Enable Model-Based Diagnostics and Prognostics for Lithium-Ion Batteries

Chuanbo Yang, Weijie Mai, Kandler Smith, Shriram Santhanagopalan, Ying Shi, and Matthew Keyser

Enhanced Computational Efficiency

- **GH-MSMD**: Quasi-explicit, modular and extendable, tightly coupled nonlinear multiscale multiphysics battery model framework
- **Electrode-domain model Benchmark**: Comparison of electrical/thermal response of battery for mid-size plug-in hybrid electric vehicle (PHEV10) from GH-MSMD and original MSMD. 100–1,000-fold speed increase while maintaining solution accuracy
- **CAE Tool**: Implemented in a commercial software - ANSYS Fluent

Pack Management and Control

- **Fluent ↔ MATLAB interactive modeling**: Enable battery control, safety device analysis; Improve numerical stability; Accurately capture multi-physics at pack-level
- **Generalized circuit solver**: Essential to life and safety simulation at pack-level; Captures the effects of battery topology, cell variability and abnormal cells

Integrated Safety Modeling

- Understanding safety aspects of large-size cells is challenging because of the interplay of multiple physical phenomena and the limitations in experimental capabilities
- An integrated model has been established that resolves complex interplays among chemical, thermal, electrical characteristics, operational and environmental conditions, and type and nature of faults
- The model explained cascading thermal failure and the mechanism of a passive heat sink on the mitigation of thermal runaway in a battery module

Predictive Lifetime Modeling

- Semi-empirical models for physical mechanisms
- Regressed to cell aging test data and validated with cell and pack application data
- Integrated in control algorithms and battery systems analysis tools
- **Case study**: Life prediction of large LIB Packs with active and passive balancing
- The life model prediction errors stay within +/-3% on capacity fade and +/-5% on resistance growth
- Life balancing resulted in 25-30% life extension benefit