	117	0.0040	-0.0120 0.0141	160	0.3000	-0.0843
14	0.8050	0.0300	66	0.0900	0.0701	118	0.0000	0.0141	170	0.3700	-0.0833
15	0.8200	0.0405 0.0407	67	0.0900	0.0733 0.0717	110	0.0000	0.0168	170	0.3000	-0.0822
16	0.3000	0.0457	68	0.0800	0.0717	119	0.0070	-0.0100	$171 \\ 172$	0.3300	-0.0303
17	0.77500	0.0004	60	0.0000	0.0034 0.0670	120	0.0000	-0.0100	172 173	0.4000	-0.0790
10	0.7500	0.0009	09 70	0.0750	0.0070	121	0.0090	-0.0191	173	0.4100	-0.0782
10	0.7200	0.0004	70	0.0700	0.0040	122	0.0100	-0.0202	175	0.4200	-0.0707
20	0.7000	0.0710 0.0771	71	0.0000	0.0020	123	0.0120 0.0150	-0.0227	175	0.4300	-0.0734
20	0.0750	0.0771	12	0.0000	0.0595	124	0.0150 0.0175	-0.0250	170	0.4400	-0.0734
21	0.0000	0.0823	73	0.0550	0.0505	120	0.0175	-0.0271	170	0.4300	-0.0710
22 92	0.0200	0.0873	74	0.0500	0.0550	120	0.0200	-0.0291	170	0.4750	-0.0008
23	0.6000	0.0921	15 70	0.0450	0.0505	127	0.0250	-0.0328	179	0.5000	-0.0615
24 95	0.5750	0.0907	70	0.0400	0.0472	128	0.0300	-0.0301	180	0.5250	-0.0558
20 00	0.5500	0.1012	((0.0350	0.0438	129	0.0350	-0.0392	181	0.5500	-0.0497
26	0.5250	0.1053	(8 70	0.0300	0.0401	130	0.0400	-0.0420	182	0.5750	-0.0434
27	0.5000	0.1091	79	0.0250	0.0301	131	0.0450	-0.0446	183	0.6000	-0.0369
28	0.4750	0.1126	80	0.0200	0.0318	132	0.0500	-0.0471	184	0.6250	-0.0304
29	0.4500	0.1157	81	0.0175	0.0295	133	0.0550	-0.0494	185	0.6500	-0.0239
30	0.4400	0.1168	82	0.0150	0.0271	134	0.0600	-0.0516	186	0.6750	-0.0175
31	0.4300	0.1178	83	0.0125	0.0245	135	0.0650	-0.0536	187	0.7000	-0.0115
32	0.4200	0.1187	84	0.0100	0.0216	130	0.0700	-0.0556	188	0.7250	-0.0060
33	0.4100	0.1196	85	0.0090	0.0204	137	0.0750	-0.0574	189	0.7500	-0.0010
34	0.4000	0.1204	86	0.0080	0.0191	138	0.0800	-0.0592	190	0.7750	0.0031
35	0.3900	0.1210	87	0.0070	0.0178	139	0.0850	-0.0609	191	0.8000	0.0064
36	0.3800	0.1216	88	0.0060	0.0164	140	0.0900	-0.0625	192	0.8250	0.0086
37	0.3700	0.1221	89	0.0050	0.0149	141	0.0950	-0.0641	193	0.8500	0.0097
38	0.3600	0.1225	90	0.0040	0.0133	142	0.1000	-0.0656	194	0.8750	0.0099
39	0.3500	0.1227	91	0.0030	0.0114	143	0.1100	-0.0684	195	0.9000	0.0090
40	0.3400	0.1228	92	0.0020	0.0093	144	0.1200	-0.0709	196	0.9100	0.0084
41	0.3300	0.1227	93	0.0018	0.0087	145	0.1300	-0.0733	197	0.9200	0.0077
42	0.3200	0.1225	94	0.0015	0.0081	146	0.1400	-0.0754	198	0.9300	0.0068
43	0.3100	0.1221	95	0.0013	0.0074	147	0.1500	-0.0774	199	0.9400	0.0058
44	0.3000	0.1215	96	0.0010	0.0066	148	0.1600	-0.0792	200	0.9500	0.0047
45	0.2900	0.1209	97	0.0008	0.0056	149	0.1700	-0.0808	201	0.9600	0.0035
46	0.2800	0.1200	98	0.0005	0.0046	150	0.1800	-0.0823	202	0.9700	0.0022
47	0.2700	0.1190	99	0.0004	0.0041	151	0.1900	-0.0836	203	0.9800	0.0009
48	0.2600	0.1179	100	0.0003	0.0035	152	0.2000	-0.0847	204	0.9900	-0.0003
49	0.2500	0.1166	101	0.0002	0.0028	153	0.2100	-0.0857	205	1.0000	-0.0014
50	0.2400	0.1152	102	0.0001	0.0020	154	0.2200	-0.0865			
51	0.2300	0.1136	103	0.0000	0.0000	155	0.2300	-0.0872			
52	0.2200	0.1119	104	0.0001	-0.0020	156	0.2400	-0.0878			
Table 28.	Airfoil porodynamic	coefficients	Boot circle								
-----------	---------------------	----------------	-------------								
Table 28:	Anion aerodynamic	- coencients -	Root circle								

α	C_{L}	C_{D}	C_{M}
[deg]	[-]	[-]	[-]
-180	0.000	0.600	0.000
0	0.000	0.600	0.000
180	0.000	0.600	0.000

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.155	0.000	-11.5	-0.427	0.189	-0.011	13.0	1.010	0.183	-0.042
-175.0	0.220	0.173	0.200	-11.0	-0.414	0.183	-0.016	13.5	1.008	0.195	-0.044
-170.0	0.440	0.191	0.400	-10.5	-0.401	0.176	-0.021	14.0	1.007	0.206	-0.046
-165.0	0.547	0.244	0.358	-10.0	-0.388	0.170	-0.026	15.0	1.008	0.227	-0.049
-160.0	0.653	0.296	0.317	-9.5	-0.361	0.164	-0.025	16.0	1.012	0.246	-0.053
-155.0	0.627	0.376	0.300	-9.0	-0.335	0.157	-0.024	17.0	0.994	0.259	-0.063
-150.0	0.602	0.456	0.284	-8.5	-0.309	0.151	-0.023	18.0	0.974	0.271	-0.073
-145.0	0.587	0.554	0.289	-8.0	-0.282	0.144	-0.022	19.0	0.953	0.284	-0.084
-140.0	0.573	0.651	0.294	-7.5	-0.256	0.138	-0.022	20.0	0.933	0.296	-0.094
-135.0	0.547	0.754	0.305	-7.0	-0.230	0.132	-0.021	22.0	0.918	0.328	-0.106
-130.0	0.521	0.856	0.315	-6.5	-0.204	0.125	-0.020	24.0	0.904	0.360	-0.119
-125.0	0.476	0.951	0.326	-6.0	-0.177	0.119	-0.019	26.0	0.889	0.392	-0.131
-120.0	0.432	1.045	0.337	-5.5	-0.151	0.112	-0.019	28.0	0.874	0.424	-0.143
-115.0	0.370	1.118	0.343	-5.0	-0.125	0.106	-0.018	30.0	0.860	0.456	-0.155
-110.0	0.308	1.192	0.350	-4.5	-0.098	0.100	-0.017	32.0	0.852	0.495	-0.164
-105.0	0.233	1.235	0.351	-4.0	-0.072	0.093	-0.016	34.0	0.843	0.534	-0.173
-100.0	0.159	1.278	0.352	-3.5	-0.046	0.087	-0.016	36.0	0.835	0.573	-0.182
-95.0	0.079	1.284	0.345	-3.0	-0.007	0.083	-0.016	38.0	0.827	0.612	-0.191
-90.0	0.000	1.290	0.339	-2.5	0.050	0.084	-0.018	40.0	0.819	0.651	-0.201
-85.0	-0.079	1.284	0.331	-2.0	0.107	0.084	-0.020	45.0	0.781	0.754	-0.221
-80.0	-0.159	1.278	0.324	-1.5	0.164	0.085	-0.022	50.0	0.744	0.856	-0.241
-75.0	-0.233	1.235	0.309	-1.0	0.221	0.085	-0.024	55.0	0.680	0.951	-0.258
-70.0	-0.308	1.192	0.295	-0.5	0.279	0.086	-0.026	60.0	0.617	1.045	-0.276
-65.0	-0.370	1.118	0.276	0.0	0.336	0.086	-0.028	65.0	0.528	1.118	-0.291
-60.0	-0.432	1.045	0.256	0.5	0.393	0.087	-0.030	70.0	0.440	1.192	-0.305
-55.0	-0.476	0.951	0.234	1.0	0.450	0.087	-0.032	75.0	0.333	1.235	-0.316
-50.0	-0.521	0.856	0.212	1.5	0.507	0.088	-0.034	80.0	0.227	1.278	-0.327
-45.0	-0.547	0.754	0.190	2.0	0.570	0.088	-0.037	85.0	0.113	1.284	-0.333
-40.0	-0.573	0.651	0.167	2.5	0.637	0.088	-0.039	90.0	0.000	1.290	-0.339
-38.0	-0.579	0.612	0.158	3.0	0.703	0.087	-0.041	95.0	-0.079	1.284	-0.345
-36.0	-0.585	0.573	0.150	3.5	0.770	0.087	-0.044	100.0	-0.159	1.278	-0.352
-34.0	-0.590	0.534	0.141	4.0	0.837	0.087	-0.046	105.0	-0.233	1.235	-0.351
-32.0	-0.596	0.495	0.132	4.5	0.903	0.087	-0.048	110.0	-0.308	1.192	-0.350
-30.0	-0.602	0.456	0.123	5.0	0.970	0.087	-0.051	115.0	-0.370	1.118	-0.343
-28.0	-0.612	0.424	0.113	5.5	1.037	0.087	-0.053	120.0	-0.432	1.045	-0.337
-26.0	-0.622	0.392	0.103	6.0	1.098	0.086	-0.056	125.0	-0.476	0.951	-0.326
-24.0	-0.633	0.360	0.093	6.5	1.157	0.086	-0.058	130.0	-0.521	0.856	-0.315
-22.0	-0.643	0.328	0.083	7.0	1.217	0.086	-0.061	135.0	-0.547	0.754	-0.305
-20.0	-0.653	0.296	0.073	7.5	1.277	0.086	-0.064	140.0	-0.573	0.651	-0.294
-19.0	-0.627	0.284	0.063	8.0	1.336	0.086	-0.067	145.0	-0.587	0.554	-0.289
-18.0	-0.600	0.271	0.054	8.5	1.396	0.086	-0.069	150.0	-0.602	0.456	-0.284
-17.0	-0.573	0.258	0.044	9.0	1.444	0.086	-0.073	155.0	-0.627	0.376	-0.300
-16.0	-0.547	0.246	0.034	9.5	1.485	0.088	-0.076	160.0	-0.653	0.296	-0.317
-15.0	-0.520	0.233	0.024	10.0	1.526	0.089	-0.080	165.0	-0.547	0.244	-0.408
-14.0	-0.494	0.220	0.014	10.5	1.240	0.105	-0.083	170.0	-0.440	0.191	-0.500
-13.5	-0.481	0.214	0.009	11.0	1.073	0.126	-0.044	175.0	-0.220	0.173	-0.250
-13.0	-0.467	0.208	0.004	11.5	1.045	0.141	-0.037	180.0	0.000	0.155	0.000
-12.5	-0.454	0.201	-0.001	12.0	1.028	0.155	-0.039				
-12.0	-0.441	0.195	-0.006	12.5	1.017	0.169	-0.041				

Table 29: Airfoil aerodynamic coefficients - FX77-W-500

α	$C_{\rm L}$	$C_{\rm D}$	$\mathbf{C}_{\mathbf{M}}$	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.010	0.000	-11.5	-0.507	0.043	-0.001	13.0	0.973	0.035	-0.060
-175.0	0.246	0.010	0.200	-11.0	-0.495	0.040	-0.006	13.5	0.985	0.037	-0.062
-170.0	0.493	0.010	0.400	-10.5	-0.483	0.037	-0.011	14.0	0.998	0.038	-0.064
-165.0	0.603	0.052	0.353	-10.0	-0.471	0.034	-0.016	15.0	1.054	0.039	-0.069
-160.0	0.713	0.094	0.306	-9.5	-0.444	0.034	-0.016	16.0	1.127	0.040	-0.074
-155.0	0.675	0.182	0.282	-9.0	-0.417	0.033	-0.016	17.0	1.100	0.054	-0.083
-150.0	0.637	0.270	0.259	-8.5	-0.391	0.033	-0.016	18.0	1.073	0.067	-0.093
-145.0	0.616	0.379	0.261	-8.0	-0.364	0.033	-0.016	19.0	1.046	0.081	-0.102
-140.0	0.594	0.487	0.264	-7.5	-0.338	0.032	-0.016	20.0	1.019	0.094	-0.111
-135.0	0.564	0.603	0.275	-7.0	-0.311	0.032	-0.016	22.0	0.997	0.129	-0.120
-130.0	0.533	0.718	0.285	-6.5	-0.285	0.031	-0.016	24.0	0.975	0.165	-0.130
-125.0	0.486	0.828	0.298	-6.0	-0.258	0.031	-0.016	26.0	0.954	0.200	-0.139
-120.0	0.438	0.937	0.311	-5.5	-0.232	0.030	-0.016	28.0	0.932	0.235	-0.149
-115.0	0.374	1.028	0.322	-5.0	-0.205	0.030	-0.016	30.0	0.910	0.270	-0.158
-110.0	0.311	1.119	0.333	-4.5	-0.179	0.029	-0.016	32.0	0.898	0.314	-0.166
-105.0	0.235	1.180	0.339	-4.0	-0.152	0.029	-0.016	34.0	0.885	0.357	-0.173
-100.0	0.159	1.241	0.344	-3.5	-0.126	0.028	-0.016	36.0	0.873	0.400	-0.180
-95.0	0.080	1.265	0.343	-3.0	-0.099	0.028	-0.016	38.0	0.861	0.443	-0.187
-90.0	0.000	1.290	0.342	-2.5	-0.031	0.028	-0.019	40.0	0.849	0.487	-0.194
-85.0	-0.080	1.265	0.330	-2.0	0.037	0.028	-0.020	45.0	0.805	0.603	-0.212
-80.0	-0.159	1.241	0.319	-1.5	0.105	0.028	-0.022	50.0	0.762	0.718	-0.229
-75.0	-0.235	1.180	0.302	-1.0	0.173	0.028	-0.024	55.0	0.694	0.828	-0.246
-70.0	-0.311	1.119	0.285	-0.5	0.241	0.028	-0.025	60.0	0.626	0.937	-0.263
-65.0	-0.374	1.028	0.264	0.0	0.309	0.028	-0.027	65.0	0.535	1.028	-0.279
-60.0	-0.438	0.937	0.243	0.5	0.377	0.028	-0.029	70.0	0.444	1.119	-0.295
-55.0	-0.486	0.828	0.221	1.0	0.445	0.028	-0.031	75.0	0.336	1.180	-0.308
-50.0	-0.533	0.718	0.200	1.5	0.513	0.028	-0.032	80.0	0.228	1.241	-0.322
-45.0	-0.564	0.603	0.179	2.0	0.580	0.028	-0.034	85.0	0.114	1.265	-0.332
-40.0	-0.594	0.487	0.159	2.5	0.646	0.028	-0.036	90.0	0.000	1.290	-0.342
-38.0	-0.603	0.443	0.152	3.0	0.713	0.028	-0.039	95.0	-0.080	1.265	-0.343
-36.0	-0.611	0.400	0.144	3.5	0.779	0.028	-0.041	100.0	-0.159	1.241	-0.344
-34.0	-0.620	0.357	0.137	4.0	0.845	0.028	-0.043	105.0	-0.235	1.180	-0.339
-32.0	-0.628	0.314	0.130	4.5	0.912	0.028	-0.045	110.0	-0.311	1.119	-0.333
-30.0	-0.637	0.270	0.123	5.0	0.978	0.028	-0.047	115.0	-0.374	1.028	-0.322
-28.0	-0.652	0.235	0.115	5.5	1.045	0.028	-0.049	120.0	-0.438	0.937	-0.311
-26.0	-0.667	0.200	0.107	6.0	1.111	0.028	-0.052	125.0	-0.486	0.828	-0.298
-24.0	-0.683	0.165	0.100	6.5	1.177	0.028	-0.054	130.0	-0.533	0.718	-0.285
-22.0	-0.698	0.129	0.092	7.0	1.244	0.028	-0.056	135.0	-0.564	0.603	-0.275
-20.0	-0.713	0.094	0.084	7.5	1.310	0.028	-0.058	140.0	-0.594	0.487	-0.264
-19.0	-0.689	0.088	0.074	8.0	1.374	0.028	-0.061	145.0	-0.616	0.379	-0.261
-18.0	-0.665	0.082	0.064	8.5	1.434	0.028	-0.064	150.0	-0.637	0.270	-0.259
-17.0	-0.640	0.076	0.054	9.0	1.494	0.029	-0.068	155.0	-0.675	0.182	-0.282
-16.0	-0.616	0.070	0.044	9.5	1.554	0.029	-0.071	160.0	-0.713	0.094	-0.306
-15.0	-0.592	0.064	0.034	10.0	1.614	0.029	-0.074	165.0	-0.603	0.052	-0.403
-14.0	-0.568	0.058	0.024	10.5	1.003	0.029	-0.078	175.0	-0.493	0.010	-0.500
-13.5	-0.555	0.055	0.019	11.0	1.695	0.029	-0.081	1/5.0	-0.246	0.010	-0.250
-13.U 19 F	-0.543	0.052	0.014	11.5 19.0	1.728	0.029	-0.084	180.0	0.000	0.010	0.000
-12.0	-0.331	0.049	0.009	12.0	1.700	0.030	-0.088				
-12.0	-0.519	0.040	0.004	12.5	0.980	0.033	-0.059				

Table 30: Airfoil aerodynamic coefficients - FX77-W-400

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.000	0.000	-11.5	-0.679	0.087	0.086	13.0	1.291	0.059	-0.109
-175.0	0.217	0.054	0.200	-11.0	-0.671	0.080	0.075	13.5	1.270	0.069	-0.109
-170.0	0.433	0.107	0.400	-10.5	-0.664	0.072	0.063	14.0	1.249	0.080	-0.109
-165.0	0.620	0.163	0.212	-10.0	-0.656	0.064	0.051	15.0	1.211	0.103	-0.110
-160.0	0.806	0.219	0.024	-9.5	-0.649	0.056	0.039	16.0	1.188	0.130	-0.119
-155.0	0.763	0.314	0.048	-9.0	-0.641	0.049	0.027	17.0	1.172	0.154	-0.132
-150.0	0.719	0.409	0.072	-8.5	-0.634	0.041	0.015	18.0	1.165	0.179	-0.143
-145.0	0.695	0.525	0.094	-8.0	-0.626	0.033	0.003	19.0	1.176	0.203	-0.148
-140.0	0.670	0.640	0.116	-7.5	-0.584	0.029	-0.001	20.0	1.152	0.219	-0.157
-135.0	0.636	0.763	0.140	-7.0	-0.541	0.026	-0.005	22.0	1.114	0.252	-0.172
-130.0	0.601	0.886	0.163	-6.5	-0.494	0.023	-0.010	24.0	1.084	0.288	-0.184
-125.0	0.548	1.001	0.187	-6.0	-0.447	0.020	-0.014	26.0	1.062	0.326	-0.196
-120.0	0.494	1.116	0.211	-5.5	-0.396	0.018	-0.019	28.0	1.043	0.366	-0.206
-115.0	0.422	1.208	0.234	-5.0	-0.344	0.016	-0.023	30.0	1.027	0.409	-0.215
-110.0	0.350	1.301	0.256	-4.5	-0.289	0.014	-0.028	32.0	1.013	0.452	-0.224
-105.0	0.265	1.360	0.273	-4.0	-0.233	0.013	-0.033	34.0	1.000	0.498	-0.233
-100.0	0.180	1.418	0.291	-3.5	-0.174	0.012	-0.038	36.0	0.986	0.544	-0.242
-95.0	0.090	1.436	0.301	-3.0	-0.115	0.012	-0.043	38.0	0.973	0.592	-0.250
-90.0	0.000	1.453	0.312	-2.5	-0.054	0.011	-0.048	40.0	0.958	0.640	-0.259
-85.0	-0.090	1.436	0.316	-2.0	0.007	0.011	-0.052	45.0	0.914	0.764	-0.279
-80.0	-0.180	1.418	0.320	-1.5	0.070	0.011	-0.056	50.0	0.859	0.886	-0.299
-75.0	-0.265	1.360	0.316	-1.0	0.133	0.010	-0.060	55.0	0.782	1.001	-0.318
-70.0	-0.350	1.301	0.312	-0.5	0.197	0.010	-0.064	60.0	0.706	1.116	-0.337
-65.0	-0.422	1.208	0.302	0.0	0.261	0.010	-0.068	65.0	0.603	1.208	-0.354
-60.0	-0.494	1.116	0.292	0.5	0.326	0.010	-0.072	70.0	0.500	1.301	-0.371
-55.0	-0.548	1.001	0.279	1.0	0.391	0.010	-0.075	75.0	0.378	1.360	-0.384
-50.0	-0.601	0.886	0.267	1.5	0.457	0.010	-0.079	80.0	0.257	1.418	-0.397
-45.0	-0.640	0.764	0.254	2.0	0.522	0.010	-0.082	85.0	0.128	1.436	-0.406
-40.0	-0.670	0.640	0.244	2.5	0.587	0.011	-0.085	90.0	0.000	1.453	-0.415
-38.0	-0.681	0.592	0.240	3.0	0.652	0.011	-0.087	95.0	-0.090	1.436	-0.419
-36.0	-0.691	0.544	0.238	3.5	0.716	0.011	-0.089	100.0	-0.180	1.418	-0.423
-34.0	-0.700	0.498	0.237	4.0	0.779	0.011	-0.091	105.0	-0.265	1.360	-0.419
-32.0	-0.709	0.452	0.237	4.5	0.841	0.012	-0.093	110.0	-0.350	1.301	-0.415
-30.0	-0.719	0.409	0.238	5.0	0.902	0.012	-0.095	115.0	-0.422	1.208	-0.405
-28.0	-0.730	0.366	0.242	5.5	0.961	0.012	-0.097	120.0	-0.494	1.110	-0.395
-26.0	-0.743	0.326	0.247	6.0 C F	1.020	0.013	-0.098	125.0	-0.548	1.001	-0.383
-24.0	-0.759	0.288	0.257	0.5	1.075	0.013	-0.099	130.0	-0.601	0.880	-0.370
-22.0	-0.780	0.252	0.270	7.0	1.129	0.014	-0.100	135.0	-0.030	0.703	-0.338
-20.0	-0.800	0.219	0.289	(.5	1.178	0.015	-0.101	140.0	-0.070	0.640	-0.347
-19.0	-0.791	0.204	0.205	8.0	1.227	0.015	-0.102	145.0	-0.095	0.525	-0.344
-18.0	-0.761	0.188 0.172	0.241	8.5	1.208	0.010	-0.103	150.0	-0.719	0.409	-0.341
-11.U	-0.701	0.173 0.157	0.218	9.0	1.308	0.017	-0.104 0.10F	100.0	-0.703	0.314	-0.307
-10.0	-0.740	0.137	0.194	9.0	1.559	0.020	-0.105	100.0	-0.600	0.219	-0.392
-10.U	-0.731	0.142 0.196	0.170	10.0 10 F	1.309	0.022	-0.100	100.0 170.0	-0.000	0.104	-0.440
-14.U 19 5	-0.710	0.120	0.140	10.0	1.381	0.020	-0.107	175.0	-0.403	0.110	-0.000 0.250
-10.0 19.0	-0.709	0.110	0.134	11.U 11 5	1.090	0.029	-0.107	180.0	-0.202	0.000	-0.200
-10.U 19.K	0.701	0.111	0.122	12.0	1.300	0.035	0.100	100.0	0.000	0.000	0.000
-12.0	-0.034	0.105	0.110	12.0 12.5	1.042 1.317	0.041	-0.108				
14.0	0.000	0.000	0.000	12.0	T.0T1	0.000	0.100				

Table 31: Airfoil aerodynamic coefficients - DU00-W2-350

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.000	0.000	-11.5	-0.975	0.090	-0.019	13.0	1.196	0.059	-0.116
-175.0	0.183	0.047	0.200	-11.0	-0.931	0.083	-0.025	13.5	1.148	0.067	-0.114
-170.0	0.366	0.093	0.400	-10.5	-0.884	0.076	-0.030	14.0	1.100	0.075	-0.113
-165.0	0.549	0.140	0.194	-10.0	-0.838	0.070	-0.035	15.0	1.050	0.089	-0.111
-160.0	0.732	0.187	-0.012	-9.5	-0.801	0.060	-0.041	16.0	1.022	0.103	-0.109
-155.0	0.721	0.279	-0.008	-9.0	-0.765	0.050	-0.047	17.0	1.007	0.117	-0.110
-150.0	0.710	0.371	-0.005	-8.5	-0.751	0.037	-0.052	18.0	1.010	0.133	-0.112
-145.0	0.688	0.489	0.020	-8.0	-0.737	0.024	-0.057	19.0	1.040	0.153	-0.118
-140.0	0.665	0.607	0.045	-7.5	-0.693	0.021	-0.059	20.0	1.065	0.173	-0.125
-135.0	0.632	0.733	0.071	-7.0	-0.649	0.017	-0.060	22.0	1.095	0.212	-0.144
-130.0	0.598	0.858	0.097	-6.5	-0.578	0.016	-0.064	24.0	1.067	0.248	-0.164
-125.0	0.545	0.976	0.124	-6.0	-0.507	0.015	-0.068	26.0	1.046	0.287	-0.180
-120.0	0.492	1.094	0.150	-5.5	-0.438	0.014	-0.072	28.0	1.029	0.328	-0.194
-115.0	0.421	1.190	0.175	-5.0	-0.369	0.013	-0.076	30.0	1.015	0.371	-0.207
-110.0	0.349	1.286	0.201	-4.5	-0.301	0.012	-0.079	32.0	1.002	0.416	-0.220
-105.0	0.264	1.348	0.222	-4.0	-0.233	0.012	-0.082	34.0	0.990	0.462	-0.231
-100.0	0.179	1.411	0.243	-3.5	-0.167	0.011	-0.085	36.0	0.977	0.509	-0.242
-95.0	0.090	1.432	0.257	-3.0	-0.101	0.011	-0.088	38.0	0.964	0.558	-0.252
-90.0	0.000	1.453	0.271	-2.5	-0.036	0.011	-0.090	40.0	0.950	0.607	-0.263
-85.0	-0.090	1.432	0.277	-2.0	0.028	0.011	-0.093	45.0	0.908	0.733	-0.287
-80.0	-0.179	1.411	0.284	-1.5	0.092	0.010	-0.095	50.0	0.854	0.858	-0.311
-75.0	-0.264	1.348	0.282	-1.0	0.156	0.010	-0.098	55.0	0.779	0.976	-0.333
-70.0	-0.349	1.286	0.280	-0.5	0.221	0.010	-0.100	60.0	0.703	1.094	-0.355
-65.0	-0.421	1.190	0.271	0.0	0.287	0.010	-0.103	65.0	0.601	1.190	-0.376
-60.0	-0.492	1.094	0.263	0.5	0.351	0.011	-0.105	70.0	0.499	1.286	-0.396
-55.0	-0.545	0.976	0.251	1.0	0.416	0.011	-0.107	75.0	0.378	1.348	-0.413
-50.0	-0.598	0.858	0.240	1.5	0.480	0.011	-0.109	80.0	0.256	1.411	-0.430
-45.0	-0.636	0.733	0.229	2.0	0.544	0.011	-0.110	85.0	0.128	1.432	-0.442
-40.0	-0.665	0.607	0.221	2.5	0.606	0.011	-0.112	90.0	0.000	1.453	-0.455
-38.0	-0.675	0.558	0.218	3.0	0.668	0.011	-0.114	95.0	-0.090	1.432	-0.461
-36.0	-0.684	0.509	0.217	3.5	0.729	0.011	-0.115	100.0	-0.179	1.411	-0.468
-34.0	-0.693	0.462	0.217	4.0	0.791	0.011	-0.116	105.0	-0.264	1.348	-0.465
-32.0	-0.701	0.416	0.218	4.5	0.852	0.011	-0.118	110.0	-0.349	1.286	-0.463
-30.0	-0.710	0.371	0.222	5.0	0.913	0.011	-0.119	115.0	-0.421	1.190	-0.455
-28.0	-0.720	0.328	0.227	5.5	0.972	0.012	-0.120	120.0	-0.492	1.094	-0.447
-26.0	-0.732	0.287	0.235	6.0	1.031	0.012	-0.120	125.0	-0.545	0.976	-0.435
-24.0	-0.747	0.248	0.248	6.5 7.0	1.088	0.012	-0.121	130.0	-0.598	0.858	-0.424
-22.0	-0.700	0.212	0.205	7.0	1.140	0.012	-0.121	135.0	-0.032	0.733	-0.414
-20.0	-0.922	0.197	0.190	(.5	1.200	0.013	-0.122	140.0	-0.000	0.007	-0.405
-19.0	-0.999	0.189	0.102	8.0	1.250	0.013	-0.122	145.0	-0.688	0.489	-0.405
-18.0	-1.077	0.182 0.174	0.127	8.5	1.308	0.013	-0.121	150.0	-0.710	0.371	-0.405
-17.0	-1.104 1.090	0.174	0.093	9.0 0 5	1.009	0.014 0.014	-0.121	160.0	-0.705	0.282	-0.432 0.459
-10.0	-1.232	0.100	0.000	9.0 10.0	1.400	0.014	-0.120	165.0	-0.097	0.195	-0.400
-10.0 14.0	-1.209 1.104	0.100 0.197	0.032	10.0 10 5	1.402	0.015	-0.119	100.0 170.0	-0.322	0.140	-0.479
-14.0 19 5	-1.194 1.159	0.137	0.020 0.019	10.0	1.409 1 596	0.010 0.017	-0.117	175.0	-0.348	0.090	0.000
-13.0 _13.0	-1.102 _1.110	0.127 0.117	0.012	11.0	1.520 1.549	0.017	-0.114	180.0	0.174	0.040	-0.200 0.000
-19.5	-1.110	0.117	-0.003	12.0	1.542 1.550	0.010	-0.111	100.0	0.000	0.000	0.000
-12.0	-1.020	0.098	-0.012	12.0 12.5	1.377	0.040	-0.111				

Table 32: Airfoil aerodynamic coefficients - DU97-W-300

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.000	0.000	-11.5	-0.926	0.055	-0.033	13.0	1.097	0.077	-0.106
-175.0	0.181	0.056	0.200	-11.0	-0.903	0.045	-0.035	13.5	1.104	0.085	-0.107
-170.0	0.363	0.112	0.400	-10.5	-0.871	0.038	-0.039	14.0	1.112	0.093	-0.108
-165.0	0.544	0.169	0.198	-10.0	-0.839	0.032	-0.043	15.0	1.126	0.111	-0.112
-160.0	0.726	0.225	-0.003	-9.5	-0.806	0.026	-0.047	16.0	1.129	0.125	-0.113
-155.0	0.731	0.314	-0.019	-9.0	-0.773	0.021	-0.051	17.0	1.122	0.137	-0.112
-150.0	0.737	0.403	-0.035	-8.5	-0.717	0.017	-0.059	18.0	1.127	0.155	-0.115
-145.0	0.709	0.519	-0.008	-8.0	-0.662	0.013	-0.068	19.0	1.134	0.176	-0.121
-140.0	0.681	0.635	0.019	-7.5	-0.595	0.012	-0.074	20.0	1.139	0.196	-0.126
-135.0	0.644	0.759	0.045	-7.0	-0.528	0.010	-0.080	22.0	1.147	0.245	-0.142
-130.0	0.607	0.882	0.072	-6.5	-0.457	0.010	-0.086	24.0	1.119	0.282	-0.165
-125.0	0.552	0.997	0.099	-6.0	-0.387	0.009	-0.092	26.0	1.092	0.320	-0.184
-120.0	0.497	1.113	0.126	-5.5	-0.317	0.009	-0.097	28.0	1.071	0.361	-0.201
-115.0	0.424	1.206	0.152	-5.0	-0.247	0.008	-0.102	30.0	1.052	0.403	-0.216
-110.0	0.351	1.299	0.178	-4.5	-0.179	0.008	-0.105	32.0	1.036	0.447	-0.229
-105.0	0.266	1.358	0.199	-4.0	-0.110	0.008	-0.108	34.0	1.020	0.492	-0.242
-100.0	0.180	1.417	0.221	-3.5	-0.044	0.008	-0.111	36.0	1.005	0.539	-0.254
-95.0	0.090	1.435	0.236	-3.0	0.023	0.008	-0.114	38.0	0.989	0.587	-0.265
-90.0	0.000	1.453	0.250	-2.5	0.089	0.008	-0.116	40.0	0.973	0.635	-0.276
-85.0	-0.090	1.435	0.258	-2.0	0.155	0.008	-0.119	45.0	0.926	0.759	-0.302
-80.0	-0.180	1.417	0.267	-1.5	0.219	0.008	-0.120	50.0	0.868	0.882	-0.327
-75.0	-0.266	1.358	0.267	-1.0	0.283	0.008	-0.122	55.0	0.789	0.997	-0.350
-70.0	-0.351	1.299	0.267	-0.5	0.346	0.008	-0.124	60.0	0.711	1.113	-0.373
-65.0	-0.424	1.206	0.260	0.0	0.408	0.008	-0.126	65.0	0.606	1.206	-0.394
-60.0	-0.497	1.113	0.254	0.5	0.470	0.008	-0.127	70.0	0.502	1.299	-0.415
-55.0	-0.552	0.997	0.244	1.0	0.533	0.008	-0.129	75.0	0.380	1.358	-0.432
-50.0	-0.607	0.882	0.235	1.5	0.595	0.008	-0.130	80.0	0.257	1.417	-0.450
-45.0	-0.648	0.759	0.226	2.0	0.658	0.008	-0.131	85.0	0.129	1.435	-0.463
-40.0	-0.681	0.635	0.220	2.5	0.721	0.008	-0.133	90.0	0.000	1.453	-0.476
-38.0	-0.693	0.587	0.219	3.0	0.782	0.008	-0.134	95.0	-0.090	1.435	-0.484
-36.0	-0.704	0.539	0.219	3.5	0.843	0.008	-0.135	100.0	-0.180	1.417	-0.493
-34.0	-0.714	0.492	0.221	4.0	0.904	0.008	-0.136	105.0	-0.266	1.358	-0.493
-32.0	-0.725	0.447	0.224	4.5	0.964	0.008	-0.136	110.0	-0.351	1.299	-0.492
-30.0	-0.737	0.403	0.229	5.0	1.024	0.009	-0.137	115.0	-0.424	1.206	-0.486
-28.0	-0.749	0.361	0.237	5.5	1.083	0.009	-0.137	120.0	-0.497	1.113	-0.480
-26.0	-0.705	0.320	0.248	6.0 C F	1.141	0.009	-0.138	125.0	-0.552	0.997	-0.470
-24.0	-0.783	0.282	0.204	0.0	1.195	0.009	-0.137	130.0	-0.607	0.882	-0.401
-22.0	-0.812	0.240	0.240 0.187	7.0 7 E	1.248	0.010	-0.137	135.0	-0.044	0.759	-0.454
-20.0	-0.847	0.210	0.167	1.0	1.209	0.011	-0.134	140.0	-0.081	0.055	-0.440
-19.0	-0.800	0.192 0.175	0.108	0.U 0 E	1.330 1.247	0.011	-0.152	140.0	-0.709	0.319	-0.451
-16.0	-0.883	0.175 0.157	0.129	0.0	1.347	0.015 0.015	-0.127	155.0	-0.757	0.405	-0.433
-17.0	-0.901	0.137 0.130	0.100 0.070	9.0	1.305	0.015	-0.123	160.0	-0.714	0.310	-0.478
15.0	-0.919	0.109	0.070	9.0 10.0	1 206	0.020	-0.120 0 199	165.0	0.090	0.230 0.179	0.500
-10.0 1/ 0	0.930	0.121	0.041	10.0	1.000	0.030	-0.120 0 199	170.0	0.245	0.115	0.500
-14.0	-0.994	0.103	_0.012	11.0	1.201 1.156	0.040	-0.122	175.0	-0.345	0.110	-0.500
-13.0 _13.0	-0.903	0.094	-0.002	11.0	1 122	0.000	-0.121	180.0	0.173	0.007	-0.200 0.000
-19.5	-0.972	0.005 0.075	-0.017	12.0	1 100	0.039	-0.117	100.0	0.000	0.000	0.000
-12.0	-0.949	0.064	-0.031	12.0 12.5	1.103	0.070	-0.109				

Table 33: Airfoil aerodynamic coefficients - DU91-W2-250

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.0	0.000	0.000	0.000	-11.5	-0.641	0.055	0.048	13.0	1.510	0.062	-0.127
-175.0	0.250	0.038	0.200	-11.0	-0.626	0.049	0.028	13.5	1.460	0.076	-0.129
-170.0	0.501	0.075	0.400	-10.5	-0.610	0.042	0.008	14.0	1.410	0.089	-0.130
-165.0	0.655	0.124	0.150	-10.0	-0.594	0.036	-0.012	15.0	1.340	0.103	-0.132
-160.0	0.809	0.172	-0.099	-9.5	-0.579	0.029	-0.031	16.0	1.300	0.116	-0.133
-155.0	0.764	0.269	-0.066	-9.0	-0.563	0.022	-0.051	17.0	1.260	0.130	-0.135
-150.0	0.720	0.365	-0.033	-8.5	-0.536	0.017	-0.069	18.0	1.200	0.143	-0.137
-145.0	0.696	0.484	-0.008	-8.0	-0.508	0.012	-0.086	19.0	1.179	0.156	-0.138
-140.0	0.671	0.602	0.018	-7.5	-0.437	0.010	-0.095	20.0	1.155	0.172	-0.148
-135.0	0.636	0.728	0.043	-7.0	-0.366	0.009	-0.103	22.0	1.116	0.206	-0.172
-130.0	0.601	0.854	0.069	-6.5	-0.304	0.008	-0.105	24.0	1.087	0.243	-0.192
-125.0	0.548	0.973	0.095	-6.0	-0.242	0.007	-0.107	26.0	1.064	0.282	-0.208
-120.0	0.494	1.091	0.122	-5.5	-0.180	0.007	-0.109	28.0	1.045	0.322	-0.223
-115.0	0.422	1.188	0.147	-5.0	-0.119	0.007	-0.110	30.0	1.029	0.365	-0.236
-110.0	0.350	1.284	0.172	-4.5	-0.058	0.007	-0.112	32.0	1.015	0.410	-0.248
-105.0	0.265	1.347	0.193	-4.0	0.003	0.006	-0.113	34.0	1.001	0.456	-0.259
-100.0	0.180	1.410	0.215	-3.5	0.064	0.006	-0.114	36.0	0.988	0.504	-0.270
-95.0	0.090	1.431	0.229	-3.0	0.124	0.006	-0.116	38.0	0.974	0.553	-0.280
-90.0	0.000	1.453	0.244	-2.5	0.185	0.006	-0.117	40.0	0.959	0.602	-0.291
-85.0	-0.090	1.431	0.250	-2.0	0.245	0.006	-0.118	45.0	0.915	0.728	-0.315
-80.0	-0.180	1.410	0.256	-1.5	0.305	0.006	-0.119	50.0	0.859	0.854	-0.338
-75.0	-0.265	1.347	0.254	-1.0	0.365	0.006	-0.120	55.0	0.783	0.973	-0.361
-70.0	-0.350	1.284	0.251	-0.5	0.425	0.006	-0.121	60.0	0.706	1.091	-0.383
-65.0	-0.422	1.188	0.243	0.0	0.485	0.006	-0.122	65.0	0.603	1.188	-0.403
-60.0	-0.494	1.091	0.235	0.5	0.545	0.006	-0.124	70.0	0.500	1.284	-0.423
-55.0	-0.548	0.973	0.223	1.0	0.604	0.006	-0.125	75.0	0.378	1.347	-0.440
-50.0	-0.601	0.854	0.212	1.5	0.664	0.007	-0.125	80.0	0.257	1.410	-0.457
-45.0	-0.641	0.728	0.202	2.0	0.723	0.007	-0.126	85.0	0.128	1.431	-0.470
-40.0	-0.671	0.602	0.194	2.5	0.782	0.007	-0.127	90.0	0.000	1.453	-0.483
-38.0	-0.682	0.553	0.192	3.0	0.841	0.007	-0.128	95.0	-0.090	1.431	-0.489
-36.0	-0.691	0.504	0.191	3.5	0.900	0.007	-0.129	100.0	-0.180	1.410	-0.495
-34.0	-0.701	0.456	0.191	4.0	0.959	0.007	-0.130	105.0	-0.265	1.347	-0.493
-32.0	-0.710	0.410	0.193	4.5	1.017	0.007	-0.131	110.0	-0.350	1.284	-0.491
-30.0	-0.720	0.365	0.196	5.0	1.075	0.007	-0.131	115.0	-0.422	1.188	-0.483
-28.0	-0.731	0.322	0.203	5.5	1.132	0.007	-0.132	120.0	-0.494	1.091	-0.474
-26.0	-0.745	0.282	0.212	6.0	1.188	0.008	-0.133	125.0	-0.548	0.973	-0.463
-24.0	-0.701	0.243	0.225	6.5 7.0	1.242	0.008	-0.133	130.0	-0.601	0.854	-0.452
-22.0	-0.781	0.200	0.243	7.0	1.291	0.009	-0.132	135.0	-0.030	0.728	-0.442
-20.0	-0.809	0.172	0.209	1.5	1.333	0.011	-0.130	140.0	-0.071	0.602	-0.433
-19.0	-0.825	0.156	0.286	8.0	1.373	0.012	-0.128	145.0	-0.696	0.484	-0.435
-18.0	-0.820	0.141	0.280	8.5	1.412	0.015	-0.120	150.0	-0.720	0.305	-0.430
-17.0	-0.814	0.126	0.200	9.0	1.401	0.015	-0.124	160.0	-0.704	0.209 0.179	-0.472
-10.0	-0.762	0.110	0.227	9.0 10.0	1.409	0.010 0.017	-0.122	165.0	-0.009	0.172	-0.009 0 504
-10.0 14.0	-0.791	0.102	0.187 0.147	10.0 10 5	1.510	0.017	-0.122	100.0 170.0	-0.039	0.120	-0.004 0 500
-14.0 19 5	-0.720	0.000	0.147	10.0	1.042	0.010	-0.122	175.0	-0.409	0.070	0.000
-13.0 _13.0	-0.704	0.062 0.075	0.127 0.108	11.0	1 580	0.020	-0.122	180.0	-0.233 0.000	0.039	-0.200 0.000
-12.5	-0.000	0.075	0.100	12.0	1.580 1.587	0.022	-0.122	100.0	0.000	0.000	0.000
-12.0	-0.657	0.062	0.068	12.0 12.5	1.549	0.049	-0.125				

Table 34: Airfoil aerodynamic coefficients - DU08-W-210

A.3 Blade Structure

Table 35: Position in respect to blade pitch axis of the structural components of the blade - Part I.

m	First	Second	Spar Caps	Spar Caps	Extension of the	Extension of the
1	Shear Web	Shear Web	towards LE	towards TE	Reinf. at LE	Reinf. at TE
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00	[-]	[-]	[-]	[-]	[-]	[-]
0.08	[-]	[-]	[-]	[-]	[-]	[-]
0.10	-257.6	342.4	-357.6	442.4	89.7	474.3
0.12	-252.2	347.8	-352.2	447.8	89.7	459.1
0.14	-246.9	353.1	-346.9	453.1	89.7	436.3
0.16	-241.5	358.5	-341.5	458.5	89.7	403.8
0.18	-236.2	363.8	-336.2	463.8	89.7	366.4
0.20	-233.5	366.5	-333.5	466.5	89.7	357.1
0.22	-228.2	371.8	-328.2	471.8	89.7	347.6
0.24	-222.8	377.2	-322.8	477.2	89.7	338.1
0.26	-217.5	382.5	-317.5	482.5	88.1	328.6
0.28	-212.1	387.9	-312.1	487.9	86.5	319.0
0.30	-209.4	390.6	-309.4	490.6	85.7	314.3
0.32	-204.1	395.9	-304.1	495.9	84.1	304.8
0.34	-198.7	401.3	-298.7	501.3	82.5	295.2
0.36	-193.4	406.6	-293.4	506.6	81.0	285.7
0.38	-188.0	412.0	-288.0	512.0	79.4	276.2
0.40	-185.4	414.6	-285.4	514.6	78.6	271.4
0.42	-180.0	420.0	-280.0	520.0	77.0	261.9
0.44	-174.7	425.3	-274.7	525.3	75.4	252.4
0.46	-169.3	430.7	-269.3	530.7	73.8	242.9
0.48	-164.0	436.0	-264.0	536.0	72.2	233.3
0.50	-161.3	438.7	-261.3	538.7	71.4	228.6
0.52	-155.9	444.1	-255.9	544.1	69.8	219.0
0.54	-150.6	449.4	-250.6	549.4	68.3	209.5
0.56	-145.2	454.8	-245.2	554.8	66.7	200.0
0.58	-139.9	460.1	-239.9	560.1	65.1	190.5
0.60	-137.2	462.8	-237.2	562.8	64.3	185.7

n	First	Second	Spar Caps	Spar Caps	Extension of the	Extension of the
''	Shear Web	Shear Web	towards LE	towards TE	Reinf. at LE	Reinf. at TE
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0.62	-131.8	468.2	-231.8	568.2	62.7	176.2
0.64	-126.5	473.5	-226.5	573.5	61.1	166.7
0.66	-121.1	478.9	-221.1	578.9	59.5	157.1
0.68	-115.8	484.2	-215.8	584.2	57.9	147.6
0.70	-113.1	486.9	-213.1	586.9	57.1	142.9
0.72	-107.8	492.2	-207.8	592.2	54.2	134.7
0.74	-102.4	497.6	-202.4	597.6	49.0	128.8
0.76	-97.1	502.9	-197.1	602.9	43.9	122.8
0.78	-91.7	508.3	-191.7	608.3	39.2	116.3
0.80	-89.0	511.0	-189.0	611.0	37.1	112.9
0.82	-83.7	516.3	-183.7	616.3	[-]	[-]
0.84	-78.3	521.7	-178.3	621.7	[-]	[-]
0.86	-73.0	527.0	-173.0	627.0	[-]	[-]
0.88	-67.6	532.4	-167.6	632.4	[-]	[-]
0.90	-65.0	535.0	-165.0	635.0	[-]	[-]
0.92	-59.6	540.4	-159.6	640.4	[-]	[-]
0.94	-54.3	545.7	-154.3	645.7	[-]	[-]
0.96	[-]	[-]	[-]	[-]	[-]	[-]
1.00	[-]	[-]	[-]	[-]	[-]	[-]

Table 36: Position in respect to blade pitch axis of the structural components of the blade - Part II.

~	Outer	Spar	Shear	LE	TE
η	Shell Skin	Caps	Webs Skin	Reinforcement	Reinforcement
[-]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00	65.00	[-]	[-]	[-]	[-]
0.01	60.00	[-]	[-]	[-]	[-]
0.02	55.00	[-]	[-]	[-]	[-]
0.03	50.00	[-]	[-]	[-]	[-]
0.04	45.71	[-]	[-]	[-]	[-]
0.05	41.43	[-]	[-]	[-]	[-]
0.06	37.14	[-]	[-]	[-]	[-]
0.07	32.86	[-]	[-]	[-]	[-]
0.08	28.57	[-]	[-]	[-]	[-]
0.10	20.00	9.93	1.00	3.10	1.18
0.12	16.87	15.95	1.08	3.19	2.24
0.14	13.74	21.96	1.16	3.27	3.30
0.16	10.60	27.97	1.25	3.35	4.37
0.18	7.47	33.99	1.33	3.44	5.43
0.20	4.34	40.00	1.41	3.52	6.49
0.22	3.74	44.76	1.61	3.26	6.69
0.24	3.15	49.52	1.82	2.99	6.88
0.26	2.56	54.28	2.02	2.73	7.07
0.28	1.96	59.04	2.22	2.46	7.26
0.30	1.37	63.80	2.42	2.20	7.45
0.32	1.34	61.22	2.49	2.06	7.32
0.34	1.30	58.64	2.56	1.92	7.19
0.36	1.27	56.05	2.64	1.79	7.05
0.38	1.24	53.47	2.71	1.65	6.92
0.40	1.21	50.89	2.78	1.51	6.79
0.42	1.16	50.46	2.89	1.45	7.20
0.44	1.12	50.03	3.01	1.39	7.61
0.46	1.08	49.59	3.12	1.32	8.02
0.48	1.04	49.16	3.23	1.26	8.43
0.50	1.00	48.73	3.35	1.20	8.84
0.52	1.00	47.23	3.45	1.25	7.67
0.54	1.00	45.74	3.56	1.30	6.50
0.56	1.00	44.24	3.67	1.35	5.33
0.58	1.00	42.74	3.78	1.40	4.16
0.60	1.00	41.24	3.89	1.45	2.99
0.62	1.00	38.84	3.88	1.42	2.59
0.64	1.00	36.44	3.88	1.40	2.20
0.66	1.00	34.03	3.88	1.38	1.80
0.68	1.00	31.63	3.88	1.36	1.40
0.70	1.00	29.22	3.87	1.34	1.00
0.72	1.02	29.39	3.64	1.43	1.15
0.74	1.04	29.56	3.40	1.52	1.29
0.76	1.06	29.73	3.17	1.61	1.44
0.78	1.07	29.89	2.93	1.71	1.59
0.80	1.09	30.06	2.69	1.80	1.73

Table 37: Thickness of the structural components of the blade - Part I.

n	Outer	Spar	Shear	LE	TE
${ m Shell}'{ m Skin}$	Caps	Webs Skin	Reinforcement	Reinforcement	
[-]	[mm]	[mm]	[mm]	[mm]	[mm]
0.82	1.07	24.48	2.41	[-]	[-]
0.84	1.06	18.90	2.13	[-]	[-]
0.86	1.04	13.33	1.85	[-]	[-]
0.88	1.02	7.75	1.57	[-]	[-]
0.90	1.00	2.17	1.29	[-]	[-]
0.92	1.00	2.09	1.28	[-]	[-]
0.94	1.00	2.00	1.27	[-]	[-]
0.96	1.00	[-]	[-]	[-]	[-]
0.98	1.00	[-]	[-]	[-]	[-]
1.00	1.00	[-]	[-]	[-]	[-]

Table 38: Thickness of the structural components of the blade - Part II.

	TE	LE	LE	TE	First	Second
η	\mathbf{SS}	\mathbf{SS}	\mathbf{PS}	\mathbf{PS}	Shear Web	Shear Web
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00	[-]	[-]	[-]	[-]	[-]	[-]
0.03	[-]	[-]	[-]	[-]	[-]	[-]
0.04	1.29	0.71	0.14	1.29	6.14	7.00
0.05	2.57	1.43	0.29	2.57	12.29	14.00
0.06	3.86	2.14	0.43	3.86	18.43	21.00
0.07	5.14	2.86	0.57	5.14	24.57	28.00
0.08	6.43	3.57	0.71	6.43	30.71	35.00
0.10	9.00	5.00	1.00	9.00	43.00	49.00
0.12	16.20	7.00	3.40	14.60	41.00	47.00
0.14	23.40	9.00	5.80	20.20	39.00	45.00
0.16	30.60	11.00	8.20	25.80	37.00	43.00
0.18	37.80	13.00	10.60	31.40	35.00	41.00
0.20	45.00	15.00	13.00	37.00	33.00	39.00
0.22	48.20	14.20	12.60	43.80	32.20	37.80
0.24	51.40	13.40	12.20	50.60	31.40	36.60
0.26	54.60	12.60	11.80	57.40	30.60	35.40
0.28	57.80	11.80	11.40	64.20	29.80	34.20
0.30	61.00	11.00	11.00	71.00	29.00	33.00
0.32	60.60	10.60	10.60	68.20	28.20	31.80
0.34	60.20	10.20	10.20	65.40	27.40	30.60
0.36	59.80	9.80	9.80	62.60	26.60	29.40
0.38	59.40	9.40	9.40	59.80	25.80	28.20
0.40	59.00	9.00	9.00	57.00	25.00	27.00
0.42	55.40	8.60	9.00	51.80	23.80	25.40
0.44	51.80	8.20	9.00	46.60	22.60	23.80
0.46	48.20	7.80	9.00	41.40	21.40	22.20
0.48	44.60	7.40	9.00	36.20	20.20	20.60
0.50	41.00	7.00	9.00	31.00	19.00	19.00
0.52	39.40	7.00	9.00	29.00	18.20	17.80
0.54	37.80	7.00	9.00	27.00	17.40	16.60
0.56	36.20	7.00	9.00	25.00	16.60	15.40
0.58	34.60	7.00	9.00	23.00	15.80	14.20
0.60	33.00	7.00	9.00	21.00	15.00	13.00
0.62	30.60	7.00	8.60	19.00	14.60	12.20
0.64	28.20	7.00	8.20	17.00	14.20	11.40
0.66	25.80	7.00	7.80	15.00	13.80	10.60
0.68	23.40	7.00	7.40	13.00	13.40	9.80
0.70	21.00	7.00	7.00	11.00	13.00	9.00
0.72	19.40	7.00	7.00	10.20	12.60	8.60
0.74	17.80	7.00	7.00	9.40	12.20	8.20
0.76	16.20	7.00	7.00	8.60	11.80	7.80
0.78	14.60	7.00	7.00	7.80	11.40	7.40
0.80	13.00	7.00	7.00	7.00	11.00	7.00
0.82	13.40	6.60	6.60	7.40	10.60	6.60
0.84	13.80	6.20	6.20	7.80	10.20	6.20
0.86	14.20	5.80	5.80	8.20	9.80	5.80
0.88	14.60	5.40	5.40	8.60	9.40	5.40
0.90	15.00	5.00	5.00	9.00	9.00	5.00
0.92	10.00	4.00	4.00	6.00	7.00	4.00
0.94	5.00	3.00	3.00	3.00	5.00	3.00
0.96	[-]	[-]	[-]	[-]	[-]	[-]
1.00	[-]	[-]	[-]	[-]	[-]	[-]

Table 39: Thickness of the core in the sandwich panels of the blade.

Table 40: Mass and stiffness properties of the blade - Part I.

η	T_{11}	T_{22}	$\mathbf{E}\mathbf{A}$	E_{11}	E_{22}	GJ	Mass
[-]	[N]	[N]	[N]	$[Nm^2]$	$[Nm^2]$	$[Nm^2]$	[kg/m]
0.00	2.44E + 09	2.44E + 09	1.13E + 10	9.05E + 09	9.05E + 09	7.82E + 09	9.64E + 02
0.01	2.25E + 09	2.25E + 09	$1.04E{+}10$	8.40E + 09	8.40E + 09	7.26E + 09	8.92E + 02
0.02	2.07E + 09	2.07E + 09	9.58E + 09	7.75E + 09	7.75E + 09	6.69E + 09	8.20E + 02
0.03	1.90E + 09	1.88E + 09	8.75E + 09	7.10E + 09	7.20E + 09	6.18E + 09	7.50E + 02
0.04	1.79E + 09	1.70E + 09	8.09E + 09	6.58E + 09	6.94E + 09	5.83E + 09	7.03E + 02
0.05	1.70E + 09	1.52E + 09	7.46E + 09	6.07E + 09	6.81E + 09	5.54E + 09	6.58E + 02
0.06	1.62E + 09	1.33E + 09	6.85E + 09	5.58E + 09	6.80E + 09	5.28E + 09	6.15E + 02
0.07	1.52E + 09	1.12E + 09	6.15E + 09	4.85E + 09	6.55E + 09	4.79E + 09	5.65E + 02
0.08	1.39E + 09	9.17E + 08	5.41E + 09	4.05E + 09	6.16E + 09	4.18E + 09	5.11E + 02
0.10	1.10E + 09	5.21E + 08	5.26E + 09	3.33E + 09	6.86E + 09	2.74E + 09	4.83E + 02
0.12	1.03E + 09	3.96E + 08	5.11E + 09	2.86E + 09	7.03E + 09	2.20E + 09	4.53E + 02
0.14	9.14E + 08	3.19E + 08	4.84E + 09	2.59E + 09	6.66E + 09	1.83E + 09	4.16E + 02
0.16	7.49E + 08	2.47E + 08	4.52E + 09	2.36E + 09	5.73E + 09	1.40E + 09	3.78E + 02
0.18	5.54E + 08	1.79E + 08	4.32E + 09	2.19E + 09	5.15E + 09	9.55E + 08	3.48E + 02
0.20	3.37E + 08	1.23E + 08	4.12E + 09	2.06E + 09	4.48E + 09	5.51E + 08	3.17E + 02
0.22	2.96E + 08	1.16E + 08	4.29E + 09	2.10E + 09	4.29E + 09	4.48E + 08	3.24E + 02
0.24	2.54E + 08	1.09E + 08	4.44E + 09	2.12E + 09	3.85E + 09	3.50E + 08	3.28E + 02
0.26	2.10E + 08	1.04E + 08	4.61E + 09	2.14E + 09	3.43E + 09	2.64E + 08	3.34E + 02
0.28	1.64E + 08	9.92E + 07	4.78E + 09	2.15E + 09	3.04E + 09	1.92E + 08	3.40E + 02
0.30	1.17E + 08	9.45E + 07	4.97E + 09	2.14E + 09	2.69E + 09	1.32E + 08	3.46E + 02
0.32	1.14E + 08	9.31E + 07	4.77E + 09	1.94E + 09	2.48E + 09	1.18E + 08	3.33E + 02
0.34	1.11E + 08	9.11E + 07	4.57E + 09	1.73E + 09	2.29E + 09	1.08E + 08	3.19E + 02
0.36	1.07E + 08	8.89E + 07	4.37E + 09	1.54E + 09	2.09E + 09	9.77E + 07	3.06E + 02
0.38	1.04E + 08	8.64E + 07	4.16E + 09	1.35E + 09	1.87E + 09	8.81E + 07	2.92E + 02
0.40	9.99E + 07	8.38E + 07	3.96E + 09	1.18E + 09	1.67E + 09	7.90E + 07	2.79E + 02
0.42	9.54E + 07	8.18E + 07	3.92E + 09	1.05E + 09	1.54E + 09	7.08E + 07	2.71E + 02
0.44	9.11E + 07	7.94E + 07	3.87E + 09	9.35E + 08	1.41E + 09	6.31E + 07	2.63E+02
0.46	8.69E + 07	7.68E + 07	3.83E + 09	8.23E + 08	1.27E + 09	5.60E + 07	2.55E + 02
0.48	8.30E + 07	7.40E + 07	3.78E + 09	7.18E + 08	1.14E + 09	4.95E + 07	2.47E + 02
0.50	7.90E + 07	7.12E + 07	3.74E + 09	6.23E + 08	1.04E + 09	4.38E + 07	2.39E + 02
0.52	8.33E + 07	6.83E + 07	3.60E + 09	5.25E + 08	8.37E + 08	3.90E + 07	2.29E+02
0.54	9.01E + 07	6.55E + 07	3.46E + 09	4.41E + 08	6.76E + 08	3.49E + 07	2.19E + 02
0.56	1.00E + 08	6.29E + 07	3.32E + 09	3.69E + 08	5.46E + 08	3.13E + 07	2.10E + 02
0.58	1.15E + 08	6.10E + 07	3.19E + 09	3.07E + 08	4.41E + 08	2.80E + 07	2.01E+02
0.60	1.34E + 08	5.99E + 07	3.06E + 09	2.56E + 08	3.61E + 08	2.51E + 07	1.91E + 02
0.62	1.44E + 08	5.55E+07	2.88E+09	2.11E + 08	3.11E + 08	2.22E+07	1.81E + 02
0.64	1.54E + 08	5.15E + 07	2.70E+09	1.74E + 08	2.70E + 08	1.97E + 07	1.70E + 02
0.66	1.61E + 08	4.78E + 07	2.52E+09	1.44E + 08	2.35E+08	1.76E + 07	1.60E + 02
0.68	1.65E + 08	4.45E + 07	2.34E+09	1.20E + 08	2.06E + 08	1.57E + 07	1.50E + 02
0.70	1.63E + 08	4.13E + 07	2.17E+09	9.97E + 07	1.81E + 08	1.41E + 07	1.39E+02
0.72	1.66E + 08	3.67E + 07	2.17E + 09	8.91E + 07	1.78E + 08	1.26E + 07	1.39E + 02
0.74	1.68E + 08	3.28E + 07	2.18E+09	8.02E + 07	1.75E+08	1.14E + 07	1.38E+02
0.76	1.69E + 08	2.93E + 07	2.19E+09	7.28E + 07	1.73E+08	1.03E + 07	1.37E+02
0.78	1.71E + 08	2.63E + 07	2.20E+09	0.70E + 07	1.72E + 08	9.37E+06	1.36E + 02
0.80	1.72E + 08	2.37E+07	2.21E + 09	6.26E + 07	1.72E + 08	8.64E + 06	$1.36E \pm 02$

η	T_{11}	T_{22}	$\mathbf{E}\mathbf{A}$	E_{11}	E_{22}	GJ	Mass
[-]	[N]	[N]	[N]	$[\mathrm{Nm}^2]$	$[\mathrm{Nm}^2]$	$[\mathrm{Nm}^2]$	[kg/m]
0.82	1.47E + 08	2.08E + 07	1.79E + 09	4.98E + 07	1.22E + 08	7.42E + 06	1.15E + 02
0.84	1.20E + 08	1.80E + 07	1.40E + 09	3.78E + 07	$9.91E{+}07$	6.38E + 06	9.67E + 01
0.86	9.27E + 07	$1.51E{+}07$	1.01E + 09	2.61E + 07	7.58E + 07	5.23E + 06	$7.79E{+}01$
0.88	6.46E + 07	$1.19E{+}07$	6.24E + 08	1.47E + 07	5.16E + 07	3.89E + 06	$5.90E{+}01$
0.90	3.55E + 07	8.22E + 06	2.33E + 08	4.44E + 06	2.63E + 07	2.27E + 06	$4.00E{+}01$
0.92	3.23E + 07	7.00E + 06	$2.19E{+}08$	3.34E + 06	2.15E + 07	1.76E + 06	3.68E + 01
0.94	2.82E + 07	5.35E + 06	2.03E + 08	2.14E + 06	1.66E + 07	1.18E + 06	$3.34E{+}01$
0.96	1.59E + 07	1.02E + 06	$4.59E{+}07$	2.38E + 05	4.08E + 06	3.70E + 05	$2.51E{+}01$
0.98	1.02E + 07	6.54E + 05	2.96E + 07	6.33E + 04	$1.09E{+}06$	9.82E + 04	$2.38E{+}01$
1.00	$3.09E{+}06$	$1.96\mathrm{E}{+}05$	$8.96E{+}06$	$1.74\mathrm{E}{+03}$	$3.03E{+}04$	$2.70\mathrm{E}{+}03$	$2.20\mathrm{E}{+}01$

Table 41: Mass and stiffness properties of the blade - Part II.

η	Centroid $\rm X_s$	Centroid $\rm Y_{s}$	Mass Center x	Mass Center y	$\Delta \Theta$	J3	J1	J2
[-]	[mm]	[mm]	[mm]	[mm]	[deg]	$[\rm kgm^2/m]$	$[\rm kgm^2/m]$	$[\mathrm{kgm}^2/\mathrm{m}]$
0.00	-5.14E-05	2.15E-04	-5.14E-05	2.15E-04	7.97E + 01	1.53E + 03	7.66E + 02	7.66E + 02
0.01	-9.10E-03	2.15E-04	-9.10E-03	2.15E-04	7.98E + 01	1.42E + 03	7.12E + 02	7.12E + 02
0.02	-1.82E-02	2.16E-04	-1.82E-02	2.16E-04	7.96E + 01	1.31E + 03	6.56E + 02	6.56E + 02
0.03	-3.79E-02	-4.81E-04	-3.79E-02	-4.81E-04	-2.91E + 00	1.21E + 03	6.02E + 02	6.10E + 02
0.04	-7.80E-02	-2.21E-03	-7.80E-02	-2.21E-03	-2.62E+00	$1.14E{+}03$	5.57E + 02	5.87E + 02
0.05	-1.37E-01	-4.94E-03	-1.37E-01	-4.94E-03	-2.42E+00	$1.09E{+}03$	5.14E + 02	5.77E + 02
0.06	-2.16E-01	-9.13E-03	-2.16E-01	-9.13E-03	-2.10E + 00	1.05E + 03	4.73E + 02	5.76E + 02
0.07	-2.90E-01	-1.46E-02	-2.90E-01	-1.46E-02	-1.66E + 00	9.65E + 02	4.11E + 02	5.54E + 02
0.08	-3.66E-01	-2.09E-02	-3.66E-01	-2.09E-02	-1.20E + 00	8.65E + 02	3.43E + 02	5.22E + 02
0.10	-6.00E-01	-5.68E-02	-6.25E-01	-6.05E-02	2.55E + 00	8.03E + 02	$2.53E{+}02$	5.50E + 02
0.12	-6.67E-01	-6.07E-02	-7.03E-01	-6.72E-02	3.21E + 00	7.45E + 02	2.04E + 02	5.41E + 02
0.14	-6.48E-01	-4.71E-02	-6.98E-01	-5.58E-02	2.82E + 00	6.64E + 02	1.74E + 02	4.90E + 02
0.16	-5.66E-01	-3.00E-02	-6.30E-01	-3.96E-02	2.14E + 00	5.53E + 02	1.47E + 02	4.06E + 02
0.18	-5.15E-01	-2.34E-02	-5.88E-01	-3.30E-02	2.66E + 00	4.71E + 02	1.26E + 02	3.45E + 02
0.20	-4.49E-01	-1.63E-02	-5.13E-01	-2.41E-02	3.23E + 00	3.85E + 02	1.09E + 02	2.75E + 02
0.22	-4.12E-01	-1.28E-02	-4.75E-01	-1.88E-02	3.09E + 00	3.69E + 02	1.08E + 02	2.61E + 02
0.24	-3.61E-01	-1.04E-02	-4.20E-01	-1.34E-02	2.39E + 00	3.38E + 02	1.07E + 02	2.31E + 02
0.26	-3.19E-01	-1.16E-02	-3.69E-01	-1.25E-02	2.22E + 00	3.08E + 02	1.06E + 02	2.03E + 02
0.28	-2.83E-01	-1.47E-02	-3.23E-01	-1.43E-02	3.04E + 00	2.79E + 02	1.04E + 02	1.75E + 02
0.30	-2.53E-01	-1.89E-02	-2.80E-01	-1.79E-02	5.82E + 00	2.51E + 02	1.03E + 02	1.48E + 02
0.32	-2.54E-01	-2.27E-02	-2.80E-01	-2.12E-02	6.00E + 00	2.30E + 02	9.31E + 01	1.37E + 02
0.34	-2.57E-01	-2.80E-02	-2.83E-01	-2.63E-02	6.80E + 00	2.10E + 02	8.33E + 01	1.26E + 02
0.36	-2.59E-01	-3.20E-02	-2.83E-01	-3.02E-02	7.45E + 00	1.89E + 02	7.39E + 01	1.15E + 02
0.38	-2.60E-01	-3.47E-02	-2.82E-01	-3.29E-02	7.93E + 00	1.68E + 02	$6.50E{+}01$	1.03E + 02
0.40	-2.58E-01	-3.62E-02	-2.79E-01	-3.44E-02	7.86E + 00	1.48E + 02	5.66E + 01	9.18E + 01
0.42	-2.59E-01	-3.67E-02	-2.77E-01	-3.51E-02	7.61E + 00	1.34E + 02	5.07E + 01	8.37E + 01
0.44	-2.59E-01	-3.64E-02	-2.73E-01	-3.49E-02	7.30E + 00	1.20E + 02	$4.49E{+}01$	7.55E + 01
0.46	-2.58E-01	-3.53E-02	-2.69E-01	-3.40E-02	6.88E + 00	1.07E + 02	$3.95E{+}01$	6.76E + 01
0.48	-2.56E-01	-3.39E-02	-2.65E-01	-3.27E-02	6.32E + 00	9.45E + 01	3.44E + 01	6.01E + 01
0.50	-2.54E-01	-3.22E-02	-2.61E-01	-3.12E-02	5.36E + 00	8.38E + 01	2.97E + 01	5.40E + 01
0.52	-2.40E-01	-3.06E-02	-2.47E-01	-2.98E-02	6.06E + 00	$6.91E{+}01$	$2.51E{+}01$	$4.40E{+}01$
0.54	-2.27E-01	-2.36E-02	-2.33E-01	-2.29E-02	7.34E + 00	5.70E + 01	2.11E + 01	$3.59E{+}01$
0.56	-2.16E-01	-1.55E-02	-2.22E-01	-1.50E-02	8.80E + 00	4.69E + 01	1.76E + 01	2.93E + 01
0.58	-2.06E-01	-7.92E-03	-2.12E-01	-7.53E-03	1.02E + 01	3.87E + 01	1.47E + 01	2.40E + 01
0.60	-1.96E-01	-1.08E-03	-2.02E-01	-8.10E-04	$1.13E{+}01$	3.22E + 01	$1.23E{+}01$	$1.99E{+}01$
0.62	-1.95E-01	5.28E-03	-2.01E-01	5.44E-03	9.50E + 00	$2.73E{+}01$	1.01E + 01	1.72E + 01
0.64	-1.96E-01	1.07E-02	-2.00E-01	1.08E-02	8.00E + 00	$2.33E{+}01$	8.33E + 00	1.50E + 01
0.66	-1.96E-01	1.51E-02	-2.00E-01	1.51E-02	6.68E + 00	2.00E + 01	6.90E + 00	1.31E + 01
0.68	-1.97E-01	1.87E-02	-2.01E-01	1.86E-02	5.62E + 00	$1.73E{+}01$	5.75E + 00	1.16E + 01
0.70	-1.97E-01	2.22E-02	-2.00E-01	2.21E-02	4.54E + 00	$1.51E{+}01$	4.78E + 00	$1.03E{+}01$
0.72	-2.01E-01	2.59E-02	-2.04E-01	2.57 E-02	3.42E + 00	1.42E + 01	4.26E + 00	9.96E + 00
0.74	-2.06E-01	2.90E-02	-2.09E-01	2.88E-02	2.66E + 00	$1.35E{+}01$	3.83E + 00	9.72E + 00
0.76	-2.11E-01	3.19E-02	-2.14E-01	3.16E-02	$2.13E{+}00$	1.30E + 01	3.47E + 00	9.52E + 00
0.78	-2.16E-01	3.43E-02	-2.19E-01	3.40E-02	1.76E + 00	1.26E + 01	$3.19E{+}00$	9.37E + 00
0.80	-2.19E-01	3.62E-02	-2.22E-01	3.59E-02	1.51E + 00	1.23E + 01	2.98E + 00	9.31E + 00

Table 42: Mass and stiffness properties of the blade - Part III.

Table 43: Mass and stiffness properties of the blade - Part IV.

η	Centroid X_s	Centroid Y_s	Mass Ctr $\mathbf x$	Mass Ctr y	$\Delta \Theta$	J3	J1	J2
[-]	[mm]	[mm]	[mm]	[mm]	[deg]	$[{\rm kg}~{\rm m}^2/{\rm m}]$	$[{\rm kg}\;m^2/m]$	$[{\rm kg}~m^2/m]$
0.82	-2.20E-01	3.82E-02	-2.23E-01	3.79E-02	1.82E + 00	9.24E + 00	2.38E + 00	6.86E + 00
0.84	-2.27E-01	3.93E-02	-2.31E-01	3.89E-02	1.55E + 00	7.54E + 00	1.82E + 00	5.72E + 00
0.86	-2.35E-01	3.95E-02	-2.40E-01	3.90E-02	1.13E + 00	5.81E + 00	1.27E + 00	4.55E + 00
0.88	-2.44E-01	3.86E-02	-2.51E-01	3.79E-02	4.97E-01	4.02E + 00	7.34E-01	3.29E + 00
0.90	-2.63E-01	3.54E-02	-2.72E-01	3.43E-02	-5.02E-01	2.19E + 00	2.50E-01	1.95E + 00
0.92	-2.59E-01	3.27E-02	-2.64E-01	3.16E-02	-7.22E-01	1.74E + 00	1.88E-01	1.55E + 00
0.94	-2.52E-01	2.89E-02	-2.52E-01	2.77 E-02	-9.71E-01	1.26E + 00	1.20E-01	1.14E + 00
0.96	-2.24E-01	1.90E-02	-2.24E-01	1.90E-02	-1.13E+00	3.66E-01	2.02E-02	3.46E-01
0.98	-1.46E-01	1.23E-02	-1.46E-01	1.23E-02	-1.14E + 00	9.75E-02	5.36E-03	9.22E-02
1.00	-4.70E-02	3.78E-03	-4.70E-02	3.78E-03	-1.20E + 00	2.72E-03	1.47E-04	2.57E-03

A.4 Nacelle Assembly

D /	37.1
Data	Value
Hub Inertia About Shaft Axis	60131.00 kg m^2
Hub Inertia Off Shaft Axis	300650.00 kg m^2
Axial Stiffness	1E+12 N
Bending and Torsional Stiffness	1E+12 N m ²
Nacelle Inertia About Yaw Axis	$1210200.00 \text{ kg m}^2$
Nacelle Inertia Rolling	177200.00 kg m^2
Nacelle Inertia Nodding	370330.00 kg m^2
Nacelle Length	12.00 m
Nacelle Width	6.00 m
Nacelle Height	$5.00 \mathrm{~m}$
Location CoG Nacelle Downwind of Yaw Axis	$0.10 \mathrm{~m}$
Location CoG Nacelle Above the Yaw Bearing	$0.58 \mathrm{~m}$
Vertical Distance Along Yaw Axis from Yaw Bearing to Shaft	2.00 m
Nacelle Drag Coefficient	0.5
Axial Stiffness	1E+12 N
Bending and Torsional Stiffness	$1E+12 \text{ N m}^2$

Table 44: Aeroelastic modeling of the nacelle of the land-based wind turbine.

A.5 Tower Structure

n	Wall	Outer	Section
η	Thickness	Diameter	Area
[-]	[mm]	[m]	$[m^2]$
0.00	56.97	5.99	1.06E + 00
0.10	56.97	5.93	1.05E + 00
0.10	50.47	5.93	9.32E-01
0.20	50.47	5.93	9.32E-01
0.20	46.64	5.93	8.62E-01
0.30	46.64	5.93	8.62E-01
0.30	39.35	5.93	7.28E-01
0.40	39.35	5.93	7.28E-01
0.40	33.54	5.93	6.21E-01
0.50	33.54	5.93	6.21E-01
0.50	28.01	5.93	5.19E-01
0.60	28.01	5.85	5.12E-01
0.60	23.57	5.85	4.31E-01
0.70	23.57	5.12	3.77E-01
0.70	23.74	5.12	3.80E-01
0.80	23.74	4.36	3.23E-01
0.80	22.41	4.36	3.05E-01
0.90	22.41	3.61	2.52E-01
0.90	26.74	3.61	3.01E-01
1.00	26.74	3.00	2.50E-01

Table 45: Structure of the tower of the land-based wind turbine.

Table 46:	Elastic	properties	of the	tower	of the	land-based	wind	turbine.

n	Mass	Axial	Bending	Torsional	Shear	Polar Moment
1	111455	Stiffness	Stiffness	Stiffness	Stiffness	of Inertia
[-]	$[\mathrm{kg}/\mathrm{m}^3]$	[N]	$[\mathrm{Nm}^2]$	$[\mathrm{Nm}^2]$	[N]	$[m^4]$
0.00	9.02E+03	$2.23E{+}11$	$9.80E{+}11$	7.54E + 11	$4.29E{+}10$	9.33E + 00
0.10	8.93E + 03	2.21E + 11	$9.51E{+}11$	$7.31E{+}11$	4.24E + 10	9.05E + 00
0.10	7.92E + 03	1.96E + 11	$8.45E{+}11$	$6.50E{+}11$	$3.76E{+}10$	8.05E + 00
0.20	7.92E + 03	1.96E + 11	8.45E + 11	$6.50E{+}11$	$3.76E{+}10$	8.05E + 00
0.20	7.33E + 03	1.81E + 11	7.82E + 11	$6.02E{+}11$	$3.48E{+}10$	7.45E + 00
0.30	7.33E + 03	1.81E + 11	7.82E + 11	$6.02E{+}11$	$3.48E{+}10$	7.45E + 00
0.30	6.19E + 03	$1.53E{+}11$	$6.63E{+}11$	$5.10E{+}11$	$2.94E{+}10$	6.31E + 00
0.40	6.19E + 03	$1.53E{+}11$	$6.63E{+}11$	$5.10E{+}11$	$2.94E{+}10$	6.31E + 00
0.40	5.28E + 03	$1.30E{+}11$	5.66E + 11	$4.36E{+}11$	$2.51E{+}10$	5.39E + 00
0.50	5.28E + 03	1.30E + 11	5.66E + 11	$4.36E{+}11$	$2.51E{+}10$	5.39E + 00
0.50	4.41E + 03	$1.09E{+}11$	$4.74E{+}11$	$3.65E{+}11$	$2.10E{+}10$	4.52E + 00
0.60	4.35E+03	$1.08E{+}11$	$4.56E{+}11$	$3.51E{+}11$	$2.07E{+}10$	4.34E + 00
0.60	3.67E + 03	$9.06E{+}10$	$3.85E{+}11$	$2.96E{+}11$	$1.74E{+}10$	3.66E + 00
0.70	3.21E + 03	7.92E + 10	$2.57E{+}11$	$1.97E{+}11$	$1.52E{+}10$	2.44E + 00
0.70	3.23E + 03	7.97E + 10	$2.59E{+}11$	$1.99E{+}11$	$1.53E{+}10$	2.46E + 00
0.80	2.75E+03	$6.79E{+}10$	$1.60E{+}11$	$1.23E{+}11$	$1.31E{+}10$	1.52E + 00
0.80	2.60E + 03	$6.42E{+}10$	$1.51E{+}11$	$1.16E{+}11$	$1.23E{+}10$	1.44E + 00
0.90	2.15E + 03	5.30E + 10	$8.52E{+}10$	$6.55E{+}10$	$1.02E{+}10$	8.11E-01
0.90	2.56E + 03	$6.32E{+}10$	$1.01E{+}11$	$7.79E{+}10$	$1.21E{+}10$	9.64E-01
1.00	2.12E+03	5.25E + 10	5.80E + 10	4.46E + 10	1.01E + 10	5.52 E-01

A.6 Loads Tables

Table 47: Load envelope at blade root. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

	Fx [N]	Fy [N]	Fz [N]	Mx [Nm]	My [Nm]	Mz [Nm]
Loade @ max Fx	3.08E±05	$2.47E \pm 05$	8 86E±05	1 12E±07	$1.03E \pm 07$	2 33E±04
Loads @ min Fx	$-2.86E\pm05$	-2.47 ± 00 -3.05 ± 04	$6.31E \pm 05$	$-1.70E \pm 0.06$	$-8.57E \pm 06$	$1.59E\pm05$
Loads @ max Fy	-2.00E+00	2.001+04 2.90E ± 05	-8 90E±04	-7.24E+06	$-2.53E \pm 06$	$1.69E \pm 05$
Loads @ min Fy	2.35E+04	$-5.94E \pm 05$	$8.84E \pm 05$	1.212+0.07	$3.16E \pm 06$	-1.02E + 05
Loads @ max Fz	$2.00 \pm 0.01 \pm 0.001$	-2.27E+05	1.13E+06	8.34E+06	6.34E+06	-5.97E + 04
Loads @ min Fz	-8.23E+04	1.33E+05	-1.84E+05	-3.67E + 0.06	-2.74E+00	4.95E+04
Loads @ max Mx	2.35E+04	-5.94E+05	$8.84E \pm 05$	1.90E+07	3.16E+06	-1.02E+05
Loads @ min Mx	-9.10E + 04	2.88E+05	-6.29E+04	-7.51E + 06	-2.80E+06	1.52E+05
Loads @ max My	3.83E+05	-1.12E+05	7.39E+05	4.88E+06	1.04E+07	-1.46E+05
Loads @ min My	$-2.86E \pm 05$	-3.05E+04	$6.31E \pm 05$	$-1.70E \pm 06$	-8.57E+06	1.59E+05
Loads @ max Mz	-1.09E+05	1.75E+05	-8.34E+04	-4.13E+06	-2.43E+06	2.00E+05
Loads @ min Mz	-1.19E + 05	-2.45E+05	4.75E + 05	7.04E+06	-1.48E+06	-3.28E + 05
Loads @ max Fxy	2.35E + 04	-5.94E + 05	8.84E + 05	1.90E + 07	3.16E + 06	-1.02E + 05
Loads @ max Mxy	2.35E + 04	-5.94E + 05	8.84E + 05	1.90E + 07	3.16E + 06	-1.02E+05
U	Fxv	Mxv	Blade	DLC	Time	Safety Factor
	[N]	[Nm]	[-]	[-]	[sec]	[-]
Loads @ max Fx	4.69E + 05	1.52E + 07	Blade 2	DLC13 13 m/s	266.4	1.35
Loads @ min Fx	2.88E + 05	8.74E + 06	Blade 1	DLC23 rated $+ 2 \text{ m/s}$	41.8	1.10
Loads @ max Fy	3.02E + 05	7.67E + 06	Blade 1	DLC62 60 deg	157.6	1.10
Loads @ min Fy	5.95E + 05	1.92E + 07	Blade 3	DLC13 9 m/s	211.5	1.35
Loads @ max Fz	3.03E + 05	1.05E + 07	Blade 2	DLC13 15 m/s	331.6	1.35
Loads @ min Fz	1.57E + 05	4.58E + 06	Blade 1	$DLC61 8 \deg$	131.7	1.10
Loads @ max Mx	5.95E + 05	1.92E + 07	Blade 3	DLC13 9 m/s	211.5	1.35
Loads @ min Mx	3.02E + 05	8.01E + 06	Blade 1	$DLC62 \ 60 \ deg$	443.0	1.10
Loads @ max My	3.99E + 05	1.15E + 07	Blade 3	DLC13 23 m/s	306.0	1.35
Loads @ min My	2.88E + 05	8.74E + 06	Blade 1	DLC23 rated + 2 m/s	41.8	1.10
Loads @ max Mz	2.06E + 05	4.79E + 06	Blade 3	DLC62 150 deg	156.2	1.10
Loads @ min Mz	2.73E + 05	7.19E + 06	Blade 1	DLC13 9 m/s	98.8	1.35
Loads @ max Fxy	5.95E + 05	$1.92E{+}07$	Blade 3	DLC13 9 m/s	211.5	1.35
Loads @ max Mxy	5.95E + 05	1.92E + 07	Blade 3	DLC13 9 m/s	211.5	1.35

	Fx	Fy	Fz	Mx	My	Mz
	[IN]	[IN]	[N]	[Nm]	[INm]	[Nm]
Loads @ max Fx	1.25E + 06	-6.61E + 04	-1.03E+06	5.89E + 06	3.24E + 06	4.43E + 06
Loads @ min Fx	-5.90E + 05	-1.65E + 04	-8.39E + 05	1.90E + 05	2.99E + 06	-3.46E + 06
Loads @ max Fy	-3.50E + 04	5.38E + 05	-7.27E + 05	3.94E + 03	2.89E + 06	1.22E + 06
Loads @ min Fy	6.18E + 04	-5.43E + 05	-6.53E + 05	-4.93E + 03	4.22E + 05	-1.33E + 06
Loads @ max Fz	1.15E + 05	5.47E + 03	-3.60E + 05	-2.04E+03	6.99E + 05	1.58E + 06
Loads @ min Fz	5.20E + 05	9.34E + 04	-1.37E + 06	3.04E + 06	8.55E + 05	2.02E + 06
Loads @ max Mx	9.31E + 05	2.20E + 03	-1.03E+06	6.03E + 06	-3.68E + 05	2.64E + 06
Loads @ min Mx	6.67E + 04	2.24E + 05	-5.97E + 05	-2.20E + 04	2.45E + 06	1.94E + 06
Loads @ max My	4.77E + 05	-6.81E + 04	-1.05E+06	$4.20 \text{E}{+}06$	$1.23E{+}07$	4.21E + 06
Loads @ min My	4.11E + 05	1.53E + 05	-9.30E + 05	4.22E + 06	-1.28E + 07	-1.22E + 06
Loads @ max Mz	7.49E + 05	4.61E + 01	-1.11E + 06	4.74E + 06	4.32E + 06	1.09E + 07
Loads @ min Mz	1.87E + 05	-5.57E + 04	-9.07E+05	4.24E + 06	-2.85E + 06	-1.17E + 07
Loads @ max Fxy	5.20E + 05	9.34E + 04	-1.37E + 06	3.04E + 06	8.55E + 05	2.02E + 06
Loads @ max Mxy	4.77E + 05	-6.81E + 04	-1.05E+06	$4.20 \text{E}{+}06$	$1.23E{+}07$	4.21E + 06
	Fxy	Mxy		DLC	Time	Safety Factor
	[N]	[Nm]		[-]	[sec]	[-]
Loads @ max Fx	1.03E + 06	5.49E + 06		DLC13 9 m/s	211.84	1.35
Loads @ min Fx	8.40E + 05	4.57E + 06		DLC23 rated $+ 2 \text{ m/s}$	42.18	1.10
Loads @ max Fy	9.04E + 05	3.14E + 06		$DLC62 - 120 \deg$	99.98	1.10
Loads @ min Fy	8.49E + 05	1.39E + 06		$DLC62 \ 60 \ deg$	99.38	1.10
Loads @ max Fz	3.60E + 05	1.72E + 06		DLC61 0 deg	147.00	1.10
Loads @ min Fz	1.37E + 06	2.20E + 06		DLC13 9 m/s	317.84	1.35
Loads @ max Mx	1.03E + 06	2.67E + 06		DLC13 11 m/s	387.58	1.35
Loads @ min Mx	6.37E + 05	3.12E + 06		DLC62 $-30 \deg$	140.98	1.10
Loads @ max My	1.05E + 06	1.30E + 07		DLC13 19 m/s	522.78	1.35
Loads @ min My	9.42E + 05	1.29E + 07		DLC13 17 m/s	214.78	1.35
Loads @ max Mz	1.11E + 06	1.17E + 07		DLC13 13 m/s	294.20	1.35
Loads @ min Mz	9.09E + 05	$1.20E{+}07$		DLC13 21 m/s	246.38	1.35
Loads @ max Fxy	1.37E + 06	2.20E + 06		DLC13 9 m/s	317.84	1.35
Loads @ max Mxy	$1.05\mathrm{E}{+}06$	$1.30E{+}07$		DLC13 19 m/s $$	522.78	1.35

Table 48: Load envelope at hub center. Safety factors already applied. Reference coordinate system: x - aligned with the shaft, pointing downwind, y - in the rotor plane, z - in the rotor plane.

	Fx [N]	Fy [N]	Fz	Mx [Nm]	My [Nm]	Mz [Nm]
Loads @ max Fx	1.17E+06	4.80E+04	-3.64E+06	5.98E+06	-3.24E+06	2.31E+06
Loads @ min Fx	-1.02E+06	-3.38E+04	-2.86E+06	-1.55E+05	-5.83E+06	-3.36E+06
Loads @ max Fy	1.90E + 05	$4.85E \pm 05$	-2.82E+06	$-1.49E \pm 06$	-1.83E+06	-1.53E+06
Loads @ min Fy	-4.26E + 04	-7.43E + 05	-2.75E+06	2.30E + 06	-3.24E+06	2.59E + 06
Loads @ max Fz	-1.51E + 04	2.00E + 05	-2.40E+06	-2.14E + 05	5.93E + 05	5.74E + 05
Loads @ min Fz	2.04E + 05	-4.57E + 04	-3.79E + 06	2.53E + 06	-1.58E + 06	3.72E + 05
Loads @ max Mx	8.60E + 05	-1.86E + 03	-3.67E + 06	6.40E + 06	-9.30E + 05	6.29E + 06
Loads @ min Mx	3.62E + 05	-6.27E + 04	-2.89E + 06	-2.90E + 06	2.44E + 06	-1.32E + 06
Loads @ max My	3.47E + 05	-5.87E + 04	-3.51E + 06	4.22E + 06	1.28E + 07	-1.06E + 06
Loads @ min My	4.69E + 05	1.18E + 05	-3.61E + 06	4.34E + 06	-1.25E + 07	3.79E + 06
Loads @ max Mz	4.19E + 05	-2.45E+04	-3.65E + 06	5.27E + 06	-3.44E + 06	1.08E + 07
Loads @ min Mz	3.76E + 04	9.19E + 04	-3.44E + 06	3.00E + 06	2.40E + 06	-1.22E + 07
Loads @ max Fxy	1.17E + 06	4.80E + 04	-3.64E + 06	5.98E + 06	-3.24E + 06	2.31E + 06
Loads @ max Mxy	3.47E + 05	-5.87E + 04	-3.51E + 06	4.22E + 06	1.28E + 07	-1.06E + 06
	Fxy	Mxy		DLC	Time	Safety Factor
	[N]	[Nm]		[-]	[sec]	[-]
Loads @ max Fx	1.17E + 06	6.81E + 06		DLC13 9 m/s	212.24	1.35
Loads @ min Fx	1.02E + 06	5.83E + 06		DLC23 rated + 2 m/s	42.38	1.10
Loads @ max Fy	5.21E + 05	2.36E + 06		$DLC63 \ 20 \ deg$	267.00	1.10
Loads @ min Fy	7.44E + 05	3.97E + 06		DLC63 -20 \deg	433.36	1.10
Loads @ max Fz	2.01E + 05	6.30E + 05		$DLC61 \ 8 \ deg$	88.88	1.10
Loads @ min Fz	2.09E + 05	2.98E + 06		DLC13 9 m/s	315.34	1.35
Loads @ max Mx	8.60E + 05	6.47E + 06		DLC13 13 m/s	210.40	1.35
Loads @ min Mx	3.67E + 05	3.79E + 06		$DLC62 \ 120 \ deg$	294.18	1.10
Loads @ max My	3.52E + 05	1.35E + 07		DLC13 17 m/s	214.78	1.35
Loads @ min My	4.84E + 05	1.33E + 07		DLC13 19 m/s	522.78	1.35
Loads @ max Mz	4.20E + 05	6.29E + 06		DLC13 19 m/s	327.58	1.35
Loads @ min Mz	9.93E + 04	3.84E + 06		DLC13 21 m/s $$	246.38	1.35
Loads @ max Fxy	1.17E + 06	6.81E + 06		DLC13 9 m/s	212.24	1.35
Loads @ max Mxy	3.52E+05	$1.35E{+}07$		DLC13 17 m/s $$	214.78	1.35

Table 49: Load envelope at tower base. Safety factors already applied. Reference coordinate system: x - aligned with the ground, pointing downwind, y - side, z - aligned with the tower, pointing upwards.

Component	Sensor	Wöhler exponent	DEL	Ref. coordinate system
Blade root	$M_{\mathbf{x}}$	10	8363.34 kNm	see label Table 47
Blade root	M_y	10	$7792.40 \mathrm{~kNm}$	see label Table 47
Blade root	M_z	10	$69.66 \mathrm{kNm}$	see label Table 47
Blade root	$M_{\mathbf{x}}$	4	$11444.60 \ \rm kNm$	see label Table 47
Blade root	M_y	4	7039.50 kNm	see label Table 47
Blade root	M_z	4	77.06 kNm	see label Table 47
Hub center	$\mathbf{F}_{\mathbf{x}}$	9	365.92 kN	see label Table 48
Hub center	M_y	9	7160.58 kNm	see label Table 48
Hub center	M_z	9	$6859.69~\mathrm{kNm}$	see label Table 48
Hub center	$\mathbf{F}_{\mathbf{x}}$	4	$296.01~\mathrm{kN}$	see label Table 48
Hub center	M_y	4	$5871.74 \ \rm kNm$	see label Table 48
Hub center	M_z	4	$5775.56~\mathrm{kNm}$	see label Table 48
Tower base	$M_{\mathbf{x}}$	9	$2313.52~\mathrm{kNm}$	see label Table 49
Tower base	M_y	9	$7168.28~\mathrm{kNm}$	see label Table 49
Tower base	$M_{\mathbf{x}}$	4	$1598.93~\mathrm{kNm}$	see label Table 49
Tower base	M_{y}	4	$5876.13~\mathrm{kNm}$	see label Table 49

Table 50: Weibull weighted damage equivalent loads (DEL) for a number of cycles equal to 10^6 .

В Offshore Reference Turbine Detailed Properties and Loads

Blade Aerodynamic Shape B.1

Tables 51 and 52 contain the data describing the aerodynamic planform of the 10-MW offshore blade.

η	Chord	Twist	Rel. Thick.	Abs. Thick.	PreBend	Sweep	Pitch Ax.
[-]	[mm]	[deg]	[%]	[mm]	[mm]	[mm]	[%]
0.0000	4600.000	12.000	99.870	4.594	-0.000	0.000	0.500
0.0176	4593.104	12.003	99.796	4.584	-7.832	0.000	0.503
0.0313	4597.803	12.001	98.251	4.517	-14.683	0.000	0.501
0.0420	4614.757	11.996	95.681	4.415	-20.913	0.000	0.495
0.0507	4638.643	11.992	92.711	4.301	-26.472	0.000	0.487
0.0579	4665.984	11.991	89.654	4.183	-31.390	0.000	0.480
0.0642	4695.442	11.992	86.681	4.070	-35.840	0.000	0.473
0.0700	4728.094	11.998	83.692	3.957	-40.088	0.000	0.466
0.0758	4765.838	12.008	80.547	3.839	-44.401	0.000	0.459
0.0821	4811.777	12.022	77.087	3.709	-49.108	0.000	0.452
0.0893	4871.281	12.035	73.106	3.561	-54.578	0.000	0.444
0.0980	4951.324	12.036	68.441	3.389	-61.265	0.000	0.435
0.1087	5062.753	12.009	62.967	3.188	-69.742	0.000	0.423
0.1224	5220.160	11.888	56.669	2.958	-80.751	0.000	0.408
0.1400	5436.982	11.526	49.772	2.706	-95.184	0.000	0.389
0.1610	5689.915	10.690	43.294	2.463	-112.458	0.000	0.369
0.1841	5914.300	9.372	38.304	2.265	-131.396	0.000	0.352
0.2093	6026.429	7.940	34.933	2.105	-152.306	0.000	0.339
0.2366	6001.153	6.724	33.205	1.993	-175.300	0.000	0.331
0.2660	5884.474	5.859	32.616	1.919	-200.219	0.000	0.329
0.2973	5702.517	5.231	32.582	1.858	-227.250	0.000	0.333
0.3305	5463.822	4.669	32.607	1.782	-257.223	0.000	0.341
0.3653	5176.847	4.130	32.569	1.686	-291.960	0.000	0.353
0.4015	4856.999	3.615	32.276	1.568	-334.024	0.000	0.368

Table 51: Aerodynamic shape of the offshore wind turbine blade. Part I.

η	Chord	Twist	Rel. Thick.	Abs. Thick.	PreBend	Sweep	Pitch Ax.
[-]	[mm]	[deg]	[%]	[mm]	[mm]	[mm]	[%]
0.4387	4520.596	3.087	31.617	1.429	-385.230	0.000	0.387
0.4766	4179.754	2.496	30.631	1.280	-447.907	0.000	0.407
0.5148	3843.115	1.844	29.434	1.131	-526.715	0.000	0.427
0.5529	3519.802	1.161	28.137	0.990	-624.990	0.000	0.447
0.5905	3217.817	0.472	26.851	0.864	-743.988	0.000	0.465
0.6273	2942.235	-0.197	25.669	0.755	-887.589	0.000	0.481
0.6628	2695.442	-0.821	24.673	0.665	-1057.719	0.000	0.495
0.6969	2477.555	-1.382	23.910	0.592	-1253.206	0.000	0.506
0.7293	2287.107	-1.870	23.364	0.534	-1474.464	0.000	0.515
0.7597	2122.247	-2.277	22.993	0.488	-1720.560	0.000	0.522
0.7882	1980.543	-2.602	22.797	0.451	-1987.278	0.000	0.525
0.8145	1859.127	-2.849	22.749	0.423	-2273.345	0.000	0.527
0.8387	1754.622	-3.023	22.667	0.398	-2573.861	0.000	0.526
0.8608	1665.039	-3.127	22.527	0.375	-2884.631	0.000	0.523
0.8809	1586.462	-3.161	22.346	0.355	-3202.275	0.000	0.519
0.8990	1511.861	-3.132	22.141	0.335	-3522.426	0.000	0.513
0.9153	1434.823	-3.038	21.927	0.315	-3841.324	0.000	0.507
0.9299	1350.534	-2.882	21.720	0.293	-4154.955	0.000	0.499
0.9429	1261.203	-2.668	21.532	0.272	-4460.302	0.000	0.492
0.9544	1167.110	-2.401	21.370	0.249	-4755.136	0.000	0.485
0.9646	1061.193	-2.082	21.240	0.225	-5037.311	0.000	0.477
0.9736	957.092	-1.728	21.142	0.202	-5304.152	0.000	0.470
0.9816	862.894	-1.348	21.100	0.182	-5554.378	0.000	0.464
0.9885	759.375	-0.923	21.100	0.160	-5789.962	0.000	0.457
0.9946	539.733	-0.468	21.100	0.113	-6009.213	0.000	0.452
1.0000	96.200	-0.037	21.100	0.020	-6206.217	0.000	0.446

Table 52: Aerodynamic shape of the offshore wind turbine blade. Part II.

B.2 Airfoil Data

Table 53: Airfoil shape - FFA-W3-211 21.10% airfoil

ID	x	У	ID	x	У	ID	x	У	ID	х	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.00131	50	0.48071	-0.07319	100	0.00727	0.01970	150	0.50089	0.10054
1	0.98960	-0.00001	51	0.47032	-0.07541	101	0.01380	0.02787	151	0.51109	0.09883
2	0.97919	0.00123	52	0.45992	-0.07751	102	0.02121	0.03525	152	0.52128	0.09707
3	0.96877	0.00240	53	0.44948	-0.07948	103	0.02920	0.04198	153	0.53146	0.09526
4	0.95832	0.00346	54	0.43903	-0.08132	104	0.03759	0.04820	154	0.54163	0.09341
5	0.94786	0.00438	55	0.42855	-0.08302	105	0.04629	0.05398	155	0.55180	0.09152
6	0.93738	0.00514	56	0.41805	-0.08457	106	0.05523	0.05936	156	0.56196	0.08960
$\overline{7}$	0.92689	0.00572	57	0.40753	-0.08598	107	0.06436	0.06441	157	0.57212	0.08765
8	0.91638	0.00614	58	0.39699	-0.08726	108	0.07365	0.06915	158	0.58227	0.08566
9	0.90586	0.00639	59	0.38644	-0.08839	109	0.08308	0.07360	159	0.59242	0.08363
10	0.89534	0.00647	60	0.37587	-0.08937	110	0.09263	0.07778	160	0.60255	0.08157
11	0.88481	0.00639	61	0.36530	-0.09021	111	0.10228	0.08171	161	0.61269	0.07948
12	0.87428	0.00616	62	0.35471	-0.09089	112	0.11201	0.08541	162	0.62282	0.07736
13	0.86374	0.00578	63	0.34412	-0.09143	113	0.12182	0.08888	163	0.63294	0.07521
14	0.85321	0.00526	64	0.33352	-0.09182	114	0.13171	0.09214	164	0.64307	0.07305
15	0.84269	0.00459	65	0.32292	-0.09206	115	0.14165	0.09518	165	0.65319	0.07088
16	0.83217	0.00378	66	0.31232	-0.09214	116	0.15165	0.09803	166	0.66331	0.06870
17	0.82165	0.00284	67	0.30172	-0.09207	117	0.16171	0.10068	167	0.67343	0.06650
18	0.81115	0.00177	68	0.29112	-0.09186	118	0.17180	0.10314	168	0.68355	0.06430
19	0.80066	0.00056	69	0.28053	-0.09150	119	0.18194	0.10541	169	0.69368	0.06209
20	0.79017	-0.00078	70	0.26995	-0.09099	120	0.19211	0.10749	170	0.70380	0.05987
21	0.77971	-0.00225	71	0.25938	-0.09034	121	0.20232	0.10940	171	0.71393	0.05766
22	0.76926	-0.00384	72	0.24883	-0.08955	122	0.21255	0.11113	172	0.72406	0.05545
23	0.75882	-0.00554	73	0.23828	-0.08861	123	0.22281	0.11268	173	0.73419	0.05323
24	0.74839	-0.00735	74	0.22776	-0.08753	124	0.23309	0.11406	174	0.74432	0.05103
25	0.73798	-0.00925	75	0.21725	-0.08630	125	0.24339	0.11526	175	0.75446	0.04882
26	0.72759	-0.01126	76	0.20676	-0.08493	126	0.25371	0.11629	176	0.76461	0.04663
27	0.71722	-0.01337	77	0.19630	-0.08340	127	0.26404	0.11713	177	0.77476	0.04445
28	0.70686	-0.01556	78	0.18586	-0.08172	128	0.27438	0.11781	178	0.78491	0.04229
29	0.69651	-0.01785	79	0.17546	-0.07988	129	0.28473	0.11832	179	0.79508	0.04014
30	0.68618	-0.02021	80	0.16509	-0.07789	130	0.29508	0.11866	180	0.80525	0.03800
31	0.67587	-0.02266	81	0.15475	-0.07574	131	0.30544	0.11885	181	0.81542	0.03589
32	0.66558	-0.02518	82	0.14445	-0.07343	132	0.31579	0.11888	182	0.82561	0.03380
33	0.65530	-0.02776	83	0.13419	-0.07096	133	0.32615	0.11877	183	0.83580	0.03172
34	0.64503	-0.03040	84	0.12398	-0.06833	134	0.33650	0.11850	184	0.84600	0.02966
35	0.63477	-0.03308	85	0.11381	-0.06552	135	0.34684	0.11809	185	0.85621	0.02761
36	0.62452	-0.03581	86	0.10371	-0.06253	136	0.35717	0.11756	186	0.86642	0.02557
37	0.61427	-0.03857	87	0.09366	-0.05935	137	0.36750	0.11692	187	0.87664	0.02356
38	0.60403	-0.04135	88	0.08369	-0.05597	138	0.37782	0.11617	188	0.88687	0.02157
39	0.59380	-0.04414	89	0.07380	-0.05237	139	0.38813	0.11531	189	0.89711	0.01960
40	0.58356	-0.04694	90	0.06400	-0.04854	140	0.39843	0.11435	190	0.90735	0.01765
41	0.57332	-0.04973	91	0.05431	-0.04446	141	0.40872	0.11330	191	0.91761	0.01573
42	0.56308	-0.05251	92	0.04476	-0.04006	142	0.41900	0.11217	192	0.92787	0.01383
43	0.55282	-0.05526	93	0.03540	-0.03530	143	0.42927	0.11096	193	0.93815	0.01195
44	0.54256	-0.05799	94	0.02628	-0.03009	144	0.43953	0.10967	194	0.94843	0.01011
45	0.53229	-0.06067	95	0.01753	-0.02430	145	0.44978	0.10831	195	0.95872	0.00830
46	0.52201	-0.06331	96	0.00941	-0.01767	146	0.46002	0.10688	196	0.96903	0.00654
47	0.51171	-0.06590	97	0.00275	-0.00962	147	0.47025	0.10538	197	0.97935	0.00481
48	0.50140	-0.06842	98	-0.00000	0.00037	148	0.48047	0.10382	198	0.98968	0.00308
49	0.49106	-0.07085	99	0.00225	0.01054	149	0.49069	0.10221	199	1.00000	0.00131

Table 54: Airfoil shape - FFA-W3-241 24.10% airfoil

ID	x	У	ID	x	У	ID	x	У	ID	х	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.00360	50	0.47643	-0.09331	100	0.00510	0.02011	150	0.49739	0.10719
1	0.98948	-0.00220	51	0.46591	-0.09584	101	0.01052	0.02920	151	0.50765	0.10552
2	0.97895	-0.00082	52	0.45536	-0.09823	102	0.01705	0.03754	152	0.51792	0.10380
3	0.96841	0.00050	53	0.44478	-0.10048	103	0.02434	0.04519	153	0.52817	0.10204
4	0.95784	0.00172	54	0.43417	-0.10259	104	0.03224	0.05221	154	0.53842	0.10023
5	0.94725	0.00279	55	0.42354	-0.10456	105	0.04056	0.05871	155	0.54866	0.09839
6	0.93664	0.00368	56	0.41288	-0.10638	106	0.04922	0.06474	156	0.55889	0.09650
7	0.92600	0.00438	57	0.40219	-0.10804	107	0.05816	0.07034	157	0.56912	0.09458
8	0.91535	0.00489	58	0.39149	-0.10956	108	0.06731	0.07556	158	0.57934	0.09262
9	0.90468	0.00519	59	0.38076	-0.11091	109	0.07666	0.08043	159	0.58956	0.09063
10	0.89400	0.00528	60	0.37002	-0.11210	110	0.08615	0.08496	160	0.59978	0.08861
11	0.88331	0.00517	61	0.35926	-0.11313	111	0.09579	0.08919	161	0.60999	0.08656
12	0.87263	0.00486	62	0.34849	-0.11398	112	0.10554	0.09312	162	0.62019	0.08448
13	0.86194	0.00437	63	0.33772	-0.11467	113	0.11539	0.09677	163	0.63040	0.08237
14	0.85125	0.00371	64	0.32693	-0.11519	114	0.12533	0.10016	164	0.64060	0.08024
15	0.84057	0.00287	65	0.31614	-0.11554	115	0.13535	0.10330	165	0.65080	0.07810
16	0.82990	0.00187	66	0.30534	-0.11572	116	0.14543	0.10619	166	0.66100	0.07593
17	0.81924	0.00069	67	0.29455	-0.11571	117	0.15558	0.10884	167	0.67120	0.07375
18	0.80859	-0.00065	68	0.28377	-0.11553	118	0.16577	0.11127	168	0.68139	0.07156
19	0.79797	-0.00217	69	0.27299	-0.11516	119	0.17601	0.11348	169	0.69159	0.06935
20	0.78736	-0.00387	70	0.26222	-0.11462	120	0.18629	0.11548	170	0.70179	0.06714
21	0.77678	-0.00575	71	0.25147	-0.11389	121	0.19660	0.11727	171	0.71199	0.06491
22	0.76623	-0.00781	72	0.24074	-0.11298	122	0.20694	0.11886	172	0.72220	0.06268
23	0.75570	-0.01003	73	0.23002	-0.11188	123	0.21731	0.12026	173	0.73240	0.06044
24	0.74521	-0.01241	74	0.21934	-0.11059	124	0.22769	0.12148	174	0.74261	0.05819
25	0.73474	-0.01493	75	0.20868	-0.10909	125	0.23809	0.12252	175	0.75283	0.05595
26	0.72431	-0.01758	76	0.19806	-0.10740	126	0.24850	0.12339	176	0.76304	0.05370
27	0.71390	-0.02034	77	0.18748	-0.10549	127	0.25891	0.12409	177	0.77326	0.05146
28	0.70351	-0.02322	78	0.17694	-0.10338	128	0.26934	0.12464	178	0.78349	0.04922
29	0.69315	-0.02620	79	0.16646	-0.10105	129	0.27977	0.12502	179	0.79372	0.04698
30	0.68281	-0.02928	80	0.15603	-0.09850	130	0.29020	0.12525	180	0.80396	0.04474
31	0.67250	-0.03244	81	0.14566	-0.09572	131	0.30063	0.12534	181	0.81421	0.04252
32	0.66221	-0.03567	82	0.13536	-0.09272	132	0.31105	0.12529	182	0.82446	0.04030
33	0.65193	-0.03897	83	0.12515	-0.08949	133	0.32147	0.12510	183	0.83472	0.03808
34	0.64166	-0.04231	84	0.11501	-0.08601	134	0.33189	0.12479	184	0.84499	0.03588
35	0.63141	-0.04569	85	0.10497	-0.08229	135	0.34230	0.12436	185	0.85526	0.03368
36	0.62116	-0.04909	86	0.09504	-0.07831	136	0.35270	0.12382	186	0.86554	0.03149
37	0.61091	-0.05250	87	0.08522	-0.07408	137	0.36310	0.12316	187	0.87583	0.02931
38	0.60066	-0.05592	88	0.07553	-0.06957	138	0.37348	0.12241	188	0.88613	0.02714
39	0.59040	-0.05933	89	0.06598	-0.06478	139	0.38386	0.12156	189	0.89644	0.02499
40	0.58014	-0.06272	90	0.05661	-0.05968	140	0.39423	0.12062	190	0.90675	0.02284
41	0.56986	-0.06608	91	0.04742	-0.05426	141	0.40459	0.11960	191	0.91708	0.02071
42	0.55957	-0.06939	92	0.03846	-0.04848	142	0.41493	0.11850	192	0.92741	0.01859
43	0.54926	-0.07266	93	0.02980	-0.04228	143	0.42527	0.11732	193	0.93776	0.01648
44	0.53893	-0.07586	94	0.02153	-0.03557	144	0.43560	0.11606	194	0.94811	0.01439
45	0.52858	-0.07900	95	0.01381	-0.02825	145	0.44592	0.11474	195	0.95848	0.01230
46	0.51821	-0.08205	96	0.00708	-0.02004	146	0.45623	0.11335	196	0.96885	0.01021
47	0.50780	-0.08502	97	0.00191	-0.01076	147	0.46653	0.11190	197	0.97922	0.00811
48	0.49738	-0.08790	98	-0.00002	-0.00034	148	0.47683	0.11039	198	0.98961	0.00601
49	0.48692	-0.09066	99	0.00146	0.01016	149	0.48711	0.10882	199	1.00000	0.00391

Table 55: Airfoil shape - FFA-W3-270 blend 27.00% airfoil

ID	x	У	ID	x	У	ID	x	У	ID	x	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.00613	50	0.47744	-0.10899	100	0.00113	0.01076	150	0.48932	0.11704
1	0.98941	-0.00440	51	0.46697	-0.11173	101	0.00421	0.02103	151	0.49981	0.11530
2	0.97880	-0.00276	52	0.45645	-0.11433	102	0.00897	0.03063	152	0.51029	0.11351
3	0.96816	-0.00127	53	0.44591	-0.11680	103	0.01489	0.03956	153	0.52076	0.11168
4	0.95749	0.00001	54	0.43533	-0.11913	104	0.02168	0.04785	154	0.53122	0.10980
5	0.94680	0.00107	55	0.42472	-0.12131	105	0.02917	0.05550	155	0.54168	0.10787
6	0.93608	0.00191	56	0.41408	-0.12334	106	0.03701	0.06280	156	0.55213	0.10591
7	0.92534	0.00254	57	0.40341	-0.12521	107	0.04526	0.06961	157	0.56257	0.10390
8	0.91459	0.00293	58	0.39272	-0.12693	108	0.05389	0.07593	158	0.57301	0.10186
9	0.90383	0.00310	59	0.38201	-0.12848	109	0.06282	0.08182	159	0.58344	0.09979
10	0.89306	0.00302	60	0.37127	-0.12987	110	0.07201	0.08729	160	0.59386	0.09768
11	0.88230	0.00271	61	0.36051	-0.13108	111	0.08140	0.09239	161	0.60428	0.09554
12	0.87154	0.00217	62	0.34973	-0.13211	112	0.09098	0.09713	162	0.61469	0.09337
13	0.86079	0.00141	63	0.33894	-0.13297	113	0.10072	0.10153	163	0.62510	0.09117
14	0.85006	0.00045	64	0.32814	-0.13364	114	0.11059	0.10559	164	0.63551	0.08895
15	0.83934	-0.00070	65	0.31733	-0.13413	115	0.12059	0.10935	165	0.64591	0.08670
16	0.82864	-0.00204	66	0.30651	-0.13444	116	0.13069	0.11280	166	0.65631	0.08443
17	0.81796	-0.00357	67	0.29569	-0.13455	117	0.14089	0.11597	167	0.66670	0.08214
18	0.80731	-0.00529	68	0.28488	-0.13447	118	0.15116	0.11885	168	0.67709	0.07983
19	0.79669	-0.00720	69	0.27406	-0.13418	119	0.16150	0.12146	169	0.68748	0.07751
20	0.78610	-0.00930	70	0.26326	-0.13369	120	0.17191	0.12382	170	0.69787	0.07516
21	0.77555	-0.01160	71	0.25247	-0.13300	121	0.18236	0.12592	171	0.70825	0.07280
${22}$	0.76504	-0.01409	72	0.24169	-0.13209	122	0.19286	0.12778	172	0.71863	0.07043
$23^{}$	0.75457	-0.01674	73	0.23094	-0.13097	123	0.20339	0.12941	173	0.72902	0.06804
24	0.74414	-0.01955	74	0.22022	-0.12962	124	0.21395	0.13082	174	0.73940	0.06565
25	0.73374	-0.02249	75	0.20953	-0.12804	125	0.22454	0.13202	175	0.74978	0.06324
26	0.72338	-0.02556	76	0.19888	-0.12623	126	0.23515	0.13302	176	0.76016	0.06084
27	0.71305	-0.02874	77	0.18828	-0.12417	127	0.24577	0.13384	177	0.77055	0.05842
28	0.70275	-0.03204	78	0.17773	-0.12186	128	0.25640	0.13448	178	0.78093	0.05600
29^{-5}	0.69248	-0.03543	79	0.16724	-0.11929	129	0.26703	0.13495	179	0.79132	0.05359
30	0.68224	-0.03891	80	0.15682	-0.11646	130	0.27768	0.13525	180	0.80171	0.05117
31	0.67203	-0.04246	81	0.14649	-0.11336	131	0.28832	0.13540	181	0.81211	0.04875
32	0.66183	-0.04608	82	0.13624	-0.10999	132	0.29896	0.13539	182	0.82250	0.04633
33	0.65165	-0.04975	83	0.12609	-0.10635	133	0.30960	0.13525	183	0.83290	0.04391
34	0.64149	-0.05346	84	0.11605	-0.10241	134	0.32024	0.13497	184	0.84330	0.04150
35	0.63133	-0.05719	85	0.10613	-0.09819	135	0.33087	0.13456	185	0.85371	0.03910
36	0.62118	-0.06094	86	0.09634	-0.09367	136	0.34150	0.13404	186	0.86412	0.03670
37	0.61102	-0.06469	87	0.08670	-0.08885	137	0.35212	0.13340	187	0.87454	0.03432
38	0.60086	-0.06844	88	0.07723	-0.08372	138	0.36273	0.13265	188	0.88496	0.03194
39	0.59070	-0.07216	89	0.06794	-0.07827	139	0.37333	0.13180	189	0.89539	0.02958
40	0.58052	-0.07586	90	0.05888	-0.07247	140	0.38392	0.13086	190	0.90582	0.02722
41	0.57033	-0.07952	91	0.05004	-0.06633	141	0.39450	0.12982	191	0.91627	0.02488
42	0.56012	-0.08312	92	0.04141	-0.05990	142	0.40508	0.12870	192	0.92671	0.02256
43	0.54988	-0.08666	93	0.03310	-0.05308	143	0.41564	0.12749	193	0.93717	0.02026
44	0.53963	-0.09013	94	0.02518	-0.04580	144	0.42619	0.12620	194	0.94763	0.01797
45	0.52934	-0.09352	95	0.01779	-0.03800	145	0.43674	0.12485	195	0.95810	0.01569
46	0.51902	-0.09682	96	0.01108	-0.02961	146	0.44727	0.12342	196	0.96857	0.01341
47	0.50868	-0.10003	97	0.00548	-0.02045	147	0.45780	0.12192	197	0.97905	0.01112
48	0.49830	-0.10313	98	0.00141	-0.01052	148	0.46832	0.12035	198	0.98952	0.00882
49	0.48789	-0.10612	99	-0.00002	0.00010	149	0.47882	0.11873	199	1.00000	0.00652

Table 56: Airfoil shape - FFA-W3-301 30.10% airfoil

ID	x	У	ID	x	У	ID	x	У	ID	x	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.00891	50	0.47212	-0.12493	100	0.00087	0.01104	150	0.48498	0.12877
1	0.98934	-0.00673	51	0.46149	-0.12782	101	0.00332	0.02164	151	0.49556	0.12690
2	0.97863	-0.00473	52	0.45083	-0.13058	102	0.00716	0.03181	152	0.50613	0.12496
3	0.96787	-0.00306	53	0.44012	-0.13319	103	0.01213	0.04147	153	0.51669	0.12298
4	0.95705	-0.00172	54	0.42939	-0.13566	104	0.01801	0.05061	154	0.52725	0.12096
5	0.94619	-0.00071	55	0.41861	-0.13797	105	0.02463	0.05921	155	0.53779	0.11889
6	0.93531	0.00003	56	0.40781	-0.14012	106	0.03188	0.06729	156	0.54833	0.11679
7	0.92440	0.00049	57	0.39697	-0.14211	107	0.03963	0.07487	157	0.55887	0.11465
8	0.91348	0.00067	58	0.38611	-0.14392	108	0.04781	0.08199	158	0.56939	0.11247
9	0.90256	0.00059	59	0.37522	-0.14557	109	0.05635	0.08866	159	0.57991	0.11025
10	0.89164	0.00023	60	0.36431	-0.14703	110	0.06521	0.09489	160	0.59043	0.10800
11	0.88072	-0.00040	61	0.35337	-0.14831	111	0.07434	0.10071	161	0.60093	0.10572
12	0.86982	-0.00129	62	0.34241	-0.14940	112	0.08371	0.10614	162	0.61144	0.10341
13	0.85894	-0.00242	63	0.33144	-0.15030	113	0.09328	0.11117	163	0.62193	0.10107
14	0.84808	-0.00378	64	0.32046	-0.15100	114	0.10304	0.11584	164	0.63243	0.09870
15	0.83724	-0.00536	65	0.30946	-0.15150	115	0.11296	0.12013	165	0.64292	0.09631
16	0.82644	-0.00715	66	0.29846	-0.15180	116	0.12303	0.12408	166	0.65340	0.09389
17	0.81566	-0.00914	67	0.28746	-0.15189	117	0.13321	0.12768	167	0.66388	0.09145
18	0.80492	-0.01133	68	0.27646	-0.15176	118	0.14350	0.13096	168	0.67436	0.08898
19	0.79422	-0.01370	69	0.26547	-0.15140	119	0.15389	0.13392	169	0.68483	0.08649
20	0.78355	-0.01627	70	0.25449	-0.15083	120	0.16435	0.13658	170	0.69531	0.08398
21	0.77294	-0.01903	71	0.24352	-0.15002	121	0.17488	0.13894	171	0.70578	0.08146
22	0.76236	-0.02197	72	0.23258	-0.14897	122	0.18547	0.14102	172	0.71624	0.07891
23	0.75183	-0.02506	73	0.22167	-0.14767	123	0.19610	0.14282	173	0.72671	0.07635
24	0.74133	-0.02829	74	0.21079	-0.14612	124	0.20677	0.14437	174	0.73717	0.07377
25	0.73087	-0.03164	75	0.19996	-0.14431	125	0.21747	0.14567	175	0.74764	0.07118
26	0.72045	-0.03511	76	0.18918	-0.14223	126	0.22819	0.14674	176	0.75810	0.06858
27	0.71006	-0.03869	77	0.17845	-0.13987	127	0.23893	0.14760	177	0.76857	0.06597
28	0.69971	-0.04237	78	0.16780	-0.13723	128	0.24969	0.14825	178	0.77904	0.06335
29	0.68938	-0.04613	79	0.15723	-0.13428	129	0.26044	0.14872	179	0.78951	0.06073
30	0.67908	-0.04998	80	0.14676	-0.13104	130	0.27121	0.14900	180	0.79998	0.05811
31	0.66880	-0.05388	81	0.13638	-0.12749	131	0.28197	0.14911	181	0.81045	0.05548
32	0.65854	-0.05784	82	0.12613	-0.12362	132	0.29273	0.14906	182	0.82093	0.05284
33	0.64828	-0.06183	83	0.11600	-0.11943	133	0.30349	0.14885	183	0.83141	0.05021
34	0.63804	-0.06585	84	0.10602	-0.11491	134	0.31425	0.14850	184	0.84189	0.04758
35	0.62780	-0.06988	85	0.09621	-0.11005	135	0.32499	0.14801	185	0.85238	0.04495
36	0.61756	-0.07392	86	0.08657	-0.10485	136	0.33573	0.14741	186	0.86288	0.04233
37	0.60732	-0.07795	87	0.07714	-0.09930	137	0.34646	0.14668	187	0.87338	0.03972
38	0.59707	-0.08195	88	0.06793	-0.09340	138	0.35718	0.14584	188	0.88389	0.03712
39	0.58680	-0.08593	89	0.05898	-0.08713	139	0.36789	0.14489	189	0.89440	0.03453
40	0.57651	-0.08987	90	0.05030	-0.08048	140	0.37859	0.14384	190	0.90493	0.03195
41	0.56621	-0.09375	91	0.04196	-0.07343	141	0.38928	0.14270	191	0.91546	0.02939
42	0.55588	-0.09757	92	0.03399	-0.06596	142	0.39996	0.14146	192	0.92600	0.02685
43	0.54553	-0.10133	93	0.02646	-0.05805	143	0.41062	0.14013	193	0.93655	0.02434
44	0.53514	-0.10500	94	0.01949	-0.04966	144	0.42128	0.13872	194	0.94711	0.02184
45	0.52472	-0.10859	95	0.01321	-0.04074	145	0.43192	0.13724	195	0.95768	0.01936
46	0.51428	-0.11208	96	0.00782	-0.03126	146	0.44255	0.13568	196	0.96826	0.01689
47	0.50379	-0.11546	97	0.00362	-0.02120	147	0.45318	0.13405	197	0.97884	0.01440
48	0.49327	-0.11874	98	0.00091	-0.01066	148	0.46379	0.13236	198	0.98942	0.01190
49	0.48272	-0.12190	99	-0.00001	0.00019	149	0.47439	0.13060	199	1.00000	0.00937

Table 57: Airfoil shape - FFA-W3-330blend 33.00% airfoil

ID	x	У	ID	x	У	ID	x	У	ID	x	у
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.01163	50	0.46688	-0.13658	100	0.00080	0.01181	150	0.47845	0.14245
1	0.98932	-0.00879	51	0.45612	-0.13961	101	0.00262	0.02270	151	0.48917	0.14032
2	0.97854	-0.00631	52	0.44533	-0.14250	102	0.00513	0.03345	152	0.49988	0.13815
3	0.96765	-0.00435	53	0.43449	-0.14524	103	0.00875	0.04387	153	0.51059	0.13593
4	0.95668	-0.00289	54	0.42361	-0.14782	104	0.01345	0.05385	154	0.52128	0.13366
5	0.94565	-0.00186	55	0.41270	-0.15022	105	0.01893	0.06342	155	0.53196	0.13135
6	0.93459	-0.00118	56	0.40175	-0.15246	106	0.02508	0.07257	156	0.54264	0.12900
7	0.92351	-0.00081	57	0.39076	-0.15452	107	0.03185	0.08126	157	0.55331	0.12661
8	0.91243	-0.00074	58	0.37975	-0.15641	108	0.03918	0.08948	158	0.56397	0.12419
9	0.90134	-0.00098	59	0.36871	-0.15811	109	0.04700	0.09723	159	0.57462	0.12174
10	0.89025	-0.00151	60	0.35764	-0.15963	110	0.05525	0.10451	160	0.58527	0.11925
11	0.87918	-0.00234	61	0.34654	-0.16095	111	0.06389	0.11133	161	0.59591	0.11673
12	0.86814	-0.00346	62	0.33543	-0.16207	112	0.07287	0.11767	162	0.60655	0.11419
13	0.85712	-0.00485	63	0.32430	-0.16300	113	0.08216	0.12355	163	0.61718	0.11162
14	0.84613	-0.00651	64	0.31315	-0.16372	114	0.09172	0.12898	164	0.62781	0.10903
15	0.83518	-0.00840	65	0.30200	-0.16423	115	0.10151	0.13396	165	0.63843	0.10641
16	0.82426	-0.01052	66	0.29084	-0.16452	116	0.11151	0.13852	166	0.64905	0.10377
17	0.81339	-0.01286	67	0.27967	-0.16459	117	0.12167	0.14266	167	0.65967	0.10110
18	0.80255	-0.01539	68	0.26851	-0.16443	118	0.13199	0.14641	168	0.67028	0.09842
19	0.79176	-0.01811	69	0.25736	-0.16403	119	0.14243	0.14979	169	0.68089	0.09572
20	0.78102	-0.02103	70	0.24622	-0.16339	120	0.15298	0.15281	170	0.69149	0.09300
21	0.77032	-0.02413	71	0.23510	-0.16251	121	0.16362	0.15548	171	0.70210	0.09027
22	0.75968	-0.02740	72	0.22401	-0.16137	122	0.17434	0.15780	172	0.71270	0.08752
23	0.74908	-0.03082	73	0.21294	-0.15998	123	0.18512	0.15981	173	0.72331	0.08476
24	0.73852	-0.03439	74	0.20192	-0.15831	124	0.19595	0.16151	174	0.73391	0.08198
25	0.72800	-0.03807	75	0.19094	-0.15638	125	0.20681	0.16293	175	0.74451	0.07920
26	0.71752	-0.04187	76	0.18002	-0.15417	126	0.21771	0.16407	176	0.75511	0.07640
27	0.70707	-0.04577	77	0.16916	-0.15167	127	0.22863	0.16496	177	0.76571	0.07360
28	0.69666	-0.04976	78	0.15839	-0.14886	128	0.23956	0.16563	178	0.77632	0.07079
29	0.68627	-0.05383	79	0.14770	-0.14574	129	0.25050	0.16607	179	0.78692	0.06797
30	0.67590	-0.05796	80	0.13711	-0.14229	130	0.26144	0.16631	180	0.79753	0.06515
31	0.66556	-0.06214	81	0.12665	-0.13851	131	0.27239	0.16636	181	0.80814	0.06233
32	0.65522	-0.06635	82	0.11632	-0.13438	132	0.28333	0.16622	182	0.81875	0.05950
33	0.64489	-0.07059	83	0.10614	-0.12989	133	0.29427	0.16591	183	0.82936	0.05668
34	0.63457	-0.07484	84	0.09614	-0.12502	134	0.30520	0.16545	184	0.83998	0.05385
35	0.62424	-0.07909	85	0.08636	-0.11975	135	0.31612	0.16483	185	0.85060	0.05103
36	0.61391	-0.08333	86	0.07682	-0.11406	136	0.32704	0.16408	186	0.86123	0.04822
37	0.60357	-0.08755	87	0.06756	-0.10792	137	0.33794	0.16320	187	0.87187	0.04541
38	0.59322	-0.09175	88	0.05862	-0.10134	138	0.34883	0.16219	188	0.88251	0.04262
39	0.58285	-0.09592	89	0.05003	-0.09431	139	0.35970	0.16106	189	0.89316	0.03983
40	0.57246	-0.10003	90	0.04185	-0.08681	140	0.37057	0.15981	190	0.90381	0.03705
41	0.56205	-0.10408	91	0.03414	-0.07884	141	0.38141	0.15847	191	0.91447	0.03428
42	0.55161	-0.10807	92	0.02699	-0.07036	142	0.39225	0.15702	192	0.92514	0.03154
43	0.54114	-0.11198	93	0.02048	-0.06139	143	0.40307	0.15548	193	0.93583	0.02883
44	0.53064	-0.11580	94	0.01465	-0.05197	144	0.41388	0.15385	194	0.94652	0.02612
45	0.52010	-0.11953	95	0.00959	-0.04212	145	0.42467	0.15213	195	0.95721	0.02342
46	0.50953	-0.12317	96	0.00557	-0.03181	146	0.43546	0.15034	196	0.96791	0.02071
47	0.49893	-0.12669	97	0.00270	-0.02113	147	0.44622	0.14847	197	0.97861	0.01798
48	0.48828	-0.13011	98	0.00080	-0.01023	148	0.45698	0.14653	198	0.98930	0.01522
49	0.47760	-0.13341	99	-0.00001	0.00079	149	0.46772	0.14452	199	1.00000	0.01245

Table 58: Airfoil shape - FFA-W3-36036.00%airfoil

ID	x	У	ID	х	У	ID	x	У	ID	х	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.01393	50	0.46236	-0.14904	100	0.00082	0.01320	150	0.47312	0.15863
1	0.98922	-0.01082	51	0.45147	-0.15213	101	0.00229	0.02435	151	0.48398	0.15629
2	0.97834	-0.00809	52	0.44054	-0.15508	102	0.00392	0.03544	152	0.49483	0.15389
3	0.96731	-0.00598	53	0.42957	-0.15785	103	0.00652	0.04630	153	0.50567	0.15144
4	0.95618	-0.00448	54	0.41856	-0.16045	104	0.01032	0.05685	154	0.51650	0.14893
5	0.94499	-0.00351	55	0.40750	-0.16287	105	0.01487	0.06709	155	0.52731	0.14637
6	0.93377	-0.00294	56	0.39640	-0.16510	106	0.02005	0.07700	156	0.53812	0.14377
$\overline{7}$	0.92253	-0.00273	57	0.38527	-0.16715	107	0.02593	0.08652	157	0.54891	0.14113
8	0.91128	-0.00287	58	0.37411	-0.16901	108	0.03245	0.09562	158	0.55970	0.13845
9	0.90004	-0.00335	59	0.36292	-0.17067	109	0.03955	0.10426	159	0.57048	0.13573
10	0.88882	-0.00416	60	0.35170	-0.17214	110	0.04717	0.11244	160	0.58125	0.13297
11	0.87762	-0.00530	61	0.34046	-0.17340	111	0.05528	0.12013	161	0.59201	0.13019
12	0.86646	-0.00676	62	0.32919	-0.17446	112	0.06382	0.12733	162	0.60277	0.12738
13	0.85534	-0.00851	63	0.31791	-0.17530	113	0.07277	0.13402	163	0.61352	0.12454
14	0.84426	-0.01055	64	0.30662	-0.17593	114	0.08206	0.14021	164	0.62427	0.12167
15	0.83323	-0.01285	65	0.29532	-0.17633	115	0.09165	0.14593	165	0.63501	0.11878
16	0.82225	-0.01539	66	0.28401	-0.17651	116	0.10151	0.15116	166	0.64574	0.11587
17	0.81132	-0.01815	67	0.27270	-0.17644	117	0.11160	0.15593	167	0.65647	0.11294
18	0.80043	-0.02109	68	0.26140	-0.17613	118	0.12188	0.16027	168	0.66720	0.11000
19	0.78960	-0.02423	69	0.25011	-0.17557	119	0.13232	0.16419	169	0.67793	0.10703
20	0.77882	-0.02754	70	0.23884	-0.17476	120	0.14290	0.16771	170	0.68865	0.10406
21	0.76808	-0.03101	71	0.22759	-0.17368	121	0.15360	0.17083	171	0.69937	0.10106
22	0.75740	-0.03464	72	0.21637	-0.17234	122	0.16440	0.17357	172	0.71009	0.09806
23	0.74676	-0.03842	73	0.20519	-0.17072	123	0.17529	0.17595	173	0.72081	0.09504
24	0.73617	-0.04234	74	0.19406	-0.16883	124	0.18624	0.17799	174	0.73153	0.09201
25	0.72562	-0.04637	75	0.18297	-0.16665	125	0.19725	0.17970	175	0.74224	0.08896
26	0.71512	-0.05051	76	0.17196	-0.16418	126	0.20830	0.18110	176	0.75296	0.08591
27	0.70464	-0.05473	77	0.16101	-0.16142	127	0.21938	0.18221	177	0.76367	0.08286
28	0.69419	-0.05903	78	0.15015	-0.15833	128	0.23048	0.18306	178	0.77439	0.07979
29	0.68377	-0.06339	79	0.13940	-0.15491	129	0.24159	0.18366	179	0.78510	0.07672
30	0.67336	-0.06780	80	0.12877	-0.15115	130	0.25272	0.18403	180	0.79582	0.07364
31	0.66297	-0.07223	81	0.11827	-0.14702	131	0.26384	0.18418	181	0.80654	0.07056
32	0.65258	-0.07669	82	0.10792	-0.14253	132	0.27497	0.18412	182	0.81726	0.06747
33	0.64219	-0.08115	83	0.09776	-0.13765	133	0.28609	0.18386	183	0.82798	0.06439
34	0.63180	-0.08561	84	0.08781	-0.13235	134	0.29720	0.18343	184	0.83871	0.06130
35	0.62140	-0.09005	85	0.07812	-0.12660	135	0.30831	0.18283	185	0.84943	0.05821
36	0.61099	-0.09447	86	0.06873	-0.12038	136	0.31940	0.18207	186	0.86017	0.05513
37	0.60056	-0.09885	87	0.05969	-0.11366	137	0.33048	0.18115	187	0.87090	0.05205
38	0.59011	-0.10318	88	0.05105	-0.10644	138	0.34155	0.18008	188	0.88164	0.04897
39	0.57964	-0.10747	89	0.04286	-0.09872	139	0.35260	0.17888	189	0.89239	0.04589
40	0.56914	-0.11169	90	0.03516	-0.09050	140	0.36364	0.17756	190	0.90314	0.04282
41	0.55862	-0.11585	91	0.02806	-0.08177	141	0.37466	0.17611	191	0.91389	0.03976
42	0.54807	-0.11993	92	0.02166	-0.07252	142	0.38567	0.17455	192	0.92466	0.03672
43	0.53748	-0.12392	93	0.01604	-0.06279	143	0.39665	0.17288	193	0.93543	0.03369
44	0.52686	-0.12783	94	0.01113	-0.05267	144	0.40762	0.17110	194	0.94620	0.03065
45	0.51620	-0.13164	95	0.00700	-0.04221	145	0.41858	0.16923	195	0.95697	0.02760
46	0.50551	-0.13535	96	0.00397	-0.03142	146	0.42952	0.16727	196	0.96774	0.02452
47	0.49478	-0.13895	97	0.00207	-0.02035	147	0.44044	0.16522	197	0.97850	0.02140
48	0.48401	-0.14244	98	0.00069	-0.00916	148	0.45135	0.16310	198	0.98926	0.01823
49	0.47321	-0.14580	99	-0.00001	0.00205	149	0.46224	0.16090	199	1.00000	0.01503

Table 59: Airfoil shape - Interpolated 4848.00%airfoil

ID	x	У	ID	x	У	ID	x	У	ID	x	у
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	1.00000	-0.01857	50	0.44979	-0.20346	100	0.00055	0.01465	150	0.45796	0.21569
1	0.98893	-0.01432	51	0.43850	-0.20748	101	0.00169	0.02646	151	0.46926	0.21258
2	0.97767	-0.01060	52	0.42712	-0.21126	102	0.00286	0.03826	152	0.48054	0.20938
3	0.96615	-0.00772	53	0.41567	-0.21480	103	0.00430	0.05000	153	0.49179	0.20610
4	0.95445	-0.00573	54	0.40414	-0.21809	104	0.00649	0.06160	154	0.50301	0.20273
5	0.94263	-0.00448	55	0.39254	-0.22111	105	0.00950	0.07305	155	0.51422	0.19929
6	0.93077	-0.00380	56	0.38087	-0.22387	106	0.01307	0.08433	156	0.52540	0.19577
7	0.91888	-0.00365	57	0.36915	-0.22636	107	0.01711	0.09544	157	0.53657	0.19220
8	0.90699	-0.00402	58	0.35736	-0.22856	108	0.02165	0.10634	158	0.54771	0.18857
9	0.89513	-0.00488	59	0.34553	-0.23048	109	0.02675	0.11699	159	0.55884	0.18488
10	0.88330	-0.00624	60	0.33366	-0.23209	110	0.03238	0.12737	160	0.56996	0.18115
11	0.87154	-0.00808	61	0.32174	-0.23339	111	0.03853	0.13745	161	0.58106	0.17737
12	0.85985	-0.01036	62	0.30980	-0.23437	112	0.04518	0.14719	162	0.59214	0.17354
13	0.84824	-0.01305	63	0.29784	-0.23502	113	0.05232	0.15658	163	0.60322	0.16968
14	0.83673	-0.01613	64	0.28586	-0.23533	114	0.05995	0.16557	164	0.61428	0.16578
15	0.82530	-0.01955	65	0.27389	-0.23528	115	0.06806	0.17413	165	0.62534	0.16185
16	0.81398	-0.02327	66	0.26192	-0.23487	116	0.07662	0.18223	166	0.63638	0.15788
17	0.80274	-0.02727	67	0.24997	-0.23409	117	0.08560	0.18986	167	0.64742	0.15389
18	0.79158	-0.03152	68	0.23805	-0.23292	118	0.09496	0.19700	168	0.65845	0.14987
19	0.78052	-0.03600	69	0.22618	-0.23137	119	0.10469	0.20363	169	0.66947	0.14583
20	0.76955	-0.04070	70	0.21437	-0.22943	120	0.11474	0.20975	170	0.68048	0.14177
21	0.75866	-0.04561	71	0.20264	-0.22709	121	0.12509	0.21536	171	0.69150	0.13768
22	0.74786	-0.05070	72	0.19099	-0.22434	122	0.13568	0.22048	172	0.70250	0.13358
23	0.73713	-0.05597	73	0.17945	-0.22119	123	0.14651	0.22508	173	0.71351	0.12946
24	0.72648	-0.06138	74	0.16804	-0.21764	124	0.15753	0.22917	174	0.72450	0.12532
25	0.71589	-0.06693	75	0.15676	-0.21367	125	0.16873	0.23275	175	0.73550	0.12117
26	0.70536	-0.07259	76	0.14565	-0.20926	126	0.18007	0.23585	176	0.74649	0.11701
27	0.69487	-0.07834	77	0.13473	-0.20441	127	0.19152	0.23847	177	0.75749	0.11283
28	0.68442	-0.08416	78	0.12402	-0.19911	128	0.20307	0.24064	178	0.76848	0.10864
29	0.67400	-0.09003	79	0.11354	-0.19337	129	0.21468	0.24237	179	0.77947	0.10444
30	0.66360	-0.09595	80	0.10333	-0.18718	130	0.22635	0.24370	180	0.79046	0.10024
31	0.65321	-0.10189	81	0.09341	-0.18054	131	0.23805	0.24466	181	0.80146	0.09603
32	0.64282	-0.10784	82	0.08383	-0.17342	132	0.24977	0.24527	182	0.81245	0.09181
33	0.63243	-0.11378	83	0.07463	-0.16582	133	0.26151	0.24555	183	0.82345	0.08759
34	0.62203	-0.11971	84	0.06584	-0.15776	134	0.27324	0.24552	184	0.83445	0.08337
35	0.61161	-0.12561	85	0.05751	-0.14923	135	0.28497	0.24520	185	0.84545	0.07914
36	0.60116	-0.13147	86	0.04966	-0.14025	136	0.29669	0.24461	186	0.85646	0.07492
37	0.59068	-0.13727	87	0.04231	-0.13088	137	0.30838	0.24377	187	0.86748	0.07071
38	0.58016	-0.14300	88	0.03546	-0.12113	138	0.32006	0.24269	188	0.87850	0.06649
39	0.56961	-0.14867	89	0.02919	-0.11100	139	0.33172	0.24138	189	0.88952	0.06228
40	0.55901	-0.15426	90	0.02354	-0.10053	140	0.34334	0.23987	190	0.90056	0.05808
41	0.54836	-0.15975	91	0.01852	-0.08974	141	0.35494	0.23815	191	0.91160	0.05389
42	0.53766	-0.16515	92	0.01411	-0.07870	142	0.36651	0.23625	192	0.92265	0.04971
43	0.52690	-0.17043	93	0.01024	-0.06745	143	0.37805	0.23419	193	0.93372	0.04556
44	0.51608	-0.17558	94	0.00694	-0.05603	144	0.38956	0.23196	194	0.94479	0.04140
45	0.50519	-0.18061	95	0.00440	-0.04443	145	0.40103	0.22957	195	0.95586	0.03722
46	0.49425	-0.18550	96	0.00267	-0.03269	146	0.41248	0.22705	196	0.96692	0.03301
47	0.48324	-0.19024	97	0.00149	-0.02086	147	0.42389	0.22439	197	0.97796	0.02875
48	0.47216	-0.19483	98	0.00044	-0.00901	148	0.43528	0.22160	198	0.98899	0.02442
49	0.46101	-0.19924	99	-0.00001	0.00283	149	0.44663	0.21870	199	1.00000	0.02004

Table 60: Airfoil shape - Interpolated 7272.00%airfoil

ID	x	У	ID	x	У	ID	x	У	ID	x	У
[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
0	0.9993	-0.02908	50	0.4336	-0.3550	100	0.0012	0.0286	150	0.4716	0.3590
1	0.9872	-0.03423	51	0.4203	-0.3563	101	0.0023	0.0417	151	0.4844	0.3571
2	0.9752	-0.03944	52	0.4070	-0.3571	102	0.0038	0.0547	152	0.4972	0.3550
3	0.9636	-0.04561	53	0.3937	-0.3576	103	0.0058	0.0677	153	0.5099	0.3525
4	0.9523	-0.05236	54	0.3804	-0.3576	104	0.0084	0.0805	154	0.5226	0.3499
5	0.9412	-0.05946	55	0.3671	-0.3572	105	0.0115	0.0932	155	0.5352	0.3469
6	0.9303	-0.06687	56	0.3538	-0.3564	106	0.0150	0.1058	156	0.5478	0.3438
7	0.9196	-0.07454	57	0.3406	-0.3552	107	0.0189	0.1183	157	0.5603	0.3404
8	0.9091	-0.08243	58	0.3274	-0.3536	108	0.0232	0.1306	158	0.5727	0.3367
9	0.8987	-0.09056	59	0.3142	-0.3516	109	0.0280	0.1428	159	0.5851	0.3328
10	0.8885	-0.09895	60	0.3012	-0.3492	110	0.0333	0.1547	160	0.5974	0.3287
11	0.8784	-0.10745	61	0.2882	-0.3464	111	0.0390	0.1665	161	0.6096	0.3244
12	0.8684	-0.11603	62	0.2753	-0.3431	112	0.0451	0.1780	162	0.6217	0.3199
13	0.8584	-0.12464	63	0.2625	-0.3394	113	0.0516	0.1893	163	0.6338	0.3151
14	0.8483	-0.13327	64	0.2499	-0.3354	114	0.0585	0.2003	164	0.6458	0.3102
15	0.8383	-0.14189	65	0.2373	-0.3309	115	0.0659	0.2111	165	0.6577	0.3050
16	0.8283	-0.15049	66	0.2250	-0.3259	116	0.0736	0.2216	166	0.6695	0.2996
17	0.8182	-0.15906	67	0.2128	-0.3206	117	0.0818	0.2317	167	0.6812	0.2941
18	0.8081	-0.16760	68	0.2008	-0.3149	118	0.0903	0.2415	168	0.6929	0.2883
19	0.7979	-0.17608	69	0.1890	-0.3088	119	0.0992	0.2510	169	0.7044	0.2824
20	0.7877	-0.18450	70	0.1775	-0.3023	120	0.1085	0.2602	170	0.7159	0.2763
21	0.7774	-0.19284	71	0.1661	-0.2955	121	0.1181	0.2689	171	0.7272	0.2700
22	0.7671	-0.20110	72	0.1550	-0.2882	122	0.1280	0.2774	172	0.7385	0.2635
23	0.7566	-0.20926	73	0.1441	-0.2806	123	0.1382	0.2854	173	0.7496	0.2568
24	0.7461	-0.21731	74	0.1335	-0.2726	124	0.1488	0.2930	174	0.7607	0.2500
25	0.7354	-0.22523	75	0.1233	-0.2642	125	0.1596	0.3003	175	0.7716	0.2430
26	0.7247	-0.23302	76	0.1133	-0.2555	126	0.1706	0.3071	176	0.7825	0.2358
27	0.7139	-0.24067	77	0.1036	-0.2464	127	0.1819	0.3135	177	0.7932	0.2285
28	0.7029	-0.24817	78	0.0943	-0.2370	128	0.1934	0.3195	178	0.8039	0.2210
29	0.6918	-0.25550	79	0.0854	-0.2272	129	0.2051	0.3251	179	0.8144	0.2133
30	0.6806	-0.26265	80	0.0768	-0.2171	130	0.2170	0.3304	180	0.8248	0.2055
31	0.6693	-0.26963	81	0.0687	-0.2067	131	0.2290	0.3352	181	0.8351	0.1975
32	0.6579	-0.27641	82	0.0609	-0.1960	132	0.2412	0.3396	182	0.8453	0.1894
33	0.6464	-0.28298	83	0.0536	-0.1850	133	0.2536	0.3436	183	0.8553	0.1811
34	0.6347	-0.28934	84	0.0467	-0.1737	134	0.2660	0.3473	184	0.8653	0.1727
35	0.6229	-0.29548	85	0.0403	-0.1621	135	0.2786	0.3505	185	0.8751	0.1641
36	0.6110	-0.30139	86	0.0343	-0.1504	136	0.2912	0.3535	186	0.8848	0.1554
37	0.5990	-0.30706	87	0.0288	-0.1384	137	0.3039	0.3560	187	0.8944	0.1465
38	0.5868	-0.31248	88	0.0237	-0.1262	138	0.3167	0.3582	188	0.9039	0.1375
39	0.5746	-0.31764	89	0.0192	-0.1138	139	0.3295	0.3601	189	0.9132	0.1284
40	0.5622	-0.32253	90	0.0151	-0.1013	140	0.3424	0.3616	190	0.9224	0.1191
41	0.5497	-0.32713	91	0.0115	-0.0886	141	0.3553	0.3628	191	0.9315	0.1097
42	0.5372	-0.33147	92	0.0084	-0.0758	142	0.3682	0.3636	192	0.9405	0.1002
43	0.5245	-0.33558	93	0.0057	-0.0629	143	0.3812	0.3642	193	0.9494	0.0906
44	0.5118	-0.33941	94	0.0037	-0.0499	144	0.3941	0.3644	194	0.9581	0.0808
45	0.4989	-0.34291	95	0.0022	-0.0368	145	0.4071	0.3642	195	0.9667	0.0709
46	0.4860	-0.34607	96	0.0010	-0.0237	146	0.4200	0.3638	196	0.9751	0.0609
47	0.4730	-0.34888	97	0.0003	-0.0106	147	0.4329	0.3630	197	0.9834	0.0507
48	0.4599	-0.35133	98	0.0000	0.0024	148	0.4459	0.3619	198	0.9915	0.0404
49	0.4468	-0.35340	99	0.0004	0.0155	149	0.4587	0.3606	199	0.9993	0.0299

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	C_{L}	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.00000	0.02464	0.00000	-40.29	-0.70655	0.62488	0.20491	44.43	0.96801	0.73293	-0.25784
-177.71	0.05403	0.02534	0.09143	-36.14	-0.73188	0.51941	0.15416	48.57	0.91904	0.84130	-0.28035
-175.43	0.10805	0.02742	0.18286	-32.00	-0.75635	0.41871	0.10137	52.71	0.86109	0.94773	-0.30163
-173.14	0.16208	0.03088	0.27429	-28.00	-0.85636	0.28691	0.06527	56.86	0.79357	1.05001	-0.32226
-170.86	0.21610	0.03570	0.36571	-24.00	-1.18292	0.13960	0.01647	61.00	0.71651	1.14600	-0.34247
-168.57	0.27013	0.05599	0.39192	-20.00	-1.23596	0.08345	-0.00352	65.14	0.63044	1.23371	-0.36135
-166.29	0.32415	0.08143	0.37898	-18.00	-1.22536	0.06509	-0.00672	69.29	0.53632	1.31129	-0.38024
-164.00	0.37818	0.11112	0.36605	-16.00	-1.20476	0.04888	-0.00881	73.43	0.43546	1.37714	-0.39704
-161.71	0.43220	0.14485	0.35312	-14.00	-1.18332	0.03417	-0.01101	77.57	0.32947	1.42988	-0.41341
-159.43	0.48623	0.18242	0.34768	-12.00	-1.10093	0.02132	-0.02269	81.71	0.22019	1.46842	-0.42844
-157.14	0.54025	0.22359	0.36471	-10.00	-0.88209	0.01386	-0.04397	85.86	0.10965	1.49196	-0.44159
-154.86	0.59428	0.26810	0.38175	-8.00	-0.62981	0.01075	-0.05756	90.00	0.00000	1.50000	-0.45474
-152.57	0.64830	0.31566	0.39878	-6.00	-0.37670	0.00882	-0.06747	94.14	-0.07675	1.49196	-0.46149
-150.29	0.70233	0.36597	0.41581	-4.00	-0.12177	0.00702	-0.07680	98.29	-0.15413	1.46842	-0.46824
-148.00	0.75635	0.41871	0.41955	-2.00	0.12810	0.00663	-0.08283	102.43	-0.23063	1.42988	-0.47101
-143.86	0.73188	0.51941	0.42287	-1.00	0.25192	0.00664	-0.08534	106.57	-0.30482	1.37714	-0.47096
-139.71	0.70655	0.62488	0.42632	0.00	0.37535	0.00670	-0.08777	110.71	-0.37542	1.31129	-0.46998
-135.57	0.67760	0.73293	0.43163	1.00	0.49828	0.00681	-0.09011	114.86	-0.44131	1.23371	-0.46448
-131.43	0.64333	0.84130	0.43694	2.00	0.62052	0.00698	-0.09234	119.00	-0.50156	1.14600	-0.45897
-127.29	0.60277	0.94773	0.44389	3.00	0.74200	0.00720	-0.09447	123.14	-0.55550	1.05001	-0.45171
-123.14	0.55550	1.05001	0.45171	4.00	0.86238	0.00751	-0.09646	127.29	-0.60277	0.94773	-0.44389
-119.00	0.50156	1.14600	0.45897	5.00	0.98114	0.00796	-0.09828	131.43	-0.64333	0.84130	-0.43694
-114.86	0.44131	1.23371	0.46448	6.00	1.09662	0.00872	-0.09977	135.57	-0.67760	0.73293	-0.43163
-110.71	0.37542	1.31129	0.46998	7.00	1.20904	0.00968	-0.10095	139.71	-0.70655	0.62488	-0.42632
-106.57	0.30482	1.37714	0.47096	8.00	1.31680	0.01097	-0.10163	143.86	-0.73188	0.51941	-0.42287
-102.43	0.23063	1.42988	0.47101	9.00	1.42209	0.01227	-0.10207	148.00	-0.75635	0.41871	-0.41955
-98.29	0.15413	1.46842	0.46824	10.00	1.52361	0.01369	-0.10213	150.29	-0.70233	0.36597	-0.41581
-94.14	0.07675	1.49196	0.46149	11.00	1.61988	0.01529	-0.10174	152.57	-0.64830	0.31566	-0.39878
-90.00	0.00000	1.50000	0.45474	12.00	1.70937	0.01717	-0.10087	154.86	-0.59428	0.26810	-0.38175
-85.86	-0.07675	1.49196	0.44026	13.00	1.78681	0.01974	-0.09936	157.14	-0.54025	0.22359	-0.36471
-81.71	-0.15413	1.46842	0.42578	14.00	1.84290	0.02368	-0.09720	159.43	-0.48623	0.18242	-0.34768
-77.57	-0.23063	1.42988	0.40821	15.00	1.85313	0.03094	-0.09410	161.71	-0.43220	0.14485	-0.37026
-73.43	-0.30482	1.37714	0.38846	16.00	1.80951	0.04303	-0.09144	164.00	-0.37818	0.11112	-0.40605
-69.29	-0.37542	1.31129	0.36815	18.00	1.66033	0.07730	-0.09242	166.29	-0.32415	0.08143	-0.44184
-65.14	-0.44131	1.23371	0.34519	20.00	1.56152	0.11202	-0.09871	168.57	-0.27013	0.05599	-0.47763
-61.00	-0.50156	1.14600	0.32223	24.00	1.43327	0.18408	-0.11770	170.86	-0.21610	0.03570	-0.45714
-56.86	-0.55550	1.05001	0.29864	28.00	1.29062	0.27589	-0.14566	173.14	-0.16208	0.03088	-0.34286
-52.71	-0.60277	0.94773	0.27486	32.00	1.08050	0.41871	-0.18266	175.43	-0.10805	0.02742	-0.22857
-48.57	-0.64333	0.84130	0.25128	36.14	1.04554	0.51941	-0.20913	177.71	-0.05403	0.02534	-0.11429
-44.43	-0.67760	0.73293	0.22810	40.29	1.00936	0.62488	-0.23534	180.00	0.00000	0.02464	0.00000

Table 61: Airfoil aerodynamic coefficients - FFA-W3-211 (Re=1.00e+07)

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0000	0.0117	0.0000	-40.29	-0.7451	0.6031	0.2070	44.43	1.0125	0.7126	-0.2599
-177.71	0.0581	0.0124	0.0914	-36.14	-0.7792	0.4964	0.1456	48.57	0.9547	0.8224	-0.2821
-175.43	0.1163	0.0146	0.1828	-32.00	-0.8144	0.3946	0.0813	52.71	0.8893	0.9305	-0.3032
-173.14	0.1745	0.0181	0.2742	-28.00	-1.0778	0.2225	0.0459	56.86	0.8154	1.0344	-0.3236
-170.86	0.2327	0.0230	0.3657	-24.00	-1.1269	0.1515	0.0190	61.00	0.7329	1.1322	-0.3438
-168.57	0.2908	0.0292	0.3956	-20.00	-1.1448	0.0969	0.0006	65.14	0.6423	1.2217	-0.3629
-166.29	0.3490	0.0538	0.3887	-18.00	-1.1279	0.0774	-0.0034	69.29	0.5445	1.3012	-0.3820
-164.00	0.4072	0.0837	0.3818	-16.00	-1.0939	0.0612	-0.0058	73.43	0.4406	1.3690	-0.3994
-161.71	0.4654	0.1178	0.3749	-14.00	-1.0596	0.0466	-0.0065	77.57	0.3323	1.4237	-0.4164
-159.43	0.5236	0.1558	0.3740	-12.00	-1.0312	0.0330	-0.0075	81.71	0.2214	1.4643	-0.4323
-157.14	0.5817	0.1974	0.3914	-10.00	-0.9370	0.0202	-0.0224	85.86	0.1099	1.4899	-0.4464
-154.86	0.6399	0.2423	0.4088	-8.00	-0.6738	0.0116	-0.0558	90.00	0.0000	1.5000	-0.4605
-152.57	0.6981	0.2904	0.4262	-6.00	-0.4039	0.0091	-0.0715	94.14	-0.0769	1.4899	-0.4673
-150.29	0.7563	0.3412	0.4436	-4.00	-0.1422	0.0083	-0.0812	98.29	-0.1550	1.4643	-0.4740
-148.00	0.8144	0.3946	0.4453	-2.00	0.1158	0.0081	-0.0889	102.43	-0.2326	1.4237	-0.4769
-143.86	0.7792	0.4964	0.4443	-1.00	0.2438	0.0080	-0.0923	106.57	-0.3084	1.3690	-0.4770
-139.71	0.7451	0.6031	0.4436	0.00	0.3711	0.0081	-0.0955	110.71	-0.3811	1.3012	-0.4762
-135.57	0.7088	0.7126	0.4460	1.00	0.4976	0.0082	-0.0985	114.86	-0.4496	1.2217	-0.4713
-131.43	0.6683	0.8224	0.4485	2.00	0.6233	0.0084	-0.1013	119.00	-0.5130	1.1322	-0.4663
-127.29	0.6225	0.9305	0.4537	3.00	0.7479	0.0086	-0.1040	123.14	-0.5708	1.0344	-0.4602
-123.14	0.5708	1.0344	0.4602	4.00	0.8713	0.0090	-0.1064	127.29	-0.6225	0.9305	-0.4537
-119.00	0.5130	1.1322	0.4663	5.00	0.9932	0.0094	-0.1086	131.43	-0.6683	0.8224	-0.4485
-114.86	0.4496	1.2217	0.4713	6.00	1.1132	0.0099	-0.1105	135.57	-0.7088	0.7126	-0.4460
-110.71	0.3811	1.3012	0.4762	7.00	1.2303	0.0107	-0.1121	139.71	-0.7451	0.6031	-0.4436
-106.57	0.3084	1.3690	0.4770	8.00	1.3449	0.0115	-0.1133	143.86	-0.7792	0.4964	-0.4443
-102.43	0.2326	1.4237	0.4769	9.00	1.4540	0.0126	-0.1139	148.00	-0.8144	0.3946	-0.4453
-98.29	0.1550	1.4643	0.4740	10.00	1.5591	0.0139	-0.1140	150.29	-0.7563	0.3412	-0.4436
-94.14	0.0769	1.4899	0.4673	11.00	1.6577	0.0154	-0.1133	152.57	-0.6981	0.2904	-0.4262
-90.00	0.0000	1.5000	0.4605	12.00	1.7483	0.0172	-0.1118	154.86	-0.6399	0.2423	-0.4088
-85.86	-0.0769	1.4899	0.4450	13.00	1.8266	0.0196	-0.1093	157.14	-0.5817	0.1974	-0.3914
-81.71	-0.1550	1.4643	0.4296	14.00	1.8883	0.0229	-0.1060	159.43	-0.5236	0.1558	-0.3740
-77.57	-0.2326	1.4237	0.4112	15.00	1.9257	0.0279	-0.1023	161.71	-0.4654	0.1178	-0.3920
-73.43	-0.3084	1.3690	0.3908	16.00	1.9272	0.0360	-0.0988	164.00	-0.4072	0.0837	-0.4218
-69.29	-0.3811	1.3012	0.3698	18.00	1.8005	0.0653	-0.0949	166.29	-0.3490	0.0538	-0.4516
-65.14	-0.4496	1.2217	0.3466	20.00	1.6308	0.1045	-0.0999	168.57	-0.2908	0.0292	-0.4813
-61.00	-0.5130	1.1322	0.3233	24.00	1.4334	0.1914	-0.1258	170.86	-0.2327	0.0230	-0.4571
-56.86	-0.5708	1.0344	0.2998	28.00	1.2880	0.2862	-0.1545	173.14	-0.1745	0.0181	-0.3428
-52.71	-0.6225	0.9305	0.2761	32.00	1.1635	0.3946	-0.1839	175.43	-0.1163	0.0146	-0.2285
-48.57	-0.6683	0.8224	0.2528	36.14	1.1132	0.4964	-0.2109	177.71	-0.0581	0.0124	-0.1142
-44.43	-0.7088	0.7126	0.2299	40.29	1.0644	0.6031	-0.2376	180.00	0.0000	0.0117	0.0000

Table 62: Airfoil aerodynamic coefficients - FFA-W3-241 (Re=1.00e+07)
α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0000	0.0154	0.0000	-40.29	-0.7681	0.5681	0.2044	44.43	1.0291	0.6699	-0.2550
-177.71	0.0621	0.0161	0.0914	-36.14	-0.8166	0.4688	0.1395	48.57	0.9585	0.7721	-0.2748
-175.43	0.1242	0.0180	0.1828	-32.00	-0.8698	0.3740	0.0713	52.71	0.8832	0.8725	-0.2934
-173.14	0.1863	0.0213	0.2742	-28.00	-1.0983	0.2188	0.0440	56.86	0.8022	0.9692	-0.3114
-170.86	0.2485	0.0258	0.3657	-24.00	-1.0833	0.1598	0.0216	61.00	0.7151	1.0600	-0.3292
-168.57	0.3106	0.0328	0.3987	-20.00	-1.0699	0.1074	0.0042	65.14	0.6220	1.1431	-0.3464
-166.29	0.3727	0.0568	0.3967	-18.00	-1.0545	0.0869	-0.0003	69.29	0.5236	1.2168	-0.3635
-164.00	0.4349	0.0847	0.3947	-16.00	-1.0343	0.0684	-0.0033	73.43	0.4210	1.2796	-0.3794
-161.71	0.4970	0.1164	0.3926	-14.00	-1.0836	0.0473	-0.0028	77.57	0.3156	1.3303	-0.3951
-159.43	0.5591	0.1517	0.3954	-12.00	-1.0948	0.0308	-0.0055	81.71	0.2091	1.3676	-0.4098
-157.14	0.6212	0.1904	0.4125	-10.00	-0.9266	0.0198	-0.0295	85.86	0.1032	1.3910	-0.4230
-154.86	0.6834	0.2323	0.4296	-8.00	-0.6967	0.0143	-0.0482	90.00	0.0000	1.4000	-0.4363
-152.57	0.7455	0.2770	0.4467	-6.00	-0.4362	0.0115	-0.0648	94.14	-0.0722	1.3910	-0.4430
-150.29	0.8076	0.3244	0.4638	-4.00	-0.1625	0.0102	-0.0791	98.29	-0.1463	1.3676	-0.4497
-148.00	0.8698	0.3740	0.4618	-2.00	0.1070	0.0097	-0.0904	102.43	-0.2209	1.3303	-0.4529
-143.86	0.8166	0.4688	0.4533	-1.00	0.2399	0.0096	-0.0951	106.57	-0.2947	1.2796	-0.4537
-139.71	0.7681	0.5681	0.4452	0.00	0.3715	0.0096	-0.0995	110.71	-0.3665	1.2168	-0.4538
-135.57	0.7204	0.6699	0.4423	1.00	0.5021	0.0097	-0.1035	114.86	-0.4354	1.1431	-0.4506
-131.43	0.6709	0.7721	0.4395	2.00	0.6313	0.0099	-0.1072	119.00	-0.5005	1.0600	-0.4473
-127.29	0.6182	0.8725	0.4407	3.00	0.7595	0.0101	-0.1106	123.14	-0.5615	0.9692	-0.4440
-123.14	0.5615	0.9692	0.4440	4.00	0.8863	0.0104	-0.1138	127.29	-0.6182	0.8725	-0.4407
-119.00	0.5005	1.0600	0.4473	5.00	1.0117	0.0108	-0.1167	131.43	-0.6709	0.7721	-0.4395
-114.86	0.4354	1.1431	0.4506	6.00	1.1343	0.0114	-0.1192	135.57	-0.7204	0.6699	-0.4423
-110.71	0.3665	1.2168	0.4538	7.00	1.2553	0.0119	-0.1214	139.71	-0.7681	0.5681	-0.4452
-106.57	0.2947	1.2796	0.4537	8.00	1.3737	0.0126	-0.1232	143.86	-0.8166	0.4688	-0.4533
-102.43	0.2209	1.3303	0.4529	9.00	1.4884	0.0135	-0.1246	148.00	-0.8698	0.3740	-0.4618
-98.29	0.1463	1.3676	0.4497	10.00	1.5978	0.0146	-0.1252	150.29	-0.8076	0.3244	-0.4638
-94.14	0.0722	1.3910	0.4430	11.00	1.7000	0.0159	-0.1250	152.57	-0.7455	0.2770	-0.4467
-90.00	0.0000	1.4000	0.4363	12.00	1.7919	0.0177	-0.1237	154.86	-0.6834	0.2323	-0.4296
-85.86	-0.0722	1.3910	0.4218	13.00	1.8678	0.0203	-0.1209	157.14	-0.6212	0.1904	-0.4125
-81.71	-0.1463	1.3676	0.4073	14.00	1.9268	0.0238	-0.1172	159.43	-0.5591	0.1517	-0.3954
-77.57	-0.2209	1.3303	0.3902	15.00	1.9090	0.0323	-0.1093	161.71	-0.4970	0.1164	-0.4098
-73.43	-0.2947	1.2796	0.3712	16.00	1.8854	0.0425	-0.1052	164.00	-0.4349	0.0847	-0.4347
-69.29	-0.3665	1.2168	0.3519	18.00	1.7210	0.0767	-0.1029	166.29	-0.3727	0.0568	-0.4595
-65.14	-0.4354	1.1431	0.3306	20.00	1.5473	0.1191	-0.1101	168.57	-0.3106	0.0328	-0.4844
-61.00	-0.5005	1.0600	0.3094	24.00	1.3717	0.2018	-0.1343	170.86	-0.2485	0.0258	-0.4571
-56.86	-0.5615	0.9692	0.2881	28.00	1.3361	0.2798	-0.1577	173.14	-0.1863	0.0213	-0.3428
-52.71	-0.6182	0.8725	0.2668	32.00	1.2425	0.3740	-0.1843	175.43	-0.1242	0.0180	-0.2285
-48.57	-0.6709	0.7721	0.2457	36.14	1.1665	0.4688	-0.2100	177.71	-0.0621	0.0161	-0.1142
-44.43	-0.7204	0.6699	0.2251	40.29	1.0973	0.5681	-0.2353	180.00	0.0000	0.0154	0.0000

Table 63: Airfoil aerodynamic coefficients - FFA-W3-270blend (Re=1.00e+07)

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0000	0.0245	0.0000	-40.29	-0.7818	0.5325	0.2018	44.43	1.0349	0.6267	-0.2501
-177.71	0.0650	0.0251	0.0914	-36.14	-0.8425	0.4406	0.1364	48.57	0.9536	0.7213	-0.2674
-175.43	0.1301	0.0269	0.1828	-32.00	-0.9111	0.3528	0.0676	52.71	0.8704	0.8142	-0.2836
-173.14	0.1952	0.0299	0.2742	-28.00	-1.1034	0.2172	0.0423	56.86	0.7838	0.9035	-0.2992
-170.86	0.2603	0.0340	0.3657	-24.00	-1.1073	0.1562	0.0202	61.00	0.6932	0.9874	-0.3147
-168.57	0.3254	0.0393	0.4008	-20.00	-1.1181	0.1033	0.0040	65.14	0.5987	1.0642	-0.3298
-166.29	0.3904	0.0591	0.4022	-18.00	-1.1233	0.0818	0.0001	69.29	0.5008	1.1322	-0.3450
-164.00	0.4555	0.0849	0.4035	-16.00	-1.1186	0.0633	-0.0016	73.43	0.4002	1.1901	-0.3594
-161.71	0.5206	0.1143	0.4049	-14.00	-1.1162	0.0471	-0.0012	77.57	0.2983	1.2366	-0.3736
-159.43	0.5857	0.1470	0.4101	-12.00	-1.0958	0.0328	-0.0046	81.71	0.1964	1.2709	-0.3870
-157.14	0.6508	0.1829	0.4267	-10.00	-0.9176	0.0235	-0.0249	85.86	0.0964	1.2921	-0.3992
-154.86	0.7159	0.2216	0.4434	-8.00	-0.6931	0.0179	-0.0430	90.00	0.0000	1.3000	-0.4114
-152.57	0.7809	0.2630	0.4601	-6.00	-0.4539	0.0143	-0.0586	94.14	-0.0675	1.2921	-0.4179
-150.29	0.8460	0.3069	0.4768	-4.00	-0.1777	0.0124	-0.0760	98.29	-0.1375	1.2709	-0.4244
-148.00	0.9111	0.3528	0.4716	-2.00	0.1048	0.0116	-0.0912	102.43	-0.2088	1.2366	-0.4278
-143.86	0.8425	0.4406	0.4565	-1.00	0.2438	0.0114	-0.0976	106.57	-0.2801	1.1901	-0.4291
-139.71	0.7818	0.5325	0.4420	0.00	0.3811	0.0113	-0.1034	110.71	-0.3505	1.1322	-0.4299
-135.57	0.7244	0.6267	0.4345	1.00	0.5166	0.0114	-0.1086	114.86	-0.4191	1.0642	-0.4281
-131.43	0.6675	0.7213	0.4270	2.00	0.6504	0.0115	-0.1133	119.00	-0.4853	0.9874	-0.4263
-127.29	0.6092	0.8142	0.4248	3.00	0.7826	0.0117	-0.1176	123.14	-0.5486	0.9035	-0.4254
-123.14	0.5486	0.9035	0.4254	4.00	0.9132	0.0120	-0.1215	127.29	-0.6092	0.8142	-0.4248
-119.00	0.4853	0.9874	0.4263	5.00	1.0420	0.0123	-0.1251	131.43	-0.6675	0.7213	-0.4270
-114.86	0.4191	1.0642	0.4281	6.00	1.1687	0.0128	-0.1282	135.57	-0.7244	0.6267	-0.4345
-110.71	0.3505	1.1322	0.4299	7.00	1.2929	0.0133	-0.1310	139.71	-0.7818	0.5325	-0.4420
-106.57	0.2801	1.1901	0.4291	8.00	1.4139	0.0140	-0.1333	143.86	-0.8425	0.4406	-0.4565
-102.43	0.2088	1.2366	0.4278	9.00	1.5308	0.0148	-0.1350	148.00	-0.9111	0.3528	-0.4716
-98.29	0.1375	1.2709	0.4244	10.00	1.6420	0.0159	-0.1359	150.29	-0.8460	0.3069	-0.4768
-94.14	0.0675	1.2921	0.4179	11.00	1.7456	0.0172	-0.1360	152.57	-0.7809	0.2630	-0.4601
-90.00	0.0000	1.3000	0.4114	12.00	1.8388	0.0190	-0.1351	154.86	-0.7159	0.2216	-0.4434
-85.86	-0.0675	1.2921	0.3980	13.00	1.9176	0.0216	-0.1332	157.14	-0.6508	0.1829	-0.4267
-81.71	-0.1375	1.2709	0.3846	14.00	1.9741	0.0257	-0.1302	159.43	-0.5857	0.1470	-0.4101
-77.57	-0.2088	1.2366	0.3689	15.00	1.9991	0.0322	-0.1264	161.71	-0.5206	0.1143	-0.4220
-73.43	-0.2801	1.1901	0.3515	16.00	1.9937	0.0415	-0.1226	164.00	-0.4555	0.0849	-0.4435
-69.29	-0.3505	1.1322	0.3339	18.00	1.9172	0.0673	-0.1167	166.29	-0.3904	0.0591	-0.4650
-65.14	-0.4191	1.0642	0.3147	20.00	1.7368	0.1052	-0.1165	168.57	-0.3254	0.0393	-0.4865
-61.00	-0.4853	0.9874	0.2955	24.00	1.4732	0.1922	-0.1379	170.86	-0.2603	0.0340	-0.4571
-56.86	-0.5486	0.9035	0.2765	28.00	1.3601	0.2744	-0.1624	173.14	-0.1952	0.0299	-0.3428
-52.71	-0.6092	0.8142	0.2575	32.00	1.3016	0.3528	-0.1846	175.43	-0.1301	0.0269	-0.2285
-48.57	-0.6675	0.7213	0.2387	36.14	1.2036	0.4406	-0.2089	177.71	-0.0650	0.0251	-0.1142
-44.43	-0.7244	0.6267	0.2202	40.29	1.1169	0.5325	-0.2327	180.00	0.0000	0.0245	0.0000

Table 64: Airfoil aerodynamic coefficients - FFA-W3-301 (Re=1.00e+07)

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0000	0.0316	0.0000	-40.29	-0.8238	0.5311	0.2078	44.43	1.0835	0.6254	-0.2573
-177.71	0.0696	0.0322	0.0914	-36.14	-0.8941	0.4391	0.1373	48.57	0.9925	0.7201	-0.2735
-175.43	0.1392	0.0340	0.1828	-32.00	-0.9744	0.3513	0.0628	52.71	0.9011	0.8131	-0.2886
-173.14	0.2088	0.0370	0.2742	-28.00	-1.1630	0.2064	0.0390	56.86	0.8076	0.9025	-0.3031
-170.86	0.2784	0.0411	0.3657	-24.00	-1.1489	0.1500	0.0185	61.00	0.7111	0.9865	-0.3175
-168.57	0.3480	0.0463	0.4030	-20.00	-1.0945	0.1060	0.0044	65.14	0.6117	1.0634	-0.3319
-166.29	0.4176	0.0573	0.4080	-18.00	-1.0580	0.0873	-0.0006	69.29	0.5097	1.1316	-0.3463
-164.00	0.4872	0.0831	0.4129	-16.00	-1.0228	0.0705	-0.0034	73.43	0.4058	1.1896	-0.3601
-161.71	0.5568	0.1125	0.4178	-14.00	-0.9981	0.0547	-0.0040	77.57	0.3014	1.2362	-0.3738
-159.43	0.6264	0.1453	0.4258	-12.00	-0.9851	0.0405	-0.0027	81.71	0.1978	1.2706	-0.3868
-157.14	0.6960	0.1812	0.4430	-10.00	-0.8958	0.0292	-0.0119	85.86	0.0967	1.2920	-0.3987
-154.86	0.7656	0.2200	0.4601	-8.00	-0.6753	0.0220	-0.0345	90.00	0.0000	1.3000	-0.4106
-152.57	0.8352	0.2614	0.4773	-6.00	-0.4324	0.0173	-0.0546	94.14	-0.0677	1.2920	-0.4168
-150.29	0.9048	0.3053	0.4944	-4.00	-0.1588	0.0147	-0.0742	98.29	-0.1385	1.2706	-0.4230
-148.00	0.9744	0.3513	0.4874	-2.00	0.1345	0.0136	-0.0927	102.43	-0.2110	1.2362	-0.4262
-143.86	0.8941	0.4391	0.4683	-1.00	0.2801	0.0133	-0.1007	106.57	-0.2841	1.1896	-0.4274
-139.71	0.8238	0.5311	0.4499	0.00	0.4238	0.0133	-0.1080	110.71	-0.3568	1.1316	-0.4281
-135.57	0.7584	0.6254	0.4398	1.00	0.5651	0.0133	-0.1145	114.86	-0.4282	1.0634	-0.4267
-131.43	0.6947	0.7201	0.4297	2.00	0.7041	0.0134	-0.1202	119.00	-0.4978	0.9865	-0.4252
-127.29	0.6307	0.8131	0.4258	3.00	0.8407	0.0136	-0.1254	123.14	-0.5653	0.9025	-0.4253
-123.14	0.5653	0.9025	0.4253	4.00	0.9750	0.0139	-0.1301	127.29	-0.6307	0.8131	-0.4258
-119.00	0.4978	0.9865	0.4252	5.00	1.1068	0.0143	-0.1342	131.43	-0.6947	0.7201	-0.4297
-114.86	0.4282	1.0634	0.4267	6.00	1.2360	0.0148	-0.1379	135.57	-0.7584	0.6254	-0.4398
-110.71	0.3568	1.1316	0.4281	7.00	1.3622	0.0154	-0.1410	139.71	-0.8238	0.5311	-0.4499
-106.57	0.2841	1.1896	0.4274	8.00	1.4842	0.0162	-0.1436	143.86	-0.8941	0.4391	-0.4683
-102.43	0.2110	1.2362	0.4262	9.00	1.6009	0.0171	-0.1454	148.00	-0.9744	0.3513	-0.4874
-98.29	0.1385	1.2706	0.4230	10.00	1.7101	0.0184	-0.1463	150.29	-0.9048	0.3053	-0.4944
-94.14	0.0677	1.2920	0.4168	11.00	1.8095	0.0201	-0.1463	152.57	-0.8352	0.2614	-0.4773
-90.00	0.0000	1.3000	0.4106	12.00	1.8947	0.0225	-0.1454	154.86	-0.7656	0.2200	-0.4601
-85.86	-0.0677	1.2920	0.3975	13.00	1.9569	0.0267	-0.1437	157.14	-0.6960	0.1812	-0.4430
-81.71	-0.1385	1.2706	0.3844	14.00	1.9857	0.0338	-0.1418	159.43	-0.6264	0.1453	-0.4258
-77.57	-0.2110	1.2362	0.3690	15.00	1.9926	0.0433	-0.1400	161.71	-0.5568	0.1125	-0.4350
-73.43	-0.2841	1.1896	0.3521	16.00	1.9961	0.0535	-0.1382	164.00	-0.4872	0.0831	-0.4529
-69.29	-0.3568	1.1316	0.3349	18.00	1.9639	0.0770	-0.1335	166.29	-0.4176	0.0573	-0.4708
-65.14	-0.4282	1.0634	0.3163	20.00	1.8117	0.1116	-0.1313	168.57	-0.3480	0.0463	-0.4888
-61.00	-0.4978	0.9865	0.2977	24.00	1.5607	0.1910	-0.1466	170.86	-0.2784	0.0411	-0.4571
-56.86	-0.5653	0.9025	0.2794	28.00	1.4679	0.2719	-0.1724	173.14	-0.2088	0.0370	-0.3428
-52.71	-0.6307	0.8131	0.2612	32.00	1.3920	0.3513	-0.1941	175.43	-0.1392	0.0340	-0.2285
-48.57	-0.6947	0.7201	0.2432	36.14	1.2773	0.4391	-0.2179	177.71	-0.0696	0.0322	-0.1142
-44.43	-0.7584	0.6254	0.2255	40.29	1.1768	0.5311	-0.2411	180.00	0.0000	0.0316	0.0000

Table 65: Airfoil aerodynamic coefficients - FFA-W3-330blend (Re=1.00e+07)

α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0000	0.0371	0.0000	-40.29	-0.8440	0.5337	0.2109	44.43	1.1069	0.6279	-0.2613
-177.71	0.0717	0.0377	0.0914	-36.14	-0.9189	0.4419	0.1352	48.57	1.0112	0.7223	-0.2764
-175.43	0.1435	0.0395	0.1828	-32.00	-1.0049	0.3542	0.0551	52.71	0.9159	0.8152	-0.2906
-173.14	0.2153	0.0424	0.2742	-28.00	-1.1130	0.2049	0.0321	56.86	0.8190	0.9044	-0.3042
-170.86	0.2871	0.0465	0.3657	-24.00	-1.0542	0.1543	0.0126	61.00	0.7198	0.9882	-0.3178
-168.57	0.3589	0.0517	0.4031	-20.00	-0.9824	0.1096	-0.0028	65.14	0.6180	1.0649	-0.3315
-166.29	0.4306	0.0606	0.4081	-18.00	-0.9417	0.0924	-0.0074	69.29	0.5140	1.1328	-0.3452
-164.00	0.5024	0.0865	0.4131	-16.00	-0.8933	0.0759	-0.0110	73.43	0.4086	1.1906	-0.3584
-161.71	0.5742	0.1158	0.4181	-14.00	-0.8547	0.0605	-0.0125	77.57	0.3029	1.2370	-0.3716
-159.43	0.6460	0.1485	0.4262	-12.00	-0.8234	0.0464	-0.0117	81.71	0.1985	1.2711	-0.3840
-157.14	0.7178	0.1843	0.4437	-10.00	-0.7954	0.0344	-0.0108	85.86	0.0969	1.2922	-0.3954
-154.86	0.7896	0.2231	0.4611	-8.00	-0.6365	0.0254	-0.0276	90.00	0.0000	1.3000	-0.4069
-152.57	0.8613	0.2645	0.4785	-6.00	-0.3909	0.0199	-0.0510	94.14	-0.0678	1.2922	-0.4127
-150.29	0.9331	0.3083	0.4960	-4.00	-0.1307	0.0165	-0.0714	98.29	-0.1389	1.2711	-0.4186
-148.00	1.0049	0.3542	0.4883	-2.00	0.1617	0.0150	-0.0917	102.43	-0.2120	1.2370	-0.4216
-143.86	0.9189	0.4419	0.4678	-1.00	0.3112	0.0147	-0.1011	106.57	-0.2860	1.1906	-0.4225
-139.71	0.8440	0.5337	0.4480	0.00	0.4595	0.0146	-0.1098	110.71	-0.3598	1.1328	-0.4231
-135.57	0.7748	0.6279	0.4369	1.00	0.6056	0.0146	-0.1177	114.86	-0.4326	1.0649	-0.4216
-131.43	0.7079	0.7223	0.4259	2.00	0.7486	0.0148	-0.1247	119.00	-0.5038	0.9882	-0.4202
-127.29	0.6411	0.8152	0.4215	3.00	0.8886	0.0150	-0.1309	123.14	-0.5733	0.9044	-0.4205
-123.14	0.5733	0.9044	0.4205	4.00	1.0254	0.0154	-0.1364	127.29	-0.6411	0.8152	-0.4215
-119.00	0.5038	0.9882	0.4202	5.00	1.1587	0.0159	-0.1413	131.43	-0.7079	0.7223	-0.4259
-114.86	0.4326	1.0649	0.4216	6.00	1.2882	0.0165	-0.1454	135.57	-0.7748	0.6279	-0.4369
-110.71	0.3598	1.1328	0.4231	7.00	1.4128	0.0173	-0.1487	139.71	-0.8440	0.5337	-0.4480
-106.57	0.2860	1.1906	0.4225	8.00	1.5309	0.0183	-0.1511	143.86	-0.9189	0.4419	-0.4678
-102.43	0.2120	1.2370	0.4216	9.00	1.6406	0.0196	-0.1526	148.00	-1.0049	0.3542	-0.4883
-98.29	0.1389	1.2711	0.4186	10.00	1.7392	0.0215	-0.1531	150.29	-0.9331	0.3083	-0.4960
-94.14	0.0678	1.2922	0.4127	11.00	1.8197	0.0244	-0.1525	152.57	-0.8613	0.2645	-0.4785
-90.00	0.0000	1.3000	0.4069	12.00	1.8706	0.0296	-0.1512	154.86	-0.7896	0.2231	-0.4611
-85.86	-0.0678	1.2922	0.3942	13.00	1.8922	0.0377	-0.1496	157.14	-0.7178	0.1843	-0.4437
-81.71	-0.1389	1.2711	0.3816	14.00	1.8791	0.0482	-0.1456	159.43	-0.6460	0.1485	-0.4262
-77.57	-0.2120	1.2370	0.3667	15.00	1.8811	0.0583	-0.1435	161.71	-0.5742	0.1158	-0.4353
-73.43	-0.2860	1.1906	0.3503	16.00	1.8635	0.0699	-0.1409	164.00	-0.5024	0.0865	-0.4531
-69.29	-0.3598	1.1328	0.3336	18.00	1.7332	0.1016	-0.1371	166.29	-0.4306	0.0606	-0.4710
-65.14	-0.4326	1.0649	0.3156	20.00	1.5935	0.1391	-0.1408	168.57	-0.3589	0.0517	-0.4888
-61.00	-0.5038	0.9882	0.2975	24.00	1.4670	0.2100	-0.1569	170.86	-0.2871	0.0465	-0.4571
-56.86	-0.5733	0.9044	0.2798	28.00	1.4483	0.2820	-0.1797	173.14	-0.2153	0.0424	-0.3428
-52.71	-0.6411	0.8152	0.2623	32.00	1.4356	0.3542	-0.2014	175.43	-0.1435	0.0395	-0.2285
-48.57	-0.7079	0.7223	0.2449	36.14	1.3128	0.4419	-0.2240	177.71	-0.0717	0.0377	-0.1142
-44.43	-0.7748	0.6279	0.2279	40.29	1.2058	0.5337	-0.2461	180.00	0.0000	0.0371	0.0000

Table 66: Airfoil aerodynamic coefficients - FFA-W3-360 (Re=1.00e+07)

α	C_{L}	$C_{\rm D}$	$\mathbf{C}_{\mathbf{M}}$	α	$C_{\rm L}$	$C_{\rm D}$	$\mathbf{C}_{\mathbf{M}}$	α	$C_{\rm L}$	$C_{\rm D}$	C_{M}
[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]	[deg]	[-]	[-]	[-]
-180.00	0.0	0.60000	0.0	-24.00	0.0	0.60000	0.0	60.00	0.0	0.60000	0.0
-175.00	0.0	0.60000	0.0	-22.00	0.0	0.60000	0.0	65.00	0.0	0.60000	0.0
-170.00	0.0	0.60000	0.0	-20.00	0.0	0.60000	0.0	70.00	0.0	0.60000	0.0
-165.00	0.0	0.60000	0.0	-18.00	0.0	0.60000	0.0	75.00	0.0	0.60000	0.0
-160.00	0.0	0.60000	0.0	-16.00	0.0	0.60000	0.0	80.00	0.0	0.60000	0.0
-155.00	0.0	0.60000	0.0	-14.00	0.0	0.60000	0.0	85.00	0.0	0.60000	0.0
-150.00	0.0	0.60000	0.0	-12.00	0.0	0.60000	0.0	90.00	0.0	0.60000	0.0
-145.00	0.0	0.60000	0.0	-10.00	0.0	0.60000	0.0	95.00	0.0	0.60000	0.0
-140.00	0.0	0.60000	0.0	-8.00	0.0	0.60000	0.0	100.00	0.0	0.60000	0.0
-135.00	0.0	0.60000	0.0	-6.00	0.0	0.60000	0.0	105.00	0.0	0.60000	0.0
-130.00	0.0	0.60000	0.0	-4.00	0.0	0.60000	0.0	110.00	0.0	0.60000	0.0
-125.00	0.0	0.60000	0.0	-2.00	0.0	0.60000	0.0	115.00	0.0	0.60000	0.0
-120.00	0.0	0.60000	0.0	0.00	0.0	0.60000	0.0	120.00	0.0	0.60000	0.0
-115.00	0.0	0.60000	0.0	2.00	0.0	0.60000	0.0	125.00	0.0	0.60000	0.0
-110.00	0.0	0.60000	0.0	4.00	0.0	0.60000	0.0	130.00	0.0	0.60000	0.0
-105.00	0.0	0.60000	0.0	6.00	0.0	0.60000	0.0	135.00	0.0	0.60000	0.0
-100.00	0.0	0.60000	0.0	8.00	0.0	0.60000	0.0	140.00	0.0	0.60000	0.0
-95.00	0.0	0.60000	0.0	10.00	0.0	0.60000	0.0	145.00	0.0	0.60000	0.0
-90.00	0.0	0.60000	0.0	12.00	0.0	0.60000	0.0	150.00	0.0	0.60000	0.0
-85.00	0.0	0.60000	0.0	14.00	0.0	0.60000	0.0	155.00	0.0	0.60000	0.0
-80.00	0.0	0.60000	0.0	16.00	0.0	0.60000	0.0	160.00	0.0	0.60000	0.0
-75.00	0.0	0.60000	0.0	18.00	0.0	0.60000	0.0	165.00	0.0	0.60000	0.0
-70.00	0.0	0.60000	0.0	20.00	0.0	0.60000	0.0	170.00	0.0	0.60000	0.0
-65.00	0.0	0.60000	0.0	22.00	0.0	0.60000	0.0	175.00	0.0	0.60000	0.0
-60.00	0.0	0.60000	0.0	24.00	0.0	0.60000	0.0	180.00	0.0	0.60000	0.0

Table 67: Airfoil aerodynamic coefficients - Cylinder

B.3 Blade Structure

Table 68: Beam structural properties of the blade in HAWC2 format

s	dm	x_{cg}	y_{cg}	ri_x	ri_y	x_{sh}	y_{sh}	\mathbf{E}	\mathbf{G}
0.00e + 00	2.33e+03	-1.21e-02	2.51e-04	1.59e + 00	1.60e + 00	-1.39e-02	2.55e-04	$3.81e{+10}$	5.40e + 09
1.93e + 00	1.75e + 03	-3.52e-02	1.41e-03	1.55e + 00	1.63e + 00	-5.59e-02	2.28e-03	$3.50e{+}10$	5.21e + 09
2.90e + 00	1.31e + 03	-6.65e-02	2.16e-03	1.36e + 00	1.71e + 00	-1.09e-01	9.22e-03	2.06e + 10	3.45e + 09
3.87e + 00	1.31e + 03	-5.63e-02	3.80e-03	1.35e + 00	1.67e + 00	-8.96e-02	1.34e-02	1.80e + 10	3.06e + 09
4.83e + 00	1.31e + 03	-6.87e-02	6.98e-03	1.36e + 00	1.59e + 00	-1.29e-01	1.49e-02	1.64e + 10	2.85e + 09
$5.80e \pm 00$	$1.26e \pm 0.3$	-2.90e-02	1.45e-02	$1.35e \pm 00$	$1.53e \pm 00$	-6.65e-02	2.83e-02	1.63e + 10	2.82e + 09
$6.77e \pm 00$	1.21e+03	1.20e-02	2.19e-02	1.34e + 00	1.47e + 00	1.08e-02	4.25e-02	1.60e + 10	2.77e+09
7.74e+00	1.15e+03	4 83e-02	2.80e-02	1.33e+00	1.41e+00	8 95e-02	5 46e-02	1.536 + 10 1.57e + 10	2.71e+0.9
8.70e+00	$1.09e \pm 0.3$	8.55e-02	3.30e-02	1.30e+00	$1.36e \pm 00$	1.82e-01	6.51e-02	1.54e + 10	$2.65e \pm 09$
$9.67e \pm 00$	1.05e+0.03 1.04e+0.03	1 25e-01	3.79e-02	1.30c+00 1.23e+00	$1.36e \pm 00$	2.98e-01	7 50e-02	1.54e + 10 1.52e + 10	2.000+00 2.61e+00
$1.16e \pm 01$	9.71 ± 0.02	2.020-01	4.990-02	1.23c + 00 $1.07e \pm 00$	$1.38e \pm 00$	5.68e-01	1.00e-02	1.02c + 10 $1.49e \pm 10$	2.010+0.00 2.50e+0.00
1.100 + 01 1.350 + 01	9.110 + 02	2.020-01	5 320 02	0.70001	1.300 + 00	7.010.01	1.02c-01	1.490 + 10 1.490 + 10	2.300 + 0.00
$1.55e \pm 01$	$9.19e \pm 02$ $8.75e \pm 02$	2.75e-01	5.32e-02	9.70e-01	$1.42e \pm 00$ $1.47e \pm 00$	7.91e-01	1.11e-01	$1.42e \pm 10$ $1.24e \pm 10$	2.30e+09
$1.54e \pm 01$	$8.75e \pm 02$	3.31e-01	5.13e-02	9.02e-01	1.47e+00 1.52a+00	9.13e-01	1.01e-01	$1.34e \pm 10$ $1.22a \pm 10$	2.190 ± 0.00
$1.74e \pm 01$	$7.29e \pm 02$	3.77e-01	3.02e-02	8.40e-01	1.52e + 00	1.01e+00 1.07e+00	8.98e-02	$1.23e \pm 10$	2.02e+09
$1.95e \pm 01$	$7.74e \pm 02$	4.10e-01	4.51e-02	8.02e-01	$1.54e \pm 00$ $1.52e \pm 00$	1.07e+00 1.12e+00	7.95e-02	1.10e + 10 1.10e + 10	$1.69e \pm 09$ $1.70e \pm 00$
2.12e + 01	7.10e + 02	4.54e-01	5.05e-02	7.07e-01	1.55e+00	1.13e+00	0.94e-02	1.10e + 10	1.79e + 09
2.32e+01	6.66e + 02	4.83e-01	2.95e-02	7.49e-01	1.51e+00	1.16e + 00	6.36e-02	1.05e + 10	1.69e + 09
2.51e+01	6.30e + 02	5.01e-01	2.66e-02	7.39e-01	1.49e+00	1.17e+00	6.10e-02	1.02e + 10	1.63e+09
2.70e+01	5.96e + 02	5.19e-01	2.42e-02	7.24e-01	1.45e+00	1.17e+00	5.83e-02	1.01e + 10	1.60e+09
2.90e+01	5.67e+02	5.31e-01	2.29e-02	7.12e-01	1.40e+00	1.16e+00	5.64e-02	1.00e + 10	1.57e+09
3.09e + 01	5.44e + 02	5.24e-01	2.21e-02	6.96e-01	1.36e + 00	1.13e+00	5.42e-02	1.01e + 10	1.57e + 09
3.29e + 01	5.25e + 02	5.10e-01	2.30e-02	6.77e-01	1.31e + 00	1.08e + 00	6.81e-02	1.02e + 10	1.59e + 09
3.48e + 01	5.08e + 02	4.97e-01	2.20e-02	6.56e-01	1.26e + 00	1.04e + 00	6.51e-02	1.05e + 10	1.63e + 09
3.67e + 01	4.91e + 02	4.82e-01	2.09e-02	6.33e-01	1.21e + 00	9.92e-01	6.12e-02	1.09e + 10	1.68e + 09
3.87e + 01	4.74e + 02	4.66e-01	1.92e-02	6.08e-01	1.15e + 00	9.42e-01	5.73e-02	1.13e + 10	1.73e + 09
4.06e + 01	4.56e + 02	4.46e-01	1.73e-02	5.79e-01	1.10e + 00	8.89e-01	5.26e-02	1.18e + 10	1.78e + 09
4.25e + 01	4.40e + 02	4.27e-01	1.59e-02	5.50e-01	1.04e + 00	8.35e-01	4.83e-02	1.22e + 10	1.84e + 09
4.45e + 01	4.22e + 02	4.08e-01	1.40e-02	5.20e-01	9.95e-01	7.82e-01	4.40e-02	1.27e + 10	1.90e + 09
4.64e + 01	4.05e + 02	3.89e-01	1.26e-02	4.89e-01	9.43e-01	7.33e-01	3.91e-02	1.33e + 10	1.97e + 09
$4.83e{+}01$	3.86e + 02	3.79e-01	1.17e-02	4.60e-01	8.87e-01	7.00e-01	4.20e-02	1.40e + 10	2.06e + 09
$5.03e{+}01$	3.69e + 02	3.61e-01	1.17e-02	4.29e-01	8.39e-01	6.54 e- 01	4.02e-02	1.47e + 10	2.16e + 09
5.22e + 01	$3.53e{+}02$	3.44e-01	1.21e-02	4.00e-01	7.93e-01	6.10e-01	3.86e-02	$1.55e{+}10$	2.26e + 09
$5.41e{+}01$	3.37e + 02	3.29e-01	1.29e-02	3.71e-01	7.49e-01	5.72e-01	3.76e-02	1.64e + 10	2.38e + 09
5.61e + 01	3.21e + 02	3.14e-01	1.39e-02	3.44e-01	7.08e-01	5.36e-01	3.70e-02	$1.73e{+}10$	2.50e+09
5.80e + 01	3.06e + 02	3.03e-01	1.49e-02	3.19e-01	6.65 e- 01	5.05e-01	3.63e-02	1.83e + 10	2.63e + 09
5.99e + 01	2.91e + 02	2.91e-01	1.61e-02	2.96e-01	6.28e-01	4.77e-01	3.39e-02	$1.93e{+}10$	2.77e + 09
6.19e + 01	2.76e + 02	2.79e-01	1.74e-02	2.74e-01	5.93e-01	4.51e-01	3.39e-02	2.03e+10	2.91e + 09
6.38e + 01	2.61e + 02	2.69e-01	1.85e-02	2.55e-01	5.59e-01	4.28e-01	3.39e-02	2.12e + 10	3.04e + 09
6.58e + 01	2.46e + 02	2.59e-01	1.94e-02	2.37e-01	5.28e-01	4.08e-01	3.38e-02	2.22e + 10	3.17e + 09
6.77e + 01	2.32e + 02	2.49e-01	2.01e-02	2.21e-01	4.99e-01	3.92e-01	3.35e-02	2.32e + 10	3.30e + 09
6.96e + 01	2.17e + 02	2.41e-01	2.05e-02	2.07e-01	4.73e-01	3.80e-01	3.31e-02	2.40e + 10	3.43e + 09
7.16e + 01	2.03e+02	2.32e-01	2.06e-02	1.94e-01	4.50e-01	3.70e-01	3.24e-02	2.49e + 10	3.56e + 09
7.35e + 01	1.88e + 02	2.24e-01	2.05e-02	1.82e-01	4.29e-01	3.61e-01	3.15e-02	2.56e + 10	3.68e + 09
7.54e + 01	1.74e + 02	2.16e-01	2.00e-02	1.72e-01	4.09e-01	3.53e-01	3.04e-02	2.64e + 10	3.81e + 09
$7.74e \pm 01$	1.60e + 02	2.09e-01	1.94e-02	1.63e-01	3.90e-01	3.45e-01	2.90e-02	2.72e + 10	3.95e+09
$7.93e \pm 01$	1.45e + 02	2.01e-01	1.86e-02	1.55e-01	3.73e-01	3.38e-01	2.76e-02	2.81e + 10	4.09e+09
$8.12e \pm 01$	1.31e+02	1.93e-01	1.79e-02	1.47e-01	3.57e-01	3.29e-01	2.64e-02	2.88e + 10	4.23e+09
$8.32e \pm 01$	$1.18e \pm 02$	1.85e-01	1.76e-02	1.39e-01	3.43e-01	3.20e-01	2.54e-02	2.94e + 10	$4.36e \pm 09$
8.51e+01	1.04e+02	1.75e-01	1.75e-02	1.31e-01	3.30e-01	3.09e-01	2.49e-02	2.98e + 10	4.49e + 09
8.70e+01	$9.04e \pm 01$	1.63e-01	1.75e-02	1.23e-01	3.18e-01	2.96e-01	2.44e-02	$3.01e \pm 10$	$4.62e \pm 09$
$8.90e \pm 01$	$7.58e \pm 01$	1.48e-01	1.74e-02	1.12e-01	3.04e-01	2.78e-01	2.38e-02	$3.03e \pm 10$	$4.75e \pm 09$
9.000 + 01	$6.06e \pm 01$	1.100-01	1 720-02	9.970-02	2.870-01	2.530-01	2.300-02	$3.03e\pm 10$	4 910±00
9.000 F01	$451e\pm01$	9.840-02	1 600-02	8 250-02	2.640-01	2.000-01	2.010-02	2.050 ± 10	5 020±00
9.200 ± 01	2.87 ± 01	5 70 <u>0</u> 02	1 300-02	6 100-02	2.04-01 2.3/0.01	1 830-01	1 600.02	2.500 ± 10 2.87 ± 10	5 13o±09
9.400+01 9.670+01	$1 400 \pm 00$	_2 21 0 04	1 280 02	5 210 02	2.040-01	5 650 02	1.60c-02	2.010+10 3.76oJ 10	5 010 + 00
2.01CT01	1.406±00	-2.210-04	1.006-00	0.016-00	2.106-02	0.000-04	1.006-09	0.106 ± 10	0.916409

Table 69: Beam structural properties of the blade in HAWC2 format

s	I_r	I_{u}	Κ	k_{r}	k_{u}	А	pitch	x_{e}	y_e
0.00e + 00	3.09e + 00	3.14e + 00	6.75e + 00	5.40e-01	5.41e-01	1.22e + 00	-5.89e-01	-1.31e-02	2.51e-04
1.93e + 00	2.32e + 00	2.60e + 00	5.36e + 00	5.69e-01	5.18e-01	9.72e-01	-8.26e + 01	-4.37e-02	1.26e-03
2.90e+00	2.04e + 00	3.43e+00	5.43e + 00	5.44e-01	5.11e-01	$1.10e \pm 00$	-8.42e+01	-9.38e-02	1.88e-03
3.87e + 00	2.28e+00	3.70e+00	5.91e + 00	5.40e-01	5.38e-01	1.24e + 00	-8.38e+01	-8.70e-02	3.32e-03
4.83e+00	2.47e+00	3.68e + 00	6.08e + 00	5.34e-01	5.55e-01	1.33e+00	-8.25e+01	-8.24e-02	7.63e-03
5.80e + 00	2.37e+00	3.32e + 00	5.57e + 00	5.47e-01	5.33e-01	1.29e + 00	-8.05e+01	-4.43e-02	1.47e-02
6.77e + 00	2.27e+00	2.97e + 00	5.00e+00	5.57e-01	5.06e-01	1.26e + 00	$-7.72e \pm 01$	-3.86e-03	2.16e-02
7.74e + 00	2.17e + 00	2.66e + 00	4.45e + 00	5.66e-01	4.75e-01	1.22e+00	-7.14e + 01	3.27e-02	2.75e-02
8.70e + 00	2.06e+00	2.36e + 00	3.88e + 00	5.75e-01	4.39e-01	1.19e + 00	-5.65e+01	7.03e-02	3.22e-02
9.67e + 00	1.87e + 00	2.18e+00	3.31e+00	5.83e-01	4.00e-01	1.15e + 00	-2.83e+01	1.10e-01	3.69e-02
1.16e + 01	1.41e + 00	2.10e+00	2.35e+00	5.82e-01	3.32e-01	1.11e + 00	-1.00e+01	1.90e-01	4.80e-02
1.35e + 01	1.15e + 00	2.20e+00	1.78e + 00	5.59e-01	2.87e-01	1.10e + 00	-5.87e + 00	2.72e-01	5.01e-02
1.54e + 01	1.01e + 00	2.36e + 00	1.52e + 00	5.27e-01	2.63e-01	1.11e + 00	-3.78e + 00	3.43e-01	4.78e-02
1.74e + 01	9.17e-01	2.59e + 00	1.34e + 00	4.89e-01	2.52e-01	1.13e + 00	-2.35e+00	4.01e-01	4.62e-02
1.93e + 01	8.13e-01	2.61e + 00	1.13e + 00	4.47e-01	2.49e-01	1.11e + 00	-1.65e + 00	4.51e-01	4.06e-02
2.12e + 01	7.20e-01	2.50e + 00	9.29e-01	3.94e-01	2.52e-01	1.07e + 00	-1.28e + 00	4.96e-01	3.12e-02
2.32e + 01	6.69e-01	2.39e + 00	7.85e-01	3.41e-01	2.61e-01	1.03e+00	-1.02e+00	5.28e-01	2.37e-02
2.51e+01	6.33e-01	2.25e + 00	6.91e-01	3.01e-01	2.73e-01	1.00e+00	-8.18e-01	5.48e-01	2.05e-02
2.70e + 01	5.84e-01	2.03e+00	5.92e-01	2.64e-01	2.86e-01	9.63e-01	-6.25e-01	5.69e-01	1.78e-02
2.90e + 01	5.41e-01	1.84e + 00	5.14e-01	2.33e-01	2.99e-01	9.22e-01	-4.45e-01	5.81e-01	1.64e-02
3.09e + 01	4.94e-01	1.64e + 00	4.54e-01	2.18e-01	3.08e-01	8.81e-01	-3.00e-01	5.73e-01	1.57e-02
3.29e + 01	4.45e-01	1.46e + 00	4.08e-01	2.17e-01	3.12e-01	8.40e-01	-2.07e-01	5.58e-01	1.73e-02
3.48e + 01	3.93e-01	1.27e + 00	3.66e-01	2.21e-01	3.14e-01	7.94e-01	-1.01e-01	5.44e-01	1.65e-02
3.67e + 01	3.43e-01	1.09e + 00	3.25e-01	2.25e-01	3.13e-01	7.46e-01	-2.03e-02	5.28e-01	1.56e-02
3.87e + 01	2.95e-01	9.38e-01	2.85e-01	2.30e-01	3.10e-01	7.00e-01	5.80e-02	5.10e-01	1.42e-02
4.06e + 01	2.50e-01	7.96e-01	2.47e-01	2.37e-01	3.04e-01	6.56e-01	9.54e-02	4.87e-01	1.26e-02
4.25e + 01	2.11e-01	6.72 e- 01	2.13e-01	2.47e-01	2.96e-01	6.15e-01	1.57e-01	4.65e-01	1.15e-02
4.45e + 01	1.74e-01	5.61e-01	1.81e-01	2.61e-01	2.88e-01	5.73e-01	1.91e-01	4.43e-01	9.93e-03
4.64e + 01	1.42e-01	4.67e-01	1.52e-01	2.76e-01	2.78e-01	5.32e-01	2.24e-01	4.21e-01	8.85e-03
4.83e + 01	1.15e-01	3.81e-01	1.25e-01	2.93e-01	2.66e-01	4.89e-01	2.87e-01	4.03e-01	8.35e-03
5.03e + 01	9.16e-02	3.12e-01	1.03e-01	3.11e-01	2.55e-01	4.49e-01	3.28e-01	3.83e-01	8.63e-03
5.22e + 01	7.24e-02	2.54e-01	8.49e-02	3.31e-01	2.44e-01	4.11e-01	3.66e-01	3.64e-01	9.28e-03
$5.41e{+}01$	5.68e-02	2.07e-01	6.90e-02	3.53e-01	2.33e-01	3.75e-01	4.10e-01	3.47e-01	1.03e-02
5.61e + 01	4.43e-02	1.68e-01	5.56e-02	3.76e-01	2.22e-01	3.42e-01	4.52e-01	3.30e-01	1.16e-02
5.80e + 01	3.45e-02	1.34e-01	4.46e-02	4.01e-01	2.12e-01	3.11e-01	4.95e-01	3.16e-01	1.28e-02
5.99e + 01	2.68e-02	1.09e-01	3.58e-02	4.31e-01	2.02e-01	2.82e-01	5.43e-01	3.02e-01	1.43e-02
$6.19e{+}01$	2.08e-02	8.82e-02	2.86e-02	4.56e-01	1.92e-01	2.57e-01	5.95e-01	2.89e-01	1.58e-02
$6.38e{+}01$	1.63e-02	7.13e-02	2.28e-02	4.81e-01	1.83e-01	2.33e-01	6.50e-01	2.76e-01	1.71e-02
$6.58e{+}01$	1.28e-02	5.76e-02	1.83e-02	5.06e-01	1.75e-01	2.12e-01	7.03e-01	2.65e-01	1.82e-02
6.77e + 01	1.00e-02	4.67 e- 02	1.47e-02	5.29e-01	1.68e-01	1.92e-01	7.48e-01	2.54e-01	1.91e-02
6.96e + 01	7.97e-03	3.79e-02	1.20e-02	5.53e-01	1.63e-01	1.74e-01	7.75e-01	2.44e-01	1.96e-02
7.16e + 01	6.32e-03	3.09e-02	9.81e-03	5.76e-01	1.60e-01	1.58e-01	7.81e-01	2.35e-01	1.98e-02
7.35e+01	5.02e-03	2.52e-02	8.06e-03	5.98e-01	1.57e-01	1.42e-01	7.67 e-01	2.26e-01	1.98e-02
7.54e + 01	4.02e-03	2.05e-02	6.65e-03	6.19e-01	1.56e-01	1.27e-01	7.40e-01	2.17e-01	1.94e-02
7.74e + 01	3.21e-03	1.65e-02	5.49e-03	6.38e-01	1.56e-01	1.13e-01	7.00e-01	2.10e-01	1.88e-02
7.93e + 01	2.57e-03	1.33e-02	4.54e-03	6.55e-01	1.58e-01	1.00e-01	6.52e-01	2.02e-01	1.80e-02
8.12e + 01	2.04e-03	1.06e-02	3.73e-03	6.72 e- 01	1.59e-01	8.85e-02	5.83e-01	1.93e-01	1.74e-02
8.32e + 01	1.60e-03	8.53e-03	3.04e-03	6.89e-01	1.60e-01	7.75e-02	5.14e-01	1.85e-01	1.72e-02
$8.51e{+}01$	1.24e-03	6.76e-03	2.45e-03	7.07e-01	1.62e-01	6.72e-02	4.15e-01	1.75e-01	1.71e-02
8.70e + 01	9.31e-04	5.25e-03	1.92e-03	7.28e-01	1.62e-01	5.73e-02	3.19e-01	1.64e-01	1.72e-02
$8.90e{+}01$	6.49e-04	3.89e-03	1.41e-03	7.48e-01	1.61e-01	4.73e-02	1.81e-01	1.49e-01	1.72e-02
$9.09e{+}01$	4.05e-04	2.69e-03	9.45e-04	7.69e-01	1.58e-01	3.73e-02	4.11e-02	1.29e-01	1.71e-02
$9.28e{+}01$	2.11e-04	1.68e-03	5.21e-04	7.76e-01	1.44e-01	2.80e-02	-2.43e-01	1.03e-01	1.60e-02
$9.48e{+}01$	7.52e-05	8.48e-04	1.98e-04	7.12e-01	1.16e-01	1.79e-02	-5.75e-01	6.32e-02	1.32e-02
9.67e + 01	2.07e-08	5.61e-07	5.39e-09	8.23e-01	1.74e + 00	7.38e-04	-3.58e-01	-2.23e-04	1.38e-03

η	Cap center SS	Cap center PS	Cap width SS	Cap width PS	TE width	LE width	Web1 pos	Web2 pos	Web3 pos
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0.000	63.327	-0.670	1445.023	1445.023	800.000	1000.000	-0.000	-0.000	0.000
0.010	62.548	-0.718	1441.352	1441.352	798.656	994.000	-0.000	-0.000	0.000
0.030	60.990	-0.813	1434.011	1434.011	794.555	982.000	-0.000	-442.500	442.500
0.050	59.431	-0.908	1426.670	1426.670	790.012	970.000	-2000.000	-437.500	437.500
0.100	55.536	-1.146	1398.318	1398.318	780.000	940.000	-2000.000	-425.000	425.000
0.150	51.641	-1.384	1349.966	1349.966	770.000	910.000	-2000.000	-412.500	412.500
0.200	47.745	-1.622	1301.613	1301.613	760.000	880.000	-2000.000	-400.000	400.000
0.250	43.850	-1.860	1253.261	1253.261	750.000	850.000	-2000.000	-387.500	387.500
0.325	38.006	-2.217	1180.732	1180.732	735.000	805.000	-2000.000	-368.750	368.750
0.400	32.163	-2.575	1108.203	1108.203	720.000	760.000	-2000.000	-350.000	350.000
0.475	26.320	-2.932	1035.675	1035.675	705.000	715.000	-2000.000	-331.250	331.250
0.550	20.477	-3.289	963.146	963.146	690.000	670.000	-0.000	-312.500	312.500
0.625	14.634	-3.646	890.617	890.617	675.000	625.000	-0.000	-293.750	293.750
0.700	8.791	-4.003	818.089	818.089	660.000	580.000	-0.000	-275.000	275.000
0.775	2.947	-4.360	745.560	745.560	644.994	535.000	-0.000	-256.250	256.250
0.850	-2.896	-4.717	673.031	673.031	632.174	490.000	-0.000	-237.500	237.500
0.925	-8.739	-5.074	600.503	600.503	557.829	445.000	-0.000	-218.750	218.750
0.980	-13.024	-5.336	547.315	547.315	232.367	412.000	-0.000	-0.000	0.000
1.000	0.000	0.000	527.974	527.974	50.000	400.000	-0.000	-0.000	0.000

Table 70: Position of the structural components with regard to the structural reference plane

Table 71: Beam structural properties of the nacelle, turret, shaft, and hub assembly in HAWC2 format.

S	dm	x_{cg}	y_{cg}	ri_x	ri_y	x_{sh}	y_{sh}	\mathbf{E}	G
0.000e+00	1.000e+00	0.0	0.0	1.000e-02	1.000e-02	0.0	0.0	1.000e+15	$1.000e{+}16$
1.800e+00	1.000e+00	0.0	0.0	1.000e-02	1.000e-02	0.0	0.0	1.000e+15	$1.000e{+}16$
1.801e + 00	1.809e + 04	0.0	0.0	6.410e-01	6.410e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
$2.201e{+}00$	1.809e + 04	0.0	0.0	6.410e-01	6.410e-01	0.0	0.0	$2.100e{+}11$	$8.080e{+}10$
$2.211e{+}00$	6.588e + 03	0.0	0.0	5.430e-01	5.430e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
$3.701e{+}00$	6.588e + 03	0.0	0.0	5.430e-01	5.430e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
5.501e + 00	1.078e + 04	0.0	0.0	6.250 e- 01	6.250 e- 01	0.0	0.0	$2.100e{+}11$	8.080e+10
$5.511e{+}00$	$3.521e{+}04$	0.0	0.0	7.990e-01	7.990e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
$6.051e{+}00$	$3.521e{+}04$	0.0	0.0	7.990e-01	7.990e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
6.061e + 00	1.080e + 04	0.0	0.0	6.250 e- 01	6.250 e- 01	0.0	0.0	$2.100e{+}11$	8.080e+10
6.801e + 00	$1.621e{+}04$	0.0	0.0	5.870e-01	5.870e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
$7.051e{+}00$	5.434e + 04	0.0	0.0	8.540e-01	8.540e-01	0.0	0.0	$2.100e{+}11$	8.080e+10
7.200e+00	5.434e + 04	0.0	0.0	8.540e-01	8.540e-01	0.0	0.0	$2.100e{+}11$	8.080e + 10
7.201e + 00	1.000e+00	0.0	0.0	1.000e-02	1.000e-02	0.0	0.0	$1.000e{+}15$	1.000e+16
9.670e + 00	1.000e+00	0.0	0.0	1.000e-02	1.000e-02	0.0	0.0	1.000e + 15	1.000e + 16

Table 72: Beam structural properties of the nacelle, turret, shaft, and hub assembly in HAWC2 format.

s	I_x	I_y	Κ	k_x	k_y	А	pitch	x_e	y_e
0.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	0.0	0.0	0.0
1.800e + 00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	0.0	0.0	0.0
1.801e + 00	9.460e-01	9.460e-01	$1.891e{+}00$	8.530e-01	8.530e-01	2.301e+00	0.0	0.0	0.0
$2.201e{+}00$	9.460e-01	9.460e-01	$1.891e{+}00$	8.530e-01	8.530e-01	2.301e+00	0.0	0.0	0.0
$2.211e{+}00$	2.470e-01	2.470e-01	4.940e-01	6.720e-01	6.720e-01	8.380e-01	0.0	0.0	0.0
$3.701e{+}00$	2.470e-01	2.470e-01	4.940e-01	6.720e-01	6.720e-01	8.380e-01	0.0	0.0	0.0
5.501e + 00	5.350e-01	5.350e-01	$1.071e{+}00$	7.140e-01	7.140e-01	1.371e + 00	0.0	0.0	0.0
$5.511e{+}00$	2.856e + 00	2.856e + 00	5.712e + 00	9.580e-01	9.580e-01	4.479e + 00	0.0	0.0	0.0
$6.051e{+}00$	$2.856e{+}00$	2.856e + 00	5.712e + 00	9.580e-01	9.580e-01	4.479e + 00	0.0	0.0	0.0
$6.061e{+}00$	5.370e-01	5.370e-01	1.074e + 00	7.140e-01	7.140e-01	1.374e + 00	0.0	0.0	0.0
6.801e + 00	7.100e-01	7.100e-01	1.419e + 00	8.810e-01	8.810e-01	2.062e+00	0.0	0.0	0.0
$7.051e{+}00$	5.045e + 00	5.045e + 00	1.009e + 01	1.182e + 00	1.182e + 00	6.912e + 00	0.0	0.0	0.0
7.200e+00	5.045e + 00	5.045e + 00	1.009e + 01	1.182e + 00	1.182e + 00	6.912e + 00	0.0	0.0	0.0
7.201e + 00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	0.0	0.0	0.0
9.670e + 00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	1.000e+00	0.0	0.0	0.0

Height	Cross	Mass	Radius	Second	Torsional
	Sectional	per	of	Moment of	Stiffness
	Area	Length	Gyration	Area	Constant
m	m^2	m kg/m	m^4	m^4	
0.000	0.98632	8383.74	2.921	8.41605	16.83210
11.500	0.95308	8101.16	2.823	7.59342	15.18684
11.501	0.90314	7676.68	2.823	7.19909	14.39819
23.000	0.87165	7409.00	2.725	6.47197	12.94394
23.001	0.82343	6999.18	2.726	6.11710	12.23421
34.500	0.79369	6746.37	2.627	5.47792	10.95583
34.501	0.74720	6351.21	2.628	5.15979	10.31958
46.000	0.71921	6113.27	2.529	4.60134	9.20267
46.001	0.67444	5732.78	2.530	4.31732	8.63463
57.500	0.64820	5509.71	2.432	3.83271	7.66541
57.501	0.60516	5143.87	2.432	3.58027	7.16053
69.000	0.58067	4935.68	2.334	3.16290	6.32580
69.001	0.53935	4584.50	2.335	2.93961	5.87921
80.500	0.51661	4391.17	2.236	2.58319	5.16638
80.501	0.47702	4054.66	2.237	2.38671	4.77342
92.000	0.45602	3876.20	2.138	2.08525	4.17049
92.001	0.41816	3554.35	2.139	1.91334	3.82669
103.500	0.39891	3390.76	2.041	1.66114	3.32229
103.501	0.36277	3083.57	2.041	1.51168	3.02335
115.630	0.34432	2926.71	1.937	1.29252	2.58504

Table 73: Cross section stiffness and mass properties of the tower. Reproduced from [4].

Table 74: Material thicknesses in the trailing-edge reinforcement region (DP00-DP02 and DP15-DP17 in Figure 23).

η	triax00	uniax00	triax01
[-]	[mm]	[mm]	[mm]
0.00000	8.00000	70.00000	8.00000
0.01000	7.86753	69.85357	7.86753
0.03000	7.62134	31.46486	7.62134
0.05000	7.38447	31.07635	7.38447
0.10000	5.67751	26.18724	5.67751
0.15000	4.03534	22.23692	4.03534
0.20000	2.73966	20.28272	2.73966
0.25000	1.65892	19.22599	1.65892
0.32500	0.82252	17.23762	0.82252
0.40000	0.56426	15.18824	0.56426
0.47500	0.40011	13.11602	0.40011
0.55000	0.33868	11.13263	0.33868
0.62500	0.35833	9.32695	0.35833
0.70000	0.39453	7.63334	0.39453
0.77500	0.56737	5.97388	0.56737
0.85000	0.81173	4.10204	0.81173
0.92500	1.19772	2.16123	1.19772
0.98000	1.63914	1.00611	1.63914
1.00000	1.83414	0.92178	1.83414

Table 75: Material thicknesses in the main-panel region (DP02-DP04 and DP13-DP15 in Figure 23).

η	triax00	uniax00	balsa00	uniax01	triax01
[-]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00000	8.00000	35.00000	0.00000	35.00000	8.00000
0.01000	7.85562	35.00000	0.00000	35.00000	7.85562
0.03000	7.59567	7.94313	13.72647	7.94313	7.59567
0.05000	7.35630	7.87383	17.48073	7.87383	7.35630
0.10000	5.68137	5.82487	37.85444	5.82487	5.68137
0.15000	4.11245	3.80106	59.19593	3.80106	4.11245
0.20000	2.92062	2.13546	69.49772	2.13546	2.92062
0.25000	1.96765	0.77203	70.00000	0.77203	1.96765
0.32500	1.35832	0.00000	70.00000	0.00000	1.35832
0.40000	1.36100	0.00000	66.76000	0.00000	1.36100
0.47500	1.48657	0.00000	64.33235	0.00000	1.48657
0.55000	1.71923	0.00000	58.52124	0.00000	1.71923
0.62500	2.06310	0.00000	48.48791	0.00000	2.06310
0.70000	2.47522	0.00000	38.12001	0.00000	2.47522
0.77500	2.95092	0.00000	29.53813	0.00000	2.95092
0.85000	3.53859	0.00000	20.71924	0.00000	3.53859
0.92500	4.26982	0.00000	14.10794	0.00000	4.26982
0.98000	4.94388	0.00000	11.36986	0.00000	4.94388
1.00000	5.24559	0.00000	10.00000	0.00000	5.24559

Table 76: Material thicknesses in the spar cap region (DP04-DP07 and DP10-DP13 in Figure 23).

η	triax00	uniax00	triax01
[-]	[mm]	[mm]	[mm]
0.00000	8.00000	70.00000	8.00000
0.01000	7.85158	70.00000	7.85158
0.03000	7.45871	70.00000	7.45871
0.05000	6.90438	70.00000	6.90438
0.10000	3.58516	73.39493	3.58516
0.15000	0.51223	78.03234	0.51223
0.20000	0.40000	73.47955	0.40000
0.25000	0.40000	68.83992	0.40000
0.32500	0.40000	64.50527	0.40000
0.40000	0.40000	61.72287	0.40000
0.47500	0.40000	59.20501	0.40000
0.55000	0.40000	56.45319	0.40000
0.62500	0.40000	53.69106	0.40000
0.70000	0.40000	49.98219	0.40000
0.77500	0.40000	43.16906	0.40000
0.85000	0.40000	33.72269	0.40000
0.92500	0.40000	20.92222	0.40000
0.98000	0.40000	8.28438	0.40000
1.00000	0.40000	3.00000	0.40000

Table 77:	Material	thicknesses	in the	leading-panel	region	(DP07-DP08	and	DP09-DP10	in	Figure	23).

η	triax00	uniax00	balsa00	uniax01	triax01
[-]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00000	8.00000	35.00000	0.00000	35.00000	8.00000
0.01000	7.94414	34.76058	0.00000	34.76058	7.94414
0.03000	7.83267	7.33220	11.34417	7.33220	7.83267
0.05000	7.70242	7.00924	12.71701	7.00924	7.70242
0.10000	6.18170	4.71368	20.70374	4.71368	6.18170
0.15000	4.63933	2.83823	30.12736	2.83823	4.63933
0.20000	3.42364	1.58890	34.77312	1.58890	3.42364
0.25000	2.40084	0.82757	35.00000	0.82757	2.40084
0.32500	1.58624	1.18382	33.45733	1.18382	1.58624
0.40000	1.31986	2.45801	30.00000	2.45801	1.31986
0.47500	1.22613	3.76610	28.69302	3.76610	1.22613
0.55000	1.25023	5.00729	25.10338	5.00729	1.25023
0.62500	1.32690	6.07684	22.09250	6.07684	1.32690
0.70000	1.42396	6.84971	18.72395	6.84971	1.42396
0.77500	1.69446	7.15523	15.56165	7.15523	1.69446
0.85000	2.04462	6.72488	12.26978	6.72488	2.04462
0.92500	2.59408	5.05297	8.11572	5.05297	2.59408
0.98000	3.20397	2.37364	5.00000	2.37364	3.20397
1.00000	3.49012	0.85136	5.00000	0.85136	3.49012

Table 78: Material thicknesses in the leading-edge reinforcement region (DP08-DP09 in Figure 23).

η	triax00 [mm]	uniax00 [mm]	balsa00 [mm]	uniax01 [mm]	triax01 [mm]
0.00000	8.00000	35.00000	0.00000	35.00000	8.00000
0.01000	7.94414	34.97471	0.00000	34.97471	7.94414
0.03000	7.83267	7.90588	11.34417	7.90588	7.83267
0.05000	7.70242	7.84107	12.71701	7.84107	7.70242
0.10000	6.18170	6.90597	20.70374	6.90597	6.18170
0.15000	4.63933	5.59489	30.12736	5.59489	4.63933
0.20000	3.42364	3.74732	34.77312	3.74732	3.42364
0.25000	2.40084	1.74157	35.00000	1.74157	2.40084
0.32500	1.58624	0.48885	33.45733	0.48885	1.58624
0.40000	1.31986	0.54644	30.00000	0.54644	1.31986
0.47500	1.22613	0.65148	28.69302	0.65148	1.22613
0.55000	1.25023	0.75084	25.10338	0.75084	1.25023
0.62500	1.32690	0.77836	22.09250	0.77836	1.32690
0.70000	1.42396	0.61785	18.72395	0.61785	1.42396
0.77500	1.69446	0.59653	15.56165	0.59653	1.69446
0.85000	2.04462	0.65853	12.26978	0.65853	2.04462
0.92500	2.59408	0.68755	8.11572	0.68755	2.59408
0.98000	3.20397	0.65337	5.00000	0.65337	3.20397
1.00000	3.49012	0.61943	5.00000	0.61943	3.49012

η	triax00	uniax00	triax01
[-]	[mm]	[mm]	[mm]
0.00000	8.00000	105.00000	8.00000
0.01000	7.99134	104.61582	7.99134
0.03000	7.97067	23.91070	7.97067
0.05000	7.93463	23.80187	7.93463
0.10000	6.64409	20.52163	6.64409
0.15000	5.32583	17.87180	5.32583
0.20000	4.28253	16.65711	4.28253
0.25000	3.39751	16.06638	3.39751
0.32500	2.76458	14.79970	2.76458
0.40000	2.62062	13.40353	2.62062
0.47500	2.49289	11.91301	2.49289
0.55000	2.39561	10.41403	2.39561
0.62500	2.30906	8.97049	2.30906
0.70000	2.16744	7.52528	2.16744
0.77500	2.08182	6.00525	2.08182
0.85000	1.97236	4.19802	1.97236
0.92500	1.87379	2.15106	1.87379
0.98000	1.82780	0.66086	1.82780
1.00000	1.80000	0.30000	1.80000

Table 79: Material thicknesses in the trailing-edge (DP17-DP00 in Figure 23).

Table 80: Material thicknesses in the aft shear web (DP03-DP14 in Figure 23).

η	biax00	balsa00	biax01
[-]	[mm]	[mm]	[mm]
0.00000	0.00000	0.00000	0.00000
0.01000	0.00000	0.00000	0.00000
0.03000	3.00000	15.00000	3.00000
0.05000	3.00000	15.00000	3.00000
0.10000	3.00000	15.00000	3.00000
0.15000	3.00000	15.00000	3.00000
0.20000	3.00000	14.99867	3.00000
0.25000	3.00000	14.99777	3.00000
0.32500	3.00000	10.53070	3.00000
0.40000	3.00000	6.76009	3.00000
0.47500	3.00000	3.69287	3.00000
0.55000	0.00000	0.00000	0.00000
0.62500	0.00000	0.00000	0.00000
0.70000	0.00000	0.00000	0.00000
0.77500	0.00000	0.00000	0.00000
0.85000	0.00000	0.00000	0.00000
0.92500	0.00000	0.00000	0.00000
0.98000	0.00000	0.00000	0.00000
1.00000	0.00000	0.00000	0.00000

η	biax00	balsa00	biax01
[-]	[mm]	[mm]	[mm]
0.00000	0.00000	0.00000	0.00000
0.01000	0.00000	0.00000	0.00000
0.03000	1.56906	37.47041	1.56906
0.05000	2.57858	61.55510	2.57858
0.10000	2.62508	60.28434	2.62508
0.15000	2.86546	55.25406	2.86546
0.20000	3.34472	54.99157	3.34472
0.25000	3.85841	51.48679	3.85841
0.32500	4.50604	44.11084	4.50604
0.40000	4.69832	36.99965	4.69832
0.47500	4.63905	29.89005	4.63905
0.55000	4.51683	21.95539	4.51683
0.62500	4.33661	16.39321	4.33661
0.70000	4.04147	13.91678	4.04147
0.77500	3.72536	11.05064	3.72536
0.85000	3.32715	6.95328	3.32715
0.92500	2.65557	5.00776	2.65557
0.98000	1.56111	5.00000	1.56111
1.00000	0.00000	0.00000	0.00000

Table 81: Material thicknesses in the spar cap aft shear web (DP05-DP12 in Figure 23).

Table 82: Material thicknesses in the spar cap front shear web (DP06-DP11 in Figure 23).

η	biax00	balsa00	biax01
[-]	[mm]	[mm]	[mm]
0.00000	0.00000	0.00000	0.00000
0.01000	0.00000	0.00000	0.00000
0.03000	1.56906	37.47041	1.56906
0.05000	2.57858	61.55510	2.57858
0.10000	2.62508	60.28434	2.62508
0.15000	2.86546	55.25406	2.86546
0.20000	3.34472	54.99157	3.34472
0.25000	3.85841	51.48679	3.85841
0.32500	4.50604	44.11084	4.50604
0.40000	4.69832	36.99965	4.69832
0.47500	4.63905	29.89005	4.63905
0.55000	4.51683	21.95539	4.51683
0.62500	4.33661	16.39321	4.33661
0.70000	4.04147	13.91678	4.04147
0.77500	3.72536	11.05064	3.72536
0.85000	3.32715	6.95328	3.32715
0.92500	2.65557	5.00776	2.65557
0.98000	1.56111	5.00000	1.56111
1.00000	0.00000	0.00000	0.00000

B.4 Nacelle Assembly

Table 83: Equivalent point mass properties of the nacelle assembly of the 10-MW offshore wind turbine. The reference frame is located at tower top with z aligned with the tower axis pointing upwards, y pointing upwind toward the wind parallel to the ground, and x pointing sideways parallel to the ground. cog stands for center of mass and I for area moment of inertia.

Component	Yam	Nacelle turret	Inner generator	Outer generator	Shaft	Hub	Overall
	bearing	and nose	stator	rotor			
Mass [kg]	93457	109450	187673	169606	78894	81707	720787
\mathbf{x}_{cog} [m]	0.00	0.00	0.00	0.00	0.00	0.00	0.00
y_{cog} [m]	0.00	1.89	5.68	5.66	5.17	10.02	4.80
z_{cog} [m]	0.40	3.16	3.46	3.46	3.41	3.84	3.05
$I_{xx} [kg m^2]$	1.66E + 05	2.13E + 06	1.02E + 07	9.47E + 06	3.28E + 06	9.89E + 06	$3.51E{+}07$
$I_{yy} [kg m^2]$	1.65E + 05	1.41E + 06	5.94E + 06	5.83E + 06	9.96E + 05	1.68E + 06	1.60E + 07
$I_{zz} [kg m^2]$	2.83E + 05	1.05E + 06	7.96E + 06	7.46E + 06	2.36E + 06	8.69E + 06	2.78E + 07

Table 84: Lumped masses for the nacelle assembly in HAWC2 coordinates of the tower top (see red coordinate system with subscript $_{TT}$ in Fig. 37). Note that the total mass of the nacelle assembly for the HAWC2 model is separated out into the lumped massed from this table, and the distributed properties for the beams as defined in Table 86.

Name	Y_{TT} [m]	\mathbf{Z}_{TT} [m]	Mass [kg]	$I_{xx} [kg m^2]$	$I_{yy} [kg m^2]$	$I_{zz} [kg m^2]$
Yaw bearing	0.0	-0.397	93457	1.65992E + 05	1.64950E + 05	2.83202E + 05
Turret nose and cone	-1.894	-3.200	109450	2.12563E + 06	3.20078E + 05	1.04726E + 06
Inner generator stator	-5.679	-3.457	187673	$1.01895E{+}07$	3.74518E + 06	7.96002E + 06

Table 85: Lumped masses for the nacelle assembly in HAWC2 coordinates of the shaft and which is tilted 6 degrees with respect to the horizontal (see red coordinate system with subscript $_{shaft}$ in Fig. 37). Note that the total mass of the nacelle assembly for the HAWC2 model is separated out into the lumped massed from this table, and the distributed properties for the beams as defined in Table 86.

Name	Y_{TT} [m]	\mathbf{Z}_{TT} [m]	Mass [kg]	$I_{xx} [kg m^2]$	$I_{yy} [kg m^2]$	$I_{zz} [kg m^2]$
Outer generator rotor	0.000	5.784	169606	9.46827E + 06	2.03071E + 06	3.80170E + 06
Hub	0.000	9.690	81707	9.89248E + 06	4.84305E + 05	4.76512E + 05

Figure 37: Beam model representation of the nacelle assembly. The location of the lumped masses are given in blue.

Table 86: Equivalent elastic properties of the shaft of the 10-MW offshore wind turbine. r is the coordinate along the shaft axis, where the 0 is at the main bearing and 5.4 m at the hub connection. The beam assumes the Timoshenko formulation used in HAWC2 [18].

r	mass	\mathbf{x}_{cog}	y_{cog}	ri_x	ri_y	\mathbf{x}_{sh}	y_{sh}	\mathbf{E}	G
[m]	[kg/m]	[m]	[m]	[m]	[m]	[m]	[m]	$[N/m^2]$	$[N/m^2]$
0.00	18088.16	0	0	0.641	0.641	0	0	2.10E + 11	8.08E + 10
0.40	18088.16	0	0	0.641	0.641	0	0	2.10E + 11	8.08E + 10
0.41	6587.52	0	0	0.543	0.543	0	0	$2.10E{+}11$	$8.08E{+}10$
1.90	6587.52	0	0	0.543	0.543	0	0	$2.10E{+}11$	$8.08E{+}10$
3.70	10777.43	0	0	0.625	0.625	0	0	2.10E + 11	8.08E + 10
3.71	35209.42	0	0	0.799	0.799	0	0	$2.10E{+}11$	$8.08E{+}10$
4.25	35209.42	0	0	0.799	0.799	0	0	$2.10E{+}11$	$8.08E{+}10$
4.26	10801.01	0	0	0.625	0.625	0	0	$2.10E{+}11$	$8.08E{+}10$
5.00	16209.38	0	0	0.587	0.587	0	0	$2.10E{+}11$	$8.08E{+}10$
5.25	54335.23	0	0	0.854	0.854	0	0	2.10E + 11	8.08E + 10
5.40	54335.23	0	0	0.854	0.854	0	0	$2.10E{+}11$	$8.08E{+}10$
r	I_x	I_y	Κ	\mathbf{k}_x	k _y	А	$theta_s$	\mathbf{x}_{e}	Уe
[m]	$[m^4]$	$[m^4]$	$[m^4]$	[-]	[-]	$[m^2]$	[deg]	[m]	[m]
0.00	0.95	0.95	1.89	0.52	0.52	2.30	0	0	0
0.40	0.95	0.95	1.89	0.52	0.52	2.30	0	0	0
0.41	0.25	0.25	0.49	0.52	0.52	0.84	0	0	0
1.90	0.25	0.25	0.49	0.52	0.52	0.84	0	0	0
3.70	0.54	0.54	1.07	0.52	0.52	1.37	0	0	0
3.71	2.86	2.86	5.71	0.52	0.52	4.48	0	0	0
4.25	2.86	2.86	5.71	0.52	0.52	4.48	0	0	0
4.26	0.54	0.54	1.07	0.52	0.52	1.37	0	0	0
5.00	0.71	0.71	1.42	0.52	0.52	2.06	0	0	0
5.25	5.05	5.05	10.09	0.52	0.52	6.91	0	0	0
5.40	5.05	5.05	10.09	0.52	0.52	6.91	0	0	0
r	d_{in}	d_{out}	А	r	\mathbf{t}	t/r	k		
[m]	[m]	[m]	$[m^2]$	[m]	[m]	[-]	[-]		
0.00	1.35	2.18	2.30	0.88	0.42	0.47	0.85		
0.40	1.35	2.18	2.30	0.88	0.42	0.47	0.85		
0.41	1.35	1.70	0.84	0.76	0.18	0.23	0.67		
1.90	1.35	1.70	0.84	0.76	0.18	0.23	0.67		
3.70	1.50	2.00	1.37	0.88	0.25	0.29	0.71		
3.71	1.50	2.82	4.48	1.08	0.66	0.61	0.96		
4.25	1.50	2.82	4.48	1.08	0.66	0.61	0.96		
4.26	1.50	2.00	1.37	0.88	0.25	0.29	0.71		
5.00	1.20	2.02	2.06	0.80	0.41	0.51	0.88		
5.25	1.20	3.20	6.91	1.10	1.00	0.91	1.18		
5.40	1.20	3.20	6.91	1.10	1.00	0.91	1.18		

B.5 Generator

Parameter	Description	Value	Units
P_r	Rated Power at generator terminals	10	MW
ω_r	Rated speed	0.9089	rad/s
f_e	Electrical frequency	14.46	Hz
T_r	Rated Torque	11.704	MNm
	Electromagnetic Design		
r_g	Air gap radius	5.15	m
l	Core length	1.770	m
g	Air gap length	10.29	$\mathbf{m}\mathbf{m}$
p	Poles	200	-
S	Stator Slots	240	-
h_{ys}	Stator yoke thickness	45	$\mathbf{m}\mathbf{m}$
h_{yr}	Rotor yoke thickness	45	$\mathbf{m}\mathbf{m}$
$ au_p$	Pole pitch	161.8	$\mathbf{m}\mathbf{m}$
$ au_s$	Slot pitch	134.5	$\mathbf{m}\mathbf{m}$
h_s	Slot height	130.98	$\mathbf{m}\mathbf{m}$
b_s	Slot width	32.75	$\mathbf{m}\mathbf{m}$
b_t	Tooth width	101.09	$\mathbf{m}\mathbf{m}$
h_m	Magnet height	39.5	$\mathbf{m}\mathbf{m}$
b_m	Magnet width	129.42	$\mathbf{m}\mathbf{m}$
V	RMS line voltage	3933	V
Ι	Nominal winding current(RMS)	907.64	А
R_s	Stator winding resistance per phase	0.16	ohm
N_s	Stator winding turns per phase	320	turns
\hat{B}_{q}	Peak air gap flux density	1.12	Tesla
J_s	Winding current density	4.66	A/mm^2
A_1	Specific current loading	53.96	kA/m
η	Efficiency	94.36	%
\dot{M}_{Iron}	Iron mass	85.82	ton
M_{Cu}	Copper mass	6.5	ton
M_{Magnet}	Magnet Mass	11.88	ton
M_{Active}	Total Active Mass	104.21	ton

Table 87: Electromagnetic design of the 10-MW reference direct-drive generator.

Parameter	Description	Value	Units
	Structural Design		
D_{HUBL}	Hub outer diameter (Upwind)	2.75	m
D_{HUBR}	Hub outer diameter (Downwind)	3.65	m
L_L	Distance of generator center from Upwind Hub	1.0	m
L_R	Distance of generator center from Downwind Hub	1.09	m
α_L	Angle of upwind spoke with rotor plane	1.73	deg
α_R	Angle of downwind spoke with rotor plane	3.47	deg
n_L	Number of upwind rotor spokes	5	-
n_R	Number of downwind rotor spokes	5	-
d_L	Upwind spoke depth	150	$\mathbf{m}\mathbf{m}$
d_R	Downwind spoke depth	150	$\mathbf{m}\mathbf{m}$
tw_L	Upwind spoke wall thickness	40	$\mathbf{m}\mathbf{m}$
tw_R	Downwind spoke wall thickness	40	$\mathbf{m}\mathbf{m}$
h_{rst}	Rotor frame thickness	218	$\mathbf{m}\mathbf{m}$
D_{shaft}	Main Shaft diameter	3.13	m
n_r	Number of stator spokes	5	-
d_r	Stator spoke depth	600	$\mathbf{m}\mathbf{m}$
tw_r	Stator spoke arm thickness	50	$\mathbf{m}\mathbf{m}$
h_{st}	Stator frame thickness	223	$\mathbf{m}\mathbf{m}$
M_{SStru}	Total Rotor Structural Steel mass	137.24	ton
M_{RStru}	Total Stator Structural steel mass	115.8	ton
M_{Gen}	Estimated Total Generator Mass	357.3	ton

Table 88: Structural design of the 10-MW reference direct-drive generator.

Table 89: Physical parameters for the converter and transformer of the 10-MW RWT.

Parameter	Description	Value	Units
C_{DC}	DC link capacitance	0.00437	Farad
η_c	Converter Efficiency (applies to each of the inverter and rectifier)	99.25	%
N_s/N_p	Transformer turns ratio	8.75	
L_p	Primary winding inductance	0.153	mH
L_s	Secondary winding inductance	11.7	mH
R_p	Primary winding resistance	0.0030	Ω
R_{st}	Secondary winding resistance	0.23	Ω

B.6 Controller Inputs

Below, the settings used to evaluate the 10-MW offshore turbine using the Basic DTU Wind Energy Controller are listed:

```
\small
```

;

```
constant 1 10000.0
                          ; Rated power [kW]
constant 2 0.628318
                              ; Minimum rotor (LSS) speed [rad/s]
constant 3 0.909389
                              ; Rated rotor (LSS) speed [rad/s]
constant 4 15.6E+06
                          ; Maximum allowable generator torque [Nm]
constant 5 100.0
                          ; Minimum pitch angle, theta_min [deg],
                          ; if |theta_min|>90, then a table of <wsp,theta_min> is read;
                          ; from a file named 'wptable.n', where n=int(theta_min)
          6 90.0
                          ; Maximum pitch angle [deg]
constant
constant 7 10.0
                          ; Maximum pitch velocity operation [deg/s]
constant 8 0.4
                          ; Frequency of generator speed filter [Hz]
         9
                          ; Damping ratio of speed filter [-]
               0.7
constant
               3.43
                          ; Frequency of free-free DT torsion mode [Hz],
constant 10
    ; if zero no notch filter used
; Partial load control parameters
               0.0 ; Optimal Cp tracking K factor [Nm/(rad/s)<sup>2</sup>], ;
constant 11
                          ; Qg=K*Omega<sup>2</sup>, K=eta*0.5*rho*A*Cp_opt*R<sup>3</sup>/lambda_opt<sup>3</sup>
               0.708402e8 ; Proportional gain of torque controller [Nm/(rad/s)]
constant 12
               0.158965e8 ; Integral gain of torque controller [Nm/rad]
constant 13
constant 14
               0.0
                          ; Differential gain of torque controller [Nm/(rad/s<sup>2</sup>)]
Full load control parameters
                         ; Generator control switch [1=constant pwr, 0=constant trq]
constant 15 2
constant 16
              1.193240 ; Proportional gain of pitch controller [rad/(rad/s)]
               0.366725
constant 17
                          ; Integral gain of pitch controller [rad/rad]
constant 18 0.0
                          ; Differential gain of pitch controller [rad/(rad/s<sup>2</sup>)]
constant 19 0.4e-9
                          ; Proportional power error gain [rad/W]
constant 20 0.4e-9
                          ; Integral power error gain [rad/(Ws)]
               9.935269
                          ; Coeff. of linear term in aerod. gain scheduling, KK1 [deg]
constant 21
constant 22
              440.019113 ; Coeff. of quadratic term in aerod. gain scheduling,
                          ; KK2 [deg<sup>2</sup>] & (if zero, KK1 = pitch angle at double gain)
constant 23
                          ; Relative speed for double nonlinear gain [-]
               1.3
Cut-in simulation parameters
                 ; Cut-in time [s], no cut-in is simulated if zero or negative
constant 24 -1
constant 25 1.0
                    ; Time delay for soft start of torque [1/1P]
Cut-out simulation parameters
constant 26 -1
                  ; Shut-down time [s], no shut-down is simulated if zero or negative
constant 27 5.0 ; Time of linear torque cut-out during a generator assisted stop [s]
constant 28 1
                    ; Stop type [1=normal, 2=emergency]
constant 29 1.0
                    ; Time delay for pitch stop after shut-down signal [s]
constant 30 3
                    ; Maximum pitch velocity during initial period of stop [deg/s]
constant 31 3.0
                    ; Time period of initial pitch stop phase [s]
   ; (maintains pitch speed specified in constant 30)
                    ; Maximum pitch velocity during final phase of stop [deg/s]
constant 32 4
Expert parameters (keep default values unless otherwise given)
               2.0 ; Time for the maximum torque rate = Maximum allowable
constant 33
   ;generator torque/(constant 33 + 0.01s) [s]
               2.0
                   ; Upper angle above lowest minimum pitch angle for switch [deg],
constant 34
```

```
; if equal then hard switch
     constant 35 300.0 ; Percentage of the rated speed when the
          ;torque limits are fully opened [%]
     constant 36 2.0 ; Time constant of 1st order filter on wind speed
          ;used for minimum pitch [1/1P]
     constant 37 1.0
                         ; Time constant of 1st order filter on pitch angle
         ;used for gain scheduling [1/1P]
     Drivetrain damper
;
                           ; Proportional gain of active DT damper [Nm/(rad/s)],
     constant 38 0.0
      ;requires frequency in input 10
     Over speed
     constant 39 50.0
                           ; Overspeed percentage before initiating
          ;turbine controller alarm (shut-down) [%]
     Additional non-linear pitch control term (not used when all zero)
;
     constant 40 0.0
                           ; Rotor speed error scaling factor [rad/s]
     constant 41
                    0.0
                           ; Rotor acceleration error scaling factor [rad/s<sup>2</sup>]
     constant 42 0.0 ; Pitch rate gain [rad/s]
     Storm control command
;
     constant 43 28.0 ; WS 'Vstorm' above which derating of rotor speed is used [m/s]
                   28.0
     constant 44
                           ; Cut-out wind speed (only
          ; used for derating of rotor speed in storm) [m/s]
     Safety system parameters
:
     constant 45 50.0 ; Overspeed percentage before initiating
         ; safety system alarm (shut-down) [%]
                    4.5 ; Max low-pass filtered tower top acceleration level [m/s<sup>2</sup>]
     constant 46
     Turbine parameter
;
     constant 47 198.0 ; Nominal rotor diameter [m]
     Parameters for rotor inertia reduction in variable speed region
;
     constant 48
                    0.0 ; Proportional gain on rotor acceleration
                          ; in variable speed region [Nm/(rad/s^2)] (not used when zero)
     Parameters for alternative partial load controller with PI regulated TSR tracking
;
     constant 49
                   10.577072 ; Optimal tip speed ratio [-]
                               ; (only used when K=constant 11=0 otherwise Qg=K*Omega<sup>2</sup> used)
```

B.7 Tower Structure

Height	Outer diameter	Wall thickness
m	m	mm
0.000	8.3000	38
11.500	8.0215	38
11.501	8.0215	36
23.000	7.7431	36
23.001	7.7430	34
34.500	7.4646	34
34.501	7.4646	32
46.000	7.1861	32
46.001	7.1861	30
57.500	6.9076	30
57.501	6.9076	28
69.000	6.6292	28
69.001	6.6291	26
80.500	6.3507	26
80.501	6.3507	24
92.000	6.0722	24
92.001	6.0722	22
103.500	5.7937	22
103.501	5.7937	20
115.630	5.5000	20

Table 90: Wall thickness distribution of the tower. Reproduced from [4].

B.8 Load Tables

Table 91: Loads envelope at blade root projected onto 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-74626.988	0.000	-1.954	543.889	1532.704	2020.508
-150.000	-63195.915	-36486.179	-265.557	917.127	1301.149	1302.884
-120.000	-27711.196	-47997.200	-7.551	831.685	1082.839	1334.276
-90.000	0.000	-39390.336	63.750	713.243	893.767	1368.928
-60.000	19158.164	-33182.914	114.080	629.637	760.304	1393.388
-30.000	39804.217	-22980.975	770.719	641.284	-679.709	1773.564
0.000	46612.056	0.000	117.896	326.666	-355.729	1706.209
30.000	40889.777	23607.724	750.854	549.804	-704.384	1781.214
60.000	25001.399	43303.692	138.554	608.579	701.898	1405.803
90.000	0.000	42154.584	63.750	713.243	893.767	1368.928
120.000	-33761.431	58476.513	-22.230	856.070	1121.766	1327.142
150.000	-67234.064	38817.605	-273.968	917.921	1347.413	1308.476

Table 92: Loads envelope at a blade station 0.7 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	$ $ F_y	F_z
-180.000	-73510.796	0.000	-16.148	535.305	1527.755	1994.763
-150.000	-62231.715	-35929.497	-279.822	896.221	1297.531	1299.990
-120.000	-27222.114	-47150.084	-19.889	816.762	1076.606	1336.461
-90.000	0.000	-38618.751	53.017	700.740	887.941	1374.621
-60.000	18809.541	-32579.080	104.480	618.842	754.766	1401.558
-30.000	39261.910	-22667.874	775.793	634.388	-687.229	1760.930
0.000	45987.333	0.000	117.761	322.248	-362.048	1686.520
30.000	40365.148	23304.829	758.218	545.125	-709.539	1767.968
60.000	24642.161	42681.475	126.577	597.261	701.959	1412.938
90.000	0.000	41473.716	53.017	700.740	887.941	1374.621
120.000	-33144.981	57408.791	-34.899	840.649	1115.448	1328.605
150.000	-66228.059	38236.788	-290.133	896.397	1343.662	1305.508

Table 93: Loads envelope at a blade station 2.9 m from the root, projected into 12 loading directions in the $M_x/M - y$ plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	$ M_z$	F_x	$ $ F_y	F_z
-180.000	-70225.750	0.000	61.729	516.005	1516.128	1933.905
-150.000	-59399.585	-34294.367	-215.730	849.312	1288.890	1290.850
-120.000	-25863.571	-44797.020	32.684	784.520	1063.337	1338.403
-90.000	0.000	-36511.684	95.460	674.227	875.842	1384.260
-60.000	17844.592	-30907.739	139.773	596.373	743.492	1416.630
-30.000	37679.927	-21754.516	740.842	621.827	-706.459	1726.483
0.000	44093.958	0.000	96.034	316.622	-369.674	1638.809
30.000	38742.061	22367.739	722.088	539.061	-724.586	1729.494
60.000	23577.494	40837.418	152.697	573.666	704.890	1426.071
90.000	0.000	39461.364	95.460	674.227	875.842	1384.260
120.000	-31283.402	54184.442	19.759	807.227	1101.939	1328.962
150.000	-63208.571	36493.485	-227.155	847.813	1333.947	1295.641

Table 94: Loads envelope at a blade station 4.8 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	$ $ F_y	F_z
-180.000	-67321.278	0.000	104.409	502.891	1506.178	1876.974
-150.000	-56886.936	-32843.688	-179.357	818.037	1281.993	1274.203
-120.000	-24664.280	-42719.787	62.339	764.324	1054.645	1328.786
-90.000	0.000	-34675.889	119.474	658.187	867.998	1378.962
-60.000	16999.928	-29444.739	158.124	586.388	741.736	1412.905
-30.000	36281.577	-20947.178	725.666	613.059	-721.005	1691.889
0.000	42385.750	0.000	73.621	287.287	-409.954	1605.628
30.000	37273.108	21519.639	705.773	535.119	-736.344	1692.317
60.000	22651.908	39234.255	171.567	561.415	697.819	1424.711
90.000	0.000	37671.361	119.474	658.187	867.998	1378.962
120.000	-29696.657	51436.119	50.576	786.175	1093.073	1318.456
150.000	-60531.923	34948.122	-197.952	815.345	1321.038	1277.782

Table 95: Loads envelope at a blade station 9.7 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-60181.022	0.000	270.646	474.960	1481.818	1750.317
-150.000	-50704.610	-29274.320	-28.221	749.825	1263.242	1226.967
-120.000	-21827.576	-37806.471	177.133	716.423	1028.599	1298.942
-90.000	0.000	-30451.847	205.342	620.662	849.781	1355.855
-60.000	15013.499	-26004.143	225.003	553.919	725.151	1395.522
-30.000	32729.105	-18896.157	654.486	581.859	-755.082	1604.638
0.000	38097.625	0.000	41.426	253.481	-456.987	1505.745
30.000	33523.203	19354.630	630.413	516.158	-766.547	1600.032
60.000	20217.300	35017.391	231.842	530.704	681.802	1409.319
90.000	0.000	33469.588	205.342	620.662	849.781	1355.855
120.000	-25872.386	44812.286	171.149	736.736	1066.529	1286.870
150.000	-53894.932	31116.253	-62.880	743.241	1283.195	1221.123

Table 96: Loads envelope at a blade station 14.5 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	$ $ F_y	F_z
-180.000	-53197.768	0.000	454.465	442.217	1440.425	1612.830
-150.000	-44683.809	-25798.209	148.934	692.003	1229.980	1163.773
-120.000	-19185.047	-33229.476	603.562	747.069	757.099	1204.067
-90.000	0.000	-27039.794	1053.925	762.312	211.188	1206.329
-60.000	13229.260	-22913.751	1354.167	772.475	-152.753	1207.837
-30.000	29238.129	-16880.642	537.515	534.156	-771.486	1502.248
0.000	33921.587	0.000	-110.275	19.259	-836.051	1582.163
30.000	29755.325	17179.245	513.614	475.217	-781.604	1495.077
60.000	18094.882	31341.255	1476.993	776.632	-301.638	1208.454
90.000	0.000	29409.102	1053.925	762.312	211.188	1206.329
120.000	-22259.260	38554.169	521.678	744.297	856.356	1203.656
150.000	-47433.001	27385.456	113.500	681.880	1255.343	1155.046

Table 97: Loads envelope at a blade station 19.3 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-46471.852	0.000	589.023	411.419	1392.846	1468.647
-150.000	-38921.979	-22471.615	259.013	632.714	1185.152	1085.792
-120.000	-16693.175	-28913.427	607.066	694.179	748.343	1128.381
-90.000	0.000	-24294.978	1004.203	714.328	206.238	1119.298
-60.000	11706.265	-20275.845	1280.996	728.371	-171.593	1112.967
-30.000	26119.802	-15080.275	414.849	469.142	-784.221	1384.317
0.000	30086.933	0.000	-441.776	75.082	-678.477	1332.347
30.000	26094.112	15065.443	414.849	469.142	-784.221	1384.317
60.000	16069.993	27834.044	1389.306	733.866	-319.440	1110.490
90.000	0.000	25652.214	1004.203	714.328	206.238	1119.298
120.000	-18896.751	32730.133	558.928	691.737	814.053	1129.482
150.000	-41477.290	23946.924	233.490	622.460	1212.161	1076.038

Table 98: Loads envelope at a blade station 24.2 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-40302.942	0.000	523.804	344.481	1313.762	1334.263
-150.000	-33668.789	-19438.684	-33.134	529.403	990.698	865.777
-120.000	-14302.011	-24771.810	97.276	610.190	484.078	959.953
-90.000	0.000	-21539.191	679.917	647.553	70.020	979.841
-60.000	10379.497	-17977.816	1116.898	675.575	-240.523	994.757
-30.000	23050.618	-13308.281	393.638	390.697	-782.071	1251.322
0.000	26539.038	0.000	-444.832	94.724	-606.178	1202.128
30.000	23002.356	13280.416	393.638	390.697	-782.071	1251.322
60.000	14205.977	24605.475	1262.558	684.916	-344.038	999.730
90.000	0.000	22213.750	679.917	647.553	70.020	979.841
120.000	-16146.121	27965.902	24.446	605.520	535.835	957.467
150.000	-35664.660	20591.001	126.493	552.772	1116.512	946.894

Table 99: Loads envelope at a blade station 31.4 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	$ M_z$	F_x	$ $ F_y	F_z
-180.000	-31710.617	0.000	281.437	295.510	1204.264	1125.278
-150.000	-26739.027	-15437.785	-178.750	465.692	916.684	733.903
-120.000	-10959.865	-18983.043	41.359	546.984	442.205	842.703
-90.000	0.000	-17448.414	620.982	582.958	53.885	847.786
-60.000	8660.159	-14999.835	1088.419	611.970	-259.276	851.885
-30.000	18283.887	-10556.207	782.224	390.524	-584.099	1266.512
0.000	21166.177	0.000	-99.395	16.925	-736.355	1202.737
30.000	18461.729	10658.884	782.224	390.524	-584.099	1266.512
60.000	11527.368	19965.987	1238.000	621.254	-359.488	853.197
90.000	0.000	17615.442	620.982	582.958	53.885	847.786
120.000	-12743.710	22072.752	-52.129	541.182	504.837	841.883
150.000	-28072.002	16207.378	-50.890	478.895	1020.072	802.622

Table 100: Loads envelope at a blade station 38.7 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-24107.103	0.000	71.501	255.494	1077.980	922.280
-150.000	-20658.385	-11927.124	-292.896	406.406	831.852	593.361
-120.000	-8170.764	-14152.179	317.342	462.882	329.672	623.096
-90.000	0.000	-13618.843	755.358	501.237	4.746	655.477
-60.000	6846.410	-11858.330	1120.372	533.199	-266.025	682.461
-30.000	14365.932	-8294.175	832.837	372.075	-590.407	1017.770
0.000	16850.083	0.000	63.415	-2.320	-677.420	952.008
30.000	14617.864	8439.628	795.963	339.236	-602.341	1029.554
60.000	8996.943	15583.163	1237.176	543.427	-352.672	691.096
90.000	0.000	13498.823	755.358	501.237	4.746	655.477
120.000	-9777.088	16934.413	229.739	455.211	394.657	616.620
150.000	-21348.132	12325.350	-195.397	405.761	909.018	647.012

Table 101: Loads envelope at a blade station 45.9 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	$ M_z$	F_x	F_y	F_z
-180.000	-17878.275	0.000	266.248	1.199	859.294	607.631
-150.000	-15475.290	-8934.663	-225.807	274.629	720.322	491.158
-120.000	-5988.769	-10372.852	286.023	395.267	291.423	490.497
-90.000	0.000	-10088.037	723.190	422.371	1.543	515.244
-60.000	5114.886	-8859.242	1087.496	444.958	-240.024	535.867
-30.000	10716.615	-6187.241	888.015	338.739	-517.944	758.767
0.000	12742.061	0.000	239.058	37.925	-626.731	756.964
30.000	11225.661	6481.138	833.393	258.639	-541.406	749.147
60.000	6651.636	11520.972	1189.502	451.282	-307.663	541.641
90.000	0.000	9938.036	723.190	422.371	1.543	515.244
120.000	-7195.422	12462.836	198.589	389.846	349.400	485.547
150.000	-15501.479	8949.783	-225.807	274.629	720.322	491.158

Table 102: Loads envelope at a blade station 53.2 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	$ M_z$	F_x	$ $ F_y	F_z
-180.000	-12795.702	0.000	95.961	-4.887	707.873	392.589
-150.000	-11075.328	-6394.343	-368.702	270.552	609.324	380.900
-120.000	-4268.002	-7392.396	112.374	317.787	231.301	467.004
-90.000	0.000	-7123.223	415.172	329.308	-40.423	556.957
-60.000	3657.586	-6335.126	896.311	357.243	-212.802	462.202
-30.000	7626.248	-4403.016	868.662	284.681	-475.074	561.402
0.000	9134.304	0.000	464.199	91.765	-550.381	550.717
30.000	8251.536	4764.027	813.230	217.687	-495.744	547.630
60.000	4638.668	8034.409	1024.007	364.927	-251.285	430.395
90.000	0.000	7082.739	415.172	329.308	-40.423	556.957
120.000	-4977.597	8621.451	61.908	315.867	276.588	452.012
150.000	-11075.328	6394.343	-368.702	270.552	609.324	380.900

Table 103: Loads envelope at a blade station 60.4 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	$ $ F_y	F_z
-180.000	-8761.010	0.000	-108.161	52.236	544.871	198.939
-150.000	-7327.188	-4230.354	-341.202	179.998	486.672	292.318
-120.000	-2856.711	-4947.969	-381.423	-70.786	184.381	439.301
-90.000	0.000	-4723.481	-406.449	-226.830	-3.711	530.757
-60.000	2474.094	-4285.257	576.977	194.433	-162.463	364.867
-30.000	5149.099	-2972.834	786.825	231.778	-406.723	405.350
0.000	6278.424	0.000	460.424	77.388	-422.381	404.554
30.000	5621.578	3245.620	742.019	187.082	-422.162	372.971
60.000	3130.715	5422.557	837.368	296.268	-204.573	309.705
90.000	0.000	4777.382	-406.449	-226.830	-3.711	530.757
120.000	-3316.951	5745.127	-376.954	-42.921	217.969	422.969
150.000	-7617.967	4398.235	-338.521	196.717	506.825	282.519

Table 104: Loads envelope at a blade station 67.7 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-5546.051	0.000	-118.875	47.497	442.256	99.945
-150.000	-4333.226	-2501.789	-281.351	150.183	366.132	171.873
-120.000	-1763.214	-3053.976	-192.748	119.113	307.809	155.681
-90.000	0.000	-2880.957	-132.940	98.140	268.442	144.752
-60.000	1579.268	-2735.373	371.654	187.449	-22.310	184.038
-30.000	3267.795	-1886.662	657.999	185.969	-254.455	225.066
0.000	4091.893	0.000	635.038	153.196	-290.059	276.211
30.000	3639.741	2101.405	656.647	167.374	-275.477	252.729
60.000	2085.079	3611.463	647.328	242.832	-174.839	187.900
90.000	0.000	2929.106	-132.940	98.140	268.442	144.752
120.000	-2075.701	3595.220	-203.823	122.996	315.100	157.705
150.000	-4807.980	2775.889	-193.058	104.719	424.308	129.742

Table 105: Loads envelope at a blade station 74.9 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	$ M_x$	M_y	M_z	F_x	$ $ F_y	F_z
-180.000	-3068.399	0.000	-20.921	-7.651	279.470	96.570
-150.000	-2398.812	-1384.955	-173.920	115.144	273.936	84.989
-120.000	-943.258	-1633.770	-72.840	109.787	172.708	107.832
-90.000	0.000	-1506.459	-7.138	106.306	106.910	122.680
-60.000	871.970	-1510.296	85.211	107.723	29.512	135.082
-30.000	1932.896	-1115.958	370.335	137.394	-142.656	166.483
0.000	2440.479	0.000	313.565	78.255	-239.811	99.796
30.000	2196.417	1268.102	323.542	130.192	-125.450	163.286
60.000	1231.480	2132.987	265.868	126.802	-82.923	137.466
90.000	0.000	1625.442	-7.138	106.306	106.910	122.680
120.000	-1146.887	1986.466	-88.002	110.591	187.893	104.405
150.000	-2673.957	1543.810	-161.216	92.158	292.334	71.235

Table 106: Loads envelope at a blade station 82.1 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-1325.300	0.000	-18.542	-2.110	166.449	34.384
-150.000	-1088.986	-628.726	-74.202	63.638	183.166	19.768
-120.000	-379.155	-656.717	-34.024	64.568	119.453	40.291
-90.000	0.000	-578.473	-9.981	59.923	85.661	47.532
-60.000	370.186	-641.180	11.413	55.637	55.524	55.202
-30.000	894.338	-516.346	183.232	90.516	-124.344	36.307
0.000	1134.255	0.000	186.929	65.733	-165.033	3.408
30.000	1023.869	591.131	244.199	84.767	-155.101	0.966
60.000	550.531	953.548	-6.597	56.308	79.557	72.358
90.000	0.000	719.294	-9.981	59.923	85.661	47.532
120.000	-471.943	817.430	-40.296	65.780	128.268	38.402
150.000	-1158.088	668.622	-73.714	55.607	188.427	12.699

Table 107: Loads envelope at a blade station 89.3 m from the root, projected into 12 loading directions in the M_x/M_y plane. Safety factors already applied. Reference coordinate system: x - flapwise direction, y - edgewise direction, z - blade pitch axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-297.284	0.000	-13.421	16.366	92.177	-11.914
-150.000	-238.466	-137.678	-11.586	17.679	81.913	-2.189
-120.000	-77.922	-134.965	-2.111	5.492	52.911	17.029
-90.000	0.000	-115.489	-2.627	10.224	46.690	19.922
-60.000	81.523	-141.202	-3.170	15.204	40.142	22.968
-30.000	223.111	-128.813	54.179	51.233	-60.037	-1.114
0.000	305.887	0.000	20.247	17.145	-82.282	-25.973
30.000	267.631	154.517	43.931	45.867	-61.775	0.265
60.000	137.805	238.686	-3.550	18.691	35.558	25.100
90.000	0.000	177.246	-2.627	10.224	46.690	19.922
120.000	-116.133	201.148	-1.839	3.001	56.185	15.506
150.000	-260.826	150.588	-14.140	18.649	86.000	-6.053

Table 108: Tower base load envelope projected into 4 loading directions in the $M_x/M - y$ plane. Safety factors already applied. Reference coordinate system: x - for-aft direction, y - side-side direction, z - tower torsion axis.

Projection angle	M_x	M_y	M_z	F_x	F_y	F_z
-180.000	-383486.250	0.000	17159.560	-86.872	-2895.174	14509.668
-90.000	0.000	-121510.564	9529.026	-1377.346	341.400	14412.969
0.000	242806.562	0.000	603.613	166.045	2579.660	14709.293
90.000	0.000	152858.419	9529.026	-1377.346	341.400	14412.969

Table 109: Tower top load envelope projected into 4 loading directions in the $M_x/M - y$ plane. Safety factors already applied. Reference coordinate system: x - for-aft direction, y - side-side direction, z - tower torsion axis.

Projection angle	Mm	Ma	M~	Fm	Fa	F~
i rejection angle	1112	111 <i>y</i>	1012	1 2	1 y	12
-180.000	-90729.500	0.000	1633.239	120.319	181.800	9174.183
-90.000	0.000	-8706.259	-18047.282	-522.499	-366.075	7832.964
0.000	15740.870	0.000	-1271.766	-74.069	-149.817	7620.424
90.000	0.000	18954.030	-18047.282	-522.499	-366.075	7832.964