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A Reformulation of the Pseudo2D Battery Model Coupling Large
Electrochemical-Mechanical Deformations at Particle and
Electrode Levels
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The Pseudo2D electrochemical reaction/transport battery model is consistently reformulated based on the finite strain theory to
incorporate the coupled effects of large electrochemical-mechanical deformations at both particle and electrode levels. The active
material volume change due to lithium insertion/extraction causes the electrode deformation and porosity variation. The porosity
variation affects the mechanical properties of each component of the cell as well as the transport processes. In turn, the electrode
deformation also affects porosity variation and the electrochemical processes (transport and equilibrium potential). Variables such as
particle size and specific surface area are also simultaneous updated based on the approximated electrode deformation and porosity
distributions. The model is applied to simulate the performance of a cell composed of Si anode and NMC532 cathode to study the
effect of active material volume change on the cell performances. The simulation results show that during the charging process the
porosity of each cell component experiences significant reduction due to the large expansion of Si particles. Also, a notable hydrostatic
stress develops within the cell, which introduces an overpotential in addition to that caused by porosity reduction. The model is also
employed to study the effects of charging rate, initial anode porosity, cell loading and fixture condition.
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Lithium ion battery (LIB) has become the primary energy storage
option for electric vehicles (EVs) due to their relatively high energy
and power densities.1 However, in order to compete with conventional
vehicles that use fossil energy, lithium ion battery should be further
improved in terms of energy and power densities, safety, cost, etc.2

One of the strategies to increase the energy density is to use electrode
materials with high capacty, such as Li-alloy materials.3 However,
concomitant with the high capacity of these materials is their high
volume change during lithium insertion, which not only causes frac-
ture of active particles but also leads to electrode and cell deformations
that could deteriorate cell performances. It is therefore necessary to
investigate the effects of both particle-level and electrode-level defor-
mations for better design of electrode using high capacity materials.

There are many models in literature that can predict the de-
formation and stress generation within a single particle during Li
insertion/extraction.4–6 Most of these models assume infinitesimal de-
formation and thus are not suitable for modeling the volume change
of active material with high capacity, which can undergo more than
100% expansion during Li insertion. Although some recent models
have been developed based on the finite strain theory to approximate
the large active material volume change,7,8 its effect on electrode defor-
mation and the performance of the entire cell cannot be investigated
using these single particle models. On the other hand, most of the
electrode level models that approximate the electrochemical process
during battery cycling have assumed constant volumes for both active
particles and the entire cell.9,10 A few models, while still assuming
constant particle and electrode dimensions, incorporated the effect of
particle volume change by relating the electrode porosity variation
with lithium intercalation.11,12 More recently, Gomadam et al.13 took
a step further and developed a model that can approximate both the
dimensional change and the porosity variation of the electrode due
to lithium intercalation by introducing a swelling coefficient. Using
similar governing equations for porosity variation, Garrick et al.14,15

applied the porous rock mechanics to account for stress built up in
electrodes. However, these models still ignored the large deformation
at particle level, which should be coupled with electrode deformation
and porosity variation. Solid diffusion and lithium insertion/extraction
on particle surface are also affected by particle deformation, the effect
of which should not be ignored for high-capacity materials.
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The objective of this work is to develop a one-dimensional model of
lithium ion battery that consistently couples electrochemistry, poros-
ity variation and deformations at both the particle and electrode levels.
In this model, particle and electrode domains are described with re-
spective 1D spherical and 1D Cartesian coordinate systems (hence
the name “Pseudo2D” or P2D model) following the work of New-
man et al.9,10 The finite strain theory is employed to describe defor-
mations of individual particles and the porous cell components. To
account for the effect of large electrochemical-mechanical deforma-
tions, both governing equations for porosity variation and electro-
chemistry are reformulated in the reference (undeformed) geometry,
thus allowing approximation of field distributions on a fixed problem
domain. Therefore, this model provides an efficient way to investi-
gate the coupled effect of particle volume change, porosity variation
and external cell constraint on the overall performances of a cell com-
posed of high capacity electrode. While this model is general and can
be applied to other electrode combinations, a cell composed of sili-
con negative electrode and NMC532 positive electrode is chosen for
investigation in this work. This model enables us to investigate the
effects of component porosities, charge/discharge rate, loading and
fixture condition on the capacity and energy density of the cell, which
should prove useful in the design of cell composed of high capacity
electrode.

Problem Formulation

Electrode deformation.—In this work, the finite strain theory is
employed to approximate electrode deformation and stress due to ac-
tive material volume change and external constraint. The electrode
deformation can be described by the deformation gradient tensor F

F = I + ∇u, [1]

where I is the identity tensor and u is the displacement vector. F can
be multiplicatively decomposed into two terms such that F = FeFc,
where Fe and Fc correspond to elastic deformation gradient tensor
and the inelastic deformation gradient tensor induced by Li inser-
tion/extraction, respectively. Assuming isotropic volume expansion,
Fc can be expressed as

Fc =
(

1 + �e

3
�Cs,avg

)
I. [2]
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In the above equation, �e is the partial molar volume of Li in the
electrode. �Cs,avg = Cs,avg − Cs,avg,0 is the change of the average
nominal solid concentration Cs,avg. The definition of nominal solid
concentration will be given in Pseudo2D model with large deformation
section.

The second Piola-Kirchhoff stress tensor within the electrode can
be defined as

S = JcF−T
c (C : εe )F−1

c , [3]

where Jc = det(Fc ) is the volume change induced by lithium inser-
tion/extraction, C is the stiffness tensor and εe = 1

2 (FT
e Fe − I) is

the elastic strain tensor. Assuming quasi-steady stress distribution, the
governing equation for the displacement vector u can be expressed as

∇ · (FS)T = 0. [4]

After approximating the distribution of u using Equation 4 with
proper boundary conditions, the distribution of S can be recovered
using Equation 3, which can then be transformed to the Cauchy stress
σ using the following relation

σ = J−1FSFT, [5]

where J is the total Jacobian of deformation. Assuming that a material
volume dV0 in the undeformed electrode expands to dV due to Li
insertion/extraction, the total Jacobian can be defined as

J = det(F) = dV

dV0
. [6]

As the porous electrodes are relatively thin, their in-plane movement
will be significantly constrained by the current collectors which have
much larger elastic modulus.16,17 Therefore, in this work only the de-
formation in the thickness direction is considered, which simplifies the
problem to one-dimensional. However, it should be pointed out that
while the in-plane displacement is considered negligible, the in-plane
stress is significant and dominates the hydrostatic stress within the cell.
The effect of hydrostatic stress on the OCP of Si is incorporated into
the model and its significance will be discussed in following sections.

Porosity variation.—As a result of lithium insertion/extraction, the
active material storing Li either expands or contracts, which will alter
the porosity and size of electrode. It has been proposed that the porosity
and dimension variations of porous electrode can be approximated
using the following equation13

∂εs

∂t
+ ∇ · (εsv) = − s�e

nF
j, [7]

where εs is the volume fraction of the solid phase, s = 1 is the stoi-
chiometric coefficient, v is the local electrode velocity vector and j is
the volumetric reaction current source. The physical meaning of the
above equation is that the volume change of solid phase induced by
lithium insertion/extraction will cause either porosity variation or di-
mensional change of the electrode.14,15 To approximate the solution of
Equation 7, it has to be coupled with solid mechanics approximation,
which will provide the distribution of v. As the local electrode veloc-
ity is associated with the deformed electrode geometry, the problem
domain will have to be frequently updated unless infinitesimal defor-
mation is assumed. Alternatively, the governing equation for porosity
variation can be formulated in the undeformed geometry, such that it
can be approximated on a fixed geometry

∂
(
εsJ

)
∂t

= − s�e

nF
jJ. [8]

In the above equation, J is the Jacobian of deformation defined in
Electrode deformation section. Note that by formulating the govern-
ing equation in the undeformed geometry, the convection term due to
electrode deformation is eliminated. Instead, the information of elec-
trode deformation is now represented by the deformation Jacobian
J . It should also be noted that εs approximated using Equation 8 is
the solid volume fraction in the deformed geometry, while the nomi-
nal solid volume fraction evaluated based on undeformed geometry is

εsJ . Finally, in this work it is assumed that the partial molar volume of
Li in the porous electrode equals to that in the active material,18 i.e., all
the active material volume change due to lithium insertion/extraction
is translated to electrode dimensional change when the electrode is
free of constraint.

In Equation 8, the effect of electrode deformation on porosity vari-
ation is incorporated by the Jacobian J . However, porosity variation
should also influence electrode deformation by affecting the mechan-
ical properties of the porous cell components. As experimental data
is not available at present, in this work it is assumed that the elastic
modulus and Poisson’s ratio of each component are power functions
of porosity εe,19 such that

E = Es(1 − εe

ε0
)n, [9]

ν = νs + εe

ε1
(ν0 − νs ) [10]

In the above equations, Es and νs correspond to the elastic modulus
and Poisson’s ratio of a component when it is pore-free, i.e., εe = 0.
n = 2.23 and ε0 = 0.652 are empirical correlation parameters. ν0 =
0.140 and ε1 = 0.472 are fitting parameters.

Pseudo2D model with large deformation.—The popular P2D
model is formulated on a fixed geometry, the deformation of which has
been ignored. To allow approximating fields on a fixed domain with ef-
fect of deformation incorporated, the governing equations of the P2D
model have to be reformulated. Here we first manipulate the govern-
ing equation for Li concentration cs in the active material. Assume
that before deformation active material in an electrode is composed
of spherical particles of identical radius R, which after deformation
becomes r(x). As the lithium insertion/extraction rate is nonuniform
within electrodes, r becomes location-dependent after cell cycling.
Assume that a point located at R in an undeformed particle is moved
to r after deformation. Then the deformation of the particle can be
completely characterized by the particle deformation gradient tensor
Fp, which is defined as

Fp =
⎡
⎣

∂r
∂R 0 0
0 r

R 0
0 0 r

R

⎤
⎦. [11]

In a more complete formulation, a large deformation formulation
should be used to relate the deformation and concentration distribution
within the particle, as was done in Refs. 7,8. In this work, the major fo-
cus is on coupling the particle-level and electrode-level deformations,
without resolving stress variations within individual particles. There-
fore, in this work it is assumed that the deformation in each particle is
uniform, such that

∂r

∂R
= r

R
= λ. [12]

In the above equation, λ is the principal stretch and is uniform within
each particle. However, due to the nonuniform reaction rate in the
thickness direction, λ and thus particle expansion/contraction is not
uniform within the electrode. The volume change of the particle can
be characterized by the particle deformation Jacobian Jp, which is
defined as

Jp = det(Fp) =
(
r

R

)3

= λ3. [13]

As a coupled multiphysics process, the volume change of the particle
is related to porosity variation and electrode deformation. Therefore,
the volume change of a particle can be equivalently expressed as

Jp = dVs

dVs,0
= εs

εs,0
J, [14]

where dVs and dVs,0 are the current and initial differential solid vol-
umes of a material volume, respectively. Similarly, εs and εs,0 are the
current and initial solid volume fractions of the material volume. Note
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that Equation 14 couples the particle level deformation with the elec-
trode level deformation by relating Jp with J and εs. After the infor-
mation of the particle deformation is obtained, the governing equation
for solid phase concentration distribution can be expressed as

∂

∂t
(Jpcs ) = − 1

R2
∇L (R2JL ), [15]

where JL is the flux density of Li and the underscore L indicates
that the term is evaluated in the material frame, i.e., the undeformed
geometry. Note that Cs = Jpcs is the nominal concentration evaluated
in the undeformed geometry while cs is the real concentration in the
current deformed geometry. While JL can be complicated by stress-
induced diffusion4,6 and the concentration-dependent diffusivity,20 in
this first attempt we only consider diffusion induced by a concentration
gradient with a constant diffusivity DE

s in the deformed geometry, i.e.,

JL = −DL
s ∇Lcs = −JpF−1

p DE
s F−T

p ∇Lcs. [16]

DL
s is the effective diffusivity in the undeformed geometry, which en-

sures that the flux passing an undeformed surface equals to that pass-
ing the corresponding deformed surface. The boundary conditions for
Equation 16 are as follows

JL · n = 0|R=0

JL · n = − siE

nF
J

2
3

p |R=R.
[17]

The second boundary condition is derived based on mass conservation.
More specifically, the flux density at the surface of deformed particle
in the deformed electrode can be expressed as JE · n = − siE

nF |r=r. To
ensure mass conservation, the total flux evaluated in the deformed and
undeformed particle surfaces should be the same, i.e., |JE | × 4πr2 =
|JL|×4πR2. Then using relation 13 the second boundary condition in
17 can be obtained. iE is the reaction current density evaluated at the
surface of the deformed particle based on the Butler-Volmer equation

iE = i0

[
exp

(
αaFη

nF

)
− exp

(−αcFη

nF

)]

i0 = F (kc )αa (ka )αc (Cs,max − Cs )αa (Cs )αc

(
cl

cl,ref

)αa

η = φs − φl − E eq(x)

[18]

In the above equation, i0 is the exchange current density,αa = αc = 0.5
are the symmetry factors, η is the overpotential and Eeq is the equilib-
rium potential, which is a function of the intercalation fraction (x =
Cs/Cs,max) at the particle surface. It should be noted that as the max-
imum solid concentration Cs,max is defined assuming negligible vol-
ume change during Li intercalation, evaluations of i0 and intercalation
fraction should use the nominal concentration Cs instead of the real
concentration cs. While Equation 18 is widely used in LIB modeling,
additional treatment is required for Si anode of which the polarization
curve shows significant hysteresis that could be attributed to the effect
of stress.21 To account for the hysteresis of the polarization curve of
Si, its equilibrium potential is expressed as

E eq
Si = E eq

Si (x) + �σh

F
, [19]

where σh = trace(σ)/3 is the electrode-level hydrostatic stress. Due
to the small size of the Si particle studied in this work, the effect of
diffusion induced stress (DIS) is not considered in this work but will
be incorporated in the future.

The governing equations for electrolyte and electric potentials are
similar to those in the classic P2D model but expressed in the unde-
formed geometry, such that

∇L · il = jJ, [20]

∇L · is = − jJ. [21]

The right-hand-sides of the above equations are the equivalent volu-
metric current source in the undeformed electrode, while j = aiE is

Table I. Values of the parameters used in the current model for all
example problems unless stated otherwise.

Parameter Cathode Separator Anode

R (μm) 1.8 N/A 0.1
Ds (m2/s) Table BI N/A 1e-16
κs (S/m) 100 N/A 100
i0 (A/m2) Table BI N/A 1
� (m3/mol) 7.8e-722 N/A 9.0e-623

Cs,max (kmol/m3) 49.6 N/A 333.3
εe,0 0.35 0.4 0.5
L0 (μm) @ 5 mAh/cm2, N:P=1.2 96.4 20 26.9
Intercalation fraction x (0.3,0.9) N/A (0.1,0.6)
Es(GPa) 2.5 1 5
ν 0.3 0.3 0.3
Bruggeman factor b 2.2 2.5 2.2

the real volumetric current source in the deformed electrode. a is the
specific surface area of the active material in the deformed electrode,
which can be expressed as

a = 3εs

r(x)
= 3εs

R
J

− 1
3

p (x). [22]

The above equation shows that the proposed model is able to ap-
proxiamte the variation of specific surface area, which requires the
simultaneous and consistent approximations of particle size and solid
volume fraction variations. Such capability has not been reported in
literature to the best knowledge of the authors.

As the electrode porosity varies due to Li insertion/extraction, the
pore-filling electrolyte either flows in to occupy additional pore vol-
ume or flows out to make room for the expanded active material. As-
suming that the electrolyte concentration cl only varies in the thickness
direction and that the electrolyte only flows in and out in the in-plane
direction, the following governing equation for cl is derived

(1 − εs )J
∂ce

∂t
= ∇L ·

[
DL

l ∇Lce − iet+
F

]
+ j

nF
J. [23]

The above equation also ensures mass conservation and that the elec-
trolyte is incompressible. To account for the effect of deformation on
transport properties, the effective electrolyte diffusivity DL

l , electrolyte
conductivity κL

l and the solid conductivity κL
s are evaluated using ex-

pressions similar to Equation 16. The explicit forms of the governing
equations are summarized in Table AI.

Results and Discussion

In this section, the proposed model is employed to investigate the
electrochemical and mechanical behaviors of a cell composed of a Si
anode and a NMC532 cathode with a cross-sectional area of 14.1 cm2.
The Si particles are assumed to be amorphous. Using parameter values
summarized in Table I, the simulated cell is determined to have a the-
oretical capacity of 70.5 mAh (5 mAh/cm2). To single out the effects
of component porosity variation and the stress-dependent OCP of Si
on cell performances, three cases are considered in this section. Case
I is the base case that corresponds to the classic P2D Newman model,
which assumes negligible particle-level and electrode-level deforma-
tions. Case II incorporates the effect of active material volume change
on porosity variation and electrode deformation, while Case III fur-
ther incorporates the effect of stress-dependent OCP of Si. The cell
is charged at constant current to the cut-off voltage Vcut = 4.0727 V
with the two ends of the cell assumed to be fixed.

Figure 1a shows the variation of cell voltage versus charge capacity
normalized by the theoretical capacity (70.5 mAh) when the cell is
charged at 0.02C. It can be seen that at such low C rate, the voltage
responses of Case I and Case II are similar and they can be charged
to the theoretical capacity even though the model predicts a notable
porosity reduction in all components of Case II when it is charged to
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Figure 1. (a) Variation of cell voltage versus normalized charge capacity; (b) variation of porosity versus the normalized distance from the negative current collector
(x/Ltot) when the cell is charged to 98.6% of the theoretical capacity; (c) and (d) show the distributions of σxx and σh, Si particle volume change (Jp) and particle
specific surface area normalized by the initial specific surface area of the anode at end of charge for Case II, respectively. The charge rate is 0.02C.

98.6% of the theoretical capacity (maximum for Case III), as shown
in Figure 1b. Note that the abscissa of Figure 1b is the distance from
the negative current collector normalized by the total thickness of the
cell (Ltot = 143.3 μm), which does not vary over time due to the
fixed boundary condition. For Case I, the porosity of each component
remains unchanged. In contrast, the porosities of anode, separator and
cathode for Case II near the end of charge are reduced to 0.281 (reduced
by 43.8%), 0.233 (reduced by 41.8%) and 0.287 (reduced by 18.0%),
respectively. In spite of the significant porosity reduction, at a charge
rate as low as 0.02C the ionic diffusion in electrolyte is still fast enough
and thus it does not affect the voltage response of Case II. Figure 1b
also shows the variation of the relative thickness of each component.
For example, anode initially occupies approximately 18.8% of the
total cell thickness, which is increased to about 29.0% near the end of
charge due to Si expansion. Correspondingly separator and cathode
are compressed.

The inset of Figure 1a shows that at the end of charge Case III
has an additional overoptential of approximately 26.7 mV compared
with Case I and Case II. This is due to the compressive hydrostatic
stress within the anode developed during the charging process. Figure
1c shows the distributions of the out-of-plane stress σxx and the hy-
drostatic stress σh within the anode for Case II at the end of charge.
As the cross-sectional area of the cell is assumed unchanged, σxx =

−64 MPa is uniform over the cell thickness. σh is also approximately
uniform within the anode in this case due to the uniform Si utilization
at such low charging rate. The average σh within the anode is about
−298 MPa, which corresponds to an overpotential of about 27.8 mV
according to Equation 19. It should also be noted from Figure 1c that
the magnitude of σh is notably larger than σxx , which indicates that the
hydrostatic stress is dominated by the in-plane stress. While the negli-
gible in-plane displacement assumption adopted in this work requires
further validation, this simulation result sheds light on the potential
significance of considering in-plane stress when studying electrode
mechanical integrity, effect of stress on cell performances, etc.

Figure 1d shows the approximated variation of Si particle volume
change (Jp) along the anode thickness at the end of 0.02C charge for
Case II. It can be seen that while the Si particle near the separator is
larger than that near the negative current collector (x = 0) due to the
nonuniform Li insertion rate distribution, the magnitude of variation is
actually very small due to the low charging rate. The average particle
expansion is close to the analytical value (Jp = 2.250). Also shown
in Figure 1d is the variation of the particle specific surface area of the
anode (Equation 22) normalized by the initial specific surface area. It
is predicted that the specific surface area is increased by about 10% at
the end of charge, which may affect the power capability of the cell.
Such predictive ability has not been reported in existing models, which
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Figure 2. (a) Variation of cell voltage versus normalized charge capacity. (b) variation of porosity when the cell is charged to 81.9%; (c) variation of ce and φe
when the cell is charged to 83.3%; (d) variation of total amount of Li in electrodes. The charge rate is 1C.

requires the simultaneous and consistent determination of porosity and
particle size variations.

Figure 2a shows the variation of cell voltage versus normalized
charge capacity when the cell is charged at 1C. At the initial stage of
charging, the voltage responses of all cases are similar, as the porosity
reduction and compressive stress are still small in this stage. However,
at the end of charge Case II has an additional overpotential of about
134.9 mV compared to Case I, which is due to the porosity reduction as
shown in Figure 2b. Porosities in all components of Case I (not shown)
do not change over time. In contrast, the porosities of anode, separator
and cathode for Case II are reduced to about 0.290 (reduced by 42.0%),
0.262 (reduced by 34.5%) and 0.300 (reduced by 14.3%) respectively
when the cell is charged to 81.9% of the theoretical capacity (maximum
for Case III). In addition, as the lithium insertion rate in the anode is
faster near the separator, the porosity is lower in this region due to
larger Si particle expansion.

Figure 2c shows the variation of ce and φe versus the normalized
distance from the negative current collector for Case I and Case II
when the cell is charged to 83.3% (maximum for Case II). Due to the
porosity reduction, both the effective electrolyte diffusivity and con-
ductivity are reduced for Case II, leading to larger differences of ce

and φe between the two ends of the cell. As shown in Figure 2c, the
concentration and potential differences are increased by 59.1% and

120.9% when the effect of porosity reduction is incorporated, respec-
tively. These are the direct reasons for the additional overpotential of
Case II. As a result, while Case I can be charged to 91.7% of the
theoretical capacity at 1C, Case II can only be charged to 83.3%. In
addition, the electrolyte depletion in anode observed for Case II sig-
nificantly reduce the the utilization of Si particles near the negative
current collector. Figure 2d shows the variation of the total amount
of Li stored in both electrodes, which should be conserved during the
cycling process as side reactions (SEI formation, Li plating, etc.) are
not considered in the current model. It is shown that the amount of
Li is basically constant for Case II and Case III, with the maximum
relative error being only 0.0066%. This simulation result together with
those presented in Figure 1a and Figure 1d verify the formulation of
the proposed model.

Distribution of intercalation fraction of active materials when the
cell is charged to 81.9% at 1C is shown in Figure 3a. Compared with
Case I, the ranges of intercalation fraction in both anode and cathode
are significantly larger for Case II. This is due to the porosity reduc-
tion shown in Figure 2b which hinders the diffusion of lithium ions
from cathode to anode. As a result, the active materials near the cur-
rent collectors are less efficiently utilized, which implies nonuniform
active material and electrode volume changes. Figure 3b shows the
distribution of the electrode-level volume change (J) for Case II and
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Figure 3. Variations of (a) intercalation fraction and (b) volume expansion of cell components versus the normalized distance from the negative current collector.
(c) Distribution of anode stresses; (d) Variation of noramlized accessible capacity of the cell versus C rate.

III. It can be seen that the anode expansion varies from 1.34 near the
negative current collector to 1.67 near the separator. The values of J in
separator and cathode are 0.81 and 0.91 respectively and are relatively
uniform. As a consequence of the nonuniform anode deformation, the
distribution of σh in anode is also nonuniform as shown in Figure 3c.
Due to the larger electrode expansion, a larger compressive hydrostatic
stress is developed near the separator, while σxx ≈ −50 MPa remains
uniform within the anode. The nonuniform distribution of σh, which
is coupled to the electrochemical process via Equation 19, alters the
Li insertion rate distribution in anode. This coupling effect explains
why the distributions of intercalation fraction and electrode volume
change of Case III are slightly more uniform than Case II as shown in
Figure 3a and Figure 3b.

As the porosity reduction mainly influences the ionic transport in
the electrolyte, its effect is supposed to be more significant for high
rate charging. Figure 3d presents the model prediction of the variation
of normalized accessible capacity versus the C rate. At low C rate
the major overpotential comes from the effect of hydrostatic stress
on the equilibrium potential of Si. As the C rate increases, the effect
of porosity reduction becomes dominant. When charged at 2C, the
accessible charge capacity is overpredicted by 70% if the effect of
active material volume change is neglected.

In addition to C rate, the effect of active material volume change
is also affected by initial component porosities and loading of the

cell. Figure 4a shows the voltage response of a cell with fixed load-
ing (5 mAh/cm2) and various initial anode porosity (εa

e,0) which is
charged at 1C (Case III). It can be seen that the accessible capacity
is generally decreasing with the decrease of εa

e,0. When εa
e,0 is be-

low 0.45, the accessible capacity declines rapidly and the cell can
only be charged to 45.8% when εa

e,0 = 0.35. Figure 4b compares
the variations of cell volumetric energy density versus εa

e,0 for Case
I and Case III (thicknesses of current collectors are assumed to be
10 μm). As the relative contributions of porosity reduction and stress
on cell performance has already been illustrated in previous exam-
ples, from now on only the predictions of Case I and Case III will be
compared.

Intuitively, the energy density should first increase then decrease
with the increase of εa

e,0 due to the higher mass transportation limitation
at lower εa

e,0 and the larger cell volume at higher εa
e,0. Figure 4b shows

that the cell energy density of Case I is monotonically decreasing with
the increase of εa

e,0. This implies that when active material volume
change is negligible, the ionic transportation in electrolyte is not lim-
iting at 1C within the range of εa

e,0 investigated. Therefore, lower εa
e,0

can be used to obtain a higher energy density. Case III predicts a lower
cell energy density at each εa

e,0 due to the additional overpotential as-
sociated with active material volume change. The difference between
predictions is more notable at lower εa

e,0, where the pores in anode
are almost completely closed at the end of charge and thus strongly
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Figure 4. Variations of (a) cell voltage, (b) volumetric energy density and (c) average hydrostatic stress of anode for a cell with loading of 5 mAh/cm2 and various
initial anode porosity (εa

e,0). (d) Variation of volumetric energy density versus loading for a cell with εa
e,0 = 0.5. All cells are charged at 1C. Both current collectors

are assumed to have a thickness of 10 μm.

increase the concentration/ohmic overpotentials. For εa
e,0 = 0.35, Case

I overpredicts the energy density by 52%.
The model also predicts that the maximum energy density of

the cell is 896.9 Wh/L which is achieved when εa
e,0 = 0.5. How-

ever, it should be pointed out that the predicted optimal εa
e,0 is based

on the modeled porosity instead of the recipe porosity, which does
not consider the porosity reduction due to SEI formation. The ef-
fect of SEI on porosity reduction is especially significant for Si an-
ode due to the small particle size (around 100 nm). Therefore, the
optimal recipe anode porosity should be higher than that predicted
in this example, such that after SEI formation the anode porosity is
about 0.5.

Electrode porosity also affects the stress evolution within the cell
by influencing its mechanical properties according to Equations 9 and
10. In this work, we are mainly interested in the stress within the
Si anode, which is more prone to mechanical degradation. Figure 4c
shows the evolution of the average hydrostatic stress of anode with
various εa

e,0. When charged to the same capacity, the anode with lower
initial anode porosity has a higher average hydrostatic stress due to
the higher elastic modulus. Also note that for each εa

e,0 the gradient

of average hydrostatic stress is decreasing as the charge capacity in-
creases due to the gradual stiffening of the anode during the charging
process.

Finally, Figure 4d demonstrates the variation of cell energy density
versus cell loading for Case I and Case III (εa

e,0 = 0.5). For fixed εa
e,0,

the cell thickness is increasing with loading. When the loading is low
(1 mAh/cm2), the cell is relatively thin and thus porosity reduction due
to active material volume change does not significantly affect the ionic
transportation in electrolyte. In such case the cell energy densities pre-
dicted for Case I and Case III are similar. As the loading increases,
both cases predict the energy density to increase before a critical value,
above which the energy density starts to decrease. However, for Case I
the critical loading is 6 mAh/cm2, while Case III predicts a lower crit-
ical value (4 mAh/cm2). In addition, Case III predicts a rapid decrease
of energy density for loading higher than 5 mAh/cm2, such that Case
I overpredicts the energy density by 110.8% when the cell loading is
7 mAh/cm2. Such striking difference in model predictions highlights
the necessity of incorporating the effect of active material volume
change when performing design optimization for cell composed of
high-capacity anode.
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Figure 5. (a) Variation of cell voltage versus the normalized capacity when the cell is charged at 1C; (b) variations of cell thickness and the average porosity of
each compoenent versus the normalized capacity when the cell is free to expand (P = 0 psi).

The effect of active material volume change is also affected by
the fixture condition of the cell. Figure 5a demonstrates the volt-
age response of the cell (Case III) when it is either completely
constrained in size or allowed to expand/contract under a constant
externally applied pressure in the thickness direction. The pressure
is applied on the positive current collector, while the negative cur-
rent collector remains fixed. When the applied pressure P = 0 psi,
the cell is free to expand/contract without any limitation in the thick-
ness direction. Compared to the configuration with P = 0 psi, the
cell has an additional overpotential of about 104 mV when it is con-
strained from any dimensional change. This is due to the larger com-
pressive stress and the more notable porosity reduction in this fixture
configuration.

While allowing the cell to expand increases the accessible capacity,
it also implies more significant volume change of the cell. Figure 5b
shows the evolution of the thickness of each component and the entire
cell when P = 0 psi. At the end of 1C charge, the thickness of the cell
increases from 143.3 μ to 156.3 μm. The volume change of the cell
mainly comes from the expansion of the anode, the thickness of which
increases from 26.9 μm to 40.9 μm. As σxx = 0 MPa when P = 0 psi,
the separator only experiences rigid motion without any deformation.
As a result, the thickness of the separator does not change during the
charging process. The thickness of the cathode is slightly decreased
due to the contraction of the NMC particles.

Figures 6a–6c further illustrate the effect of fixture condition on
the porosity variation in each component when the cell is charged to
93.1% (maximum for the fixed ends configuration). While predicting
similar pattern of porosity distribution, the average porosity in each
component is the lowest when both ends of the cell are fixed. This is due
to the constrained electrode deformation, which requires the volume
change induced by lithium insertion/extraction to go into the empty
space (pores), according to Equation 7. Applying a small pressure
(P = 100 psi) partially constrains the electrode expansion, so the
average porosity in each component is slightly smaller compare to
those when P = 0 psi. Finally, Figure 6d shows that distributions of
σh when the cell is under different fixture conditions. It can be seen
that when both ends of the cell are fixed, the hydrostatic stress in the
anode will have higher magnitude and nonuniformity, which could
lead to accelerated anode degradation especially near the separator.
In addition, while a compressive stress of −22 MPa is developed in
the cathode when both ends of the cell are fixed, the cathode stress
is actually tensile when P = 0 psi due to the contraction of NMC
particles as Li is extracted. As the volume change of NMC particles is

small, the magnitude of stress is much smaller than the anode stress
(about 2 MPa).

Note that when P = 0 psi, σxx = 0 MPa and thus σh is only
determined by the in-plane stress. However, even when the cell is
allowed to freely expand in the thickness direction, the magnitude of
average σh in anode is still larger than 200 MPa. This again highlights
the necessity to consider both in-plane and out-of-plane stresses when
modeling/designing LIBs with large capacity electrode materials. In
addition, while the compressive electrode stress is not expected to
cause crack initiation or propagation in Si particles, the compressive
stress may already be high enough to cause the damage of the binder
of which the compressive strength is around 80 MPa. This would
lead to an increase of cell resistance and a decrease of cell capacity
due to the loss of connection between the active material and the
current collector. Further research is required to determine ways to
limit the stress level within the cell, such as limiting the state-of-charge
of the cell, utlization of composite anode (Si/C), allowing in-plane
displacement, or any reasonable combination of them. The model can
also be used to develop requirements for binder properties.

Conclusions

In this work, the Pseudo2D battery model was consistently refor-
mulated based on the finite strain theory to incorporate the coupled
effects of large electrochemical-mechanical deformations at both par-
ticle and electrode levels. As all governing equations are formulated in
the reference (undeformed) geometry, the model was able to approx-
imate the effect of large particle/cell deformations without resorting
to remeshing to accommodate the deforming problem domain. We
showed that in the proposed model the electrode deformation, poros-
ity variation and the electrochemical processes were consistently cou-
pled. As a result, the model can provide additional information such
as the variation of specific surface area, which has not been reported
in existing models.

Simulation results showed that there were significant additional
overpotentials associated with porosity reduction and compressive hy-
drostatic stress when the effect of active material volume change was
incorporated. The accessible capacity/energy density of the cell were
generally overpredicted if particle deformation was assumed negligi-
ble, especially at high charge rate, low initial porosity and high cell
loading. It was also shown that the porosity variation and stress evo-
lution within the cell were strongly affected by the fixture condition.
Therefore, this model can serve as a numerical tool to achieve the
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Figure 6. Variation of porosity versus the distance from the negative current collector within (a) anode, (b) separator and (c) cathode. (d) Variation of σh in anode
and cathode versus the distance from the negative current collector. All cells are charged to 93.1% at 1C.

optimal design of a high-capacity cell in terms of capacity/energy
density, allowable stress and allowable volume change. The model
also shed light on the potential significance of in-plane stress, which
deserves further numerical and experimental investigations.

In the future, the model will be further developed to couple the
particle-level diffusion-induced stress with the electrode stress to pro-
vide more insight about cell capacity fade due to the fracture of active
material. Modeling of Si/C composite anode will also be investigated.
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Appendix A: Explicit Forms of Governing Equations in 1D

Table AI. Explicit forms of the governing equations. Derivatives
are defined in the reference configuration.

Variable Governing equation

cs
∂
∂t
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εs

εs,0
(1 + ∂u

∂X )cs
] = 1

R2
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R2DE
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εs,0
(1 + ∂u
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u ∇(FS)X X = 0
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Appendix B: Material Properties

Table BI. Expressions for model parameters used in this work. The unit of Ce is kmol/m3. T = 303.15 K is temperature and x is the intercalation
fraction of the active material. The electrolyte is composed of LiPF6 in EC/EMC (30%:70% by weight).

Property Expression

E eq
Si (V) vs Li+/Li −4.76x6 + 9.34x5 1.8x4 7.13x3 + 5.8x2 − 1.94x + 0.62

E eq
NMC(V) vs Li+/Li 5.314735633000300 − 3640.117692001490x14 + 13176.57544484270x13 −

14557.42062291360x12 − 1571.094264365090x11 + 12656.30978512400x10 −
2057.808873526350x9 − 10743.74333186190x8 + 8698.112755348720x7 −
829.7904604107030x6 − 2073.765547574810x5 + 1190.223421193310x4 −
272.4851668445780x3 + 27.23409218042130x2 − 4.158276603609060x −
5.573191762723310 × 10−4 × exp(6.560240842659690x41.48209275061330)

DLi+ (m2/s) 10−4×(D0+D1Ce+D2C2
e )

D0 = −0.5688226 − 1607.003/(T − T g)
D1 = −0.8108721 + 475.2914/(T − T g)
D2 = −5.192312 × 10−3 − 33.43827/(T − T g)
T g = −24.83763 + 64.07366 × Ce

κl (S/m) K1 × Ce − K2 × C2
e + K3 × C3

e − K4 × C4
e

K1 = 0.0001909446T 2 − 0.08038545T + 9.00341
K2 = −0.00000002887587T 4 + 0.00003483638T 3 − 0.01583677T 2 + 3.195295T − 241.4638
K3 = 0.00000001653786T 4 − 0.0000199876T 3 + 0.009071155T 2 − 1.828064T + 138.0976
K4 = −0.000000002791965T 4 +0.000003377143T 3 −0.001532707T 2 +0.3090003T −23.35671

t+
Li+ A × C2

e + B × Ce + C
A = −0.0000002876102T 2 + 0.0002077407T − 0.03881203
B = 0.000001161463T 2 − 0.00086825T + 0.1777266
C = −0.0000006766258T 2 + 0.0006389189T + 0.3091761

d ln f±
d ln cl

A × C2
e − B × Ce − C

A = 0.54 exp(329.0/T )
B = −0.00225 exp(1360/T )
C = 0.341 exp(261.0/T ) − 1

Ds,NMC (m2/s) 3 × 10A

A = −250.9010843479270x10 + 2391.026725259970x9 − 4868.420267611360x8 −
83.31104102921070x7 + 10576.36028329000x6 − 12683.24548348120x5 +
5016.272167775530x4 + 982.4896659649480x3 − 1502.439339070900x2 +
472.3709304247700x − 65.26092046397090)

i0,NMC (A/m2) (16.50452829641290x5 − 75.23567141488800x4 + 124.0524690073040x3 −
94.16571081287610x2 + 32.49768821737960x − 3.585290065824760) × (Ce/1.2)0.5 × 10.0

ORCID

Weijie Mai https://orcid.org/0000-0001-8138-8104
Andrew Colclasure https://orcid.org/0000-0002-9574-5106
Kandler Smith https://orcid.org/0000-0001-7011-0377

References

1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources, 226, 272 (2013).
2. DOE, US, US Department of Energy, January, 31 (2013).
3. W. Zhang, J. Power Sources, 196, 13 (2011).
4. X. Zhang, A. M. Sastry, and W. Shyy, J. Electrochem. Soc., 155, A542 (2008).
5. Y. T. Cheng and M. W. Verbrugge, Journal of Power Sources, 190, 453 (2009).
6. J. Christensen and J. Newman, J. Solid State Electrochem., 10, 293 (2006).
7. K. Zhao, M. Pharr, S. Cai, J. J. Vlassak, and Z. Suo, J. Am. Ceram. Soc., 94, s226

(2011).
8. Z. Cui, F. Gao, and J. Qu, J. Mech. Phys. Solids, 60, 1280 (2012).
9. T. F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc., 141, 1 (1994).

10. M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, J. Elec-
trochem. Soc., 143, 1890 (1996).

11. G. Sikha, B. N. Popov, and R. E. White, J. Electrochem. Soc., 151, A1104
(2004).

12. M. Jain, G. Nagasubramanian, R. G. Jungst, and J. W. Weidner, J. Electrochem. Soc.,
146, 4023 (1999).

13. P. M. Gomadam and J. W. Weidner, J. Electrochem. Soc., 153, A179 (2006).
14. T. R. Garrick, X. Huang, V. Srinivasan, and J. W. Weidner, J. Electrochem. Soc., 164,

E3552 (2017).
15. T. R. Garrick, K. Higa, S. Wu, Y, Dai, X. Huang, V. Srinivasan, and J. W. Weidner,

J. Electrochem. Soc., 164, E3592 (2017).
16. A. J. Louli, J. Li, S. Trussler, C. R. Fell, and J. R. Dahn, J. Electrochem. Soc., 164,

A2689 (2017).
17. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Elec-

trochem. Solid-State Lett., 4, A137 (2001).
18. B. Wu and W. Lu, J. Power Sources, 360, 360 (2017).
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