
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper 
NREL/CP-5400-72890 
January 2019 

A Hybrid Tour-Based Model for Energy 
Analysis of Multi-Modal Intra-City 
Freight: A Case Study of Autonomous 
Electric Vehicles 

Preprint 
Yi Hou,1 Amy M. Moore,2 Adam Duran,1 Kevin Walkowicz,1 
and David Smith2 

1 National Renewable Energy Laboratory 
2 Oak Ridge National Laboratory 

Presented at Transportation Research Board (TRB) 98th Annual Meeting 
Washington, D.C. 
January 13–17, 2019 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper 
NREL/CP-5400-72890 
January 2019 

A Hybrid Tour-Based Model for Energy 
Analysis of Multi-Modal Intra-City 
Freight: A Case Study of Autonomous 
Electric Vehicles 

Preprint 
Yi Hou,1 Amy M. Moore,2 Adam Duran,1 Kevin Walkowicz,1 
and David Smith2 

1 National Renewable Energy Laboratory 
2 Oak Ridge National Laboratory 

Suggested Citation 
Hou, Yi, Amy M. Moore, Adam Duran, Kevin Walkowicz, and David Smith. 2019. A Hybrid 
Tour-Based Model for Energy Analysis of Multi-Modal Intra-City Freight: A Case Study of 
Autonomous Electric Vehicles: Preprint. Golden, CO: National Renewable Energy 
Laboratory. NREL/CP-5400-72890. https://www.nrel.gov/docs/fy19osti/72890.pdf. 

https://www.nrel.gov/docs/fy19osti/72890.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle 
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. 
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges 
that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce 
the published form of this work, or allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


1 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Abstract 
With the emergence of cutting-edge transportation technologies, such as electric vehicles (EVs), 
connected and autonomous vehicles, and drones, the adoption of multimodal freight mobility has 
the potential to improve efficiency and save more energy. This paper proposes a hybrid tour-
based model to evaluate the energy impact of multimodal intra-city freight movement for future 
scenarios. The model is built based on the traveling salesman problem model and clustering 
techniques. A case study using autonomous electric vehicles for package delivery is evaluated. 
The study was conducted using data analyzed from the Columbus, Ohio, metropolitan area. The 
initial results show that multimodal package delivery using autonomous EVs reduced total travel 
time by 45% and saved total energy use by 19%, but increased total vehicle miles traveled by 
15% when compared with the baseline scenario. 

Keywords: energy analysis, multimodal, intra-city, freight, autonomous vehicles, electric 
vehicles 

Introduction 
Modeling freight movement data and route choice information is crucial to planning; improving 
current and future transportation infrastructure; locating businesses; improving efforts to 
streamline goods movement, especially urban goods; and reducing energy use for freight 
transportation. Also, with increasing demands and changing consumption habits, mobility being 
offered as a service, and recent advancements in electric vehicle (EVs) and connected and 
autonomous vehicle technologies, the landscape of freight planning is changing as businesses 
compete to meet the needs of a growing customer base, while transportation planners aim at 
meeting these needs by maintaining and updating the transportation infrastructure. There is a 
growing interest in examining freight movements, and although previous research has been done 
to look at freight route choice regarding individual trips, there is increasing interest in freight 
tours. 

Consideration of new transportation technologies and the effect that these technologies have on 
the existing freight network and freight movements are often lacking in the literature. The use of 
electric and autonomous vehicles for freight movements should be considered, especially for 
local freight tours. How the increasing use of these vehicle types affects energy use and 
emissions locally and regionally, determining the location of charging stations, how this affects 
route choice decisions, and the effects that these vehicle types have on neighborhoods (possibly 
reducing air and noise pollution levels) should all be considered when developing local-level 
tour models. Autonomous vehicle use should also be considered, as advancements in 
autonomous vehicle technology will likely lead to more of these vehicle types being used for 
deliveries and long-haul freight shipments in the near future, which will have an effect on 
efficiency and travel times, as autonomous trucks will not have the rest periods that are required 
for long-haul truck trips. 

The lack of an efficient energy analysis tool for freight movement considering adoption of 
emerging transportation technologies and multimodal shifts motivated this study. Although there 
are several sources of tour-based freight models that a Metropolitan Planning Organization or 
other planning entity can refer to when developing a location-specific methodology, these 
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sources are still missing pertinent information regarding changing manufacturing practices, 
evolving vehicle technologies, and improved delivery systems and technology. Consideration 
should be given to these issues to better model the existing and quickly changing economic 
landscape, and to better understand energy use and potential energy-saving strategies for freight 
transport. The objective of this paper is to fill the gap by developing a hybrid tour-based model 
for energy analysis of multimodal intra-city freight using the “traveling salesman problem” 
(TSP) model and clustering techniques. A future scenario where autonomous electric vehicles 
(AEVs) are used for multimodal package delivery is evaluated using the developed model. 

The remainder of the paper is organized as follows: the next section provides a brief review of 
literature on tour-based freight models; the third section presents the detailed description of 
methodology for model development; the fourth section presents the data collection process and 
experimental results of a case study, as well as a sensitivity analysis. The conclusions are 
presented in the final section. 

Literature Review 
Tour-based freight modeling, although only recently becoming part of the transportation and 
freight modeling literature, is crucial to transportation planning and engineering. Whereas trip-
based freight models adhered to the traditional four-step travel demand model and were 
commonly used in modeling passenger vehicle movements, the importance of modeling tours 
has been realized as a means by which the underlying route decision process is modeled.  

Doustmohammadi et al. (1) suggests that tour-based models are more suitable for considering 
intermediate stops and the effect that these stops have on vehicle miles traveled (VMT), which is 
an important consideration regarding energy use. Trip-based models fail to include complexities 
and details, especially prevalent trip-chaining behavior. Although the traditional four-step travel 
demand model has typically been used to model passenger movement, it fails to capture 
information regarding the interdependency of multiple trips within tours, and thus is not 
necessarily suitable for modeling freight tours within an area (2).  

Global positioning system data (GPS) provide a way to collect very detailed data on freight 
movements. Although obtaining proprietary shipment data from a parcel delivery service is rare, 
the American Transportation Research Institute and travel data measurement companies are 
often the sources of GPS data used in tour-based freight models. Kuppam et al. (3) used 
American Transportation Research Institute GPS travel logs of truck tours from companies 
collected by the Maricopa Association of Governments and truck GPS data obtained from 
StreetLight as part of the development of the Mega-Regional Multimodal Agent-Based 
Behavioral Freight Model. Based on the results from this study, the authors concluded with the 
recommendation of using GPS data for developing truck tour-based models. Greaves and 
Figliozzi (4) also found that GPS data can be used to complement survey data collected from 
truck drivers. The methodology presented in this study is in-line with previous methods found 
throughout the tour-based freight modeling literature. 
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Methods 
Hybrid Tour-Based Model 
In an effort to quantify the energy impact via adopting autonomous electric vehicles (AEVs) in 
multimodal package delivery on an intracity scale, a hybrid tour-based model was developed 
using the classic operations research model, the traveling salesman problem (TSP), combined 
with machine learning techniques, such as k-means clustering. Single modal package delivery 
using a conventional diesel-fueled delivery truck was selected as the baseline for comparison as 
it is most reflective of current intracity package delivery methods. FIGURE 1(a) shows an 
example route based on the traditional package delivery method. Blue dots indicate delivery 
destinations, and the blue lines represent the vehicle path of travel. Under the baseline scenario, 
all of the packages in a particular area of the city are delivered by only one conventional truck. 
To examine the opportunity for AEVs in multimodal shifts and associated potential fuel/energy 
savings, a multimodal scenario with subdepots, where a mode shift would take place, was 
developed around conventional vehicle delivery. Instead of delivering all packages in a particular 
area using only one truck, under this scenario the packages are dropped off at a number of 
distribution centers within the area by conventional trucks and then delivered to final 
destinations using smaller AEVs responsible for smaller subsections of the area. FIGURE 1(b) 
shows an example of a multimodal AEV scenario where a conventional diesel-fueled delivery 
truck drops off packages at four subdepots, which are indicated by the blue markers. The blue 
route represents the conventional truck trajectory, and the red, purple, orange, and green routes 
represent the trajectories of four individual AEVs. The dots represent the same delivery 
destinations as in the baseline scenario; however, in the case of the multimodal AEV scenario, 
these final deliveries are made by AEVs. 

  

(a) (b) 

FIGURE 1 (a) Single modal package delivery (b) Multimodal AEV scenario of package delivery 

Starting with initial information of delivery destinations, a hybrid tour-based model was 
developed and applied to the data to generate optimized routes for the multimodal AEV 
scenarios. The baseline in this project perfectly fits the TSP paradigm (5, 6, 7). TSP asks the 
classic question: “Given a list of cities and distance between them, what is the shortest route for a 
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traveling salesman to visit each city exactly once and return to the origin city?” Let 𝑐𝑐𝑖𝑖𝑖𝑖 denote the 
cost of traveling from destination 𝑖𝑖 to destination 𝑗𝑗, 𝑥𝑥𝑖𝑖𝑖𝑖 denotes whether the route between 
destination 𝑖𝑖 to destination 𝑗𝑗 is in the route, 𝑉𝑉 denotes the set of destinations, and 𝑆𝑆 denotes any 
subset of 𝑉𝑉. The route optimization problem in this project can be mathematically formulated as 
follows: 

min� � 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗≠𝑖𝑖, 𝑗𝑗=1

𝑛𝑛
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The first constraint indicates that there are only two states between any two nodes in the 
network. They are either connected or not. The second and third constraints make sure that there 
is only one path to enter and leave each node. The fourth constraint prevents the model from 
resulting in multiple separate independent loops. 

In this study, the cost of traveling can be seen as energy consumption. The solution of the TSP 
can be solved by integer programming and directly applied to the baseline scenario. For the 
multimodal AEV scenario, a hybrid tour-based model was designed, as illustrated in FIGURE 2. 
The delivery destinations are first clustered to a few clusters by the k-means clustering algorithm 
(8, 9, 10), of which the essential idea is to assign locations close to each other to the same group. 
The clustering is to identify how many subdepots should be selected for the scenario, as well as 
which locations on the map would make the potential subdepots for transfer. Once the k-means 
cluster algorithm is applied and subdepots are identified, the conventional truck and AEV routes 
are then optimized separately using the TSP framework. 

 
FIGURE 2 Hybrid tour-based model for multimodal AEV scenario 
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Case Study 
In order to provide estimated delivery scenarios for the modeling framework to function,   a 
sample case study was created to simulate typical package delivery services in  Columbus, Ohio. 
The framework and the logic of the case study are presented in FIGURE 3. Sample delivery 
truck trajectory data from the NREL Fleet DNA database (11) is used to estimate  package 
delivery destinations. Then, an energy consumption matrix describing energy consumption for 
traveling between any two delivery destinations by the same truck is estimated for each truck 
based on travel distances between delivery destinations and the energy consumption rate. For the 
baseline scenario, TSP is directly applied to the energy consumption matrix to obtain the 
optimum routes and energy estimates. For the multimodal AEV scenario, the hybrid tour-based 
model looks at both delivery destinations and the energy consumption matrix and outputs the 
optimum routes and total energy consumption. Energy impacts of adopting AEVs in multimodal 
shifts are quantified by comparing with baseline results. 

 
 

FIGURE 3 Case study framework and logic 

Estimation of Routes and Destinations 
A total of 18 parcel delivery vehicles were simulated along routes and for destinations created 
using sampled data from the National Renewable Energy Laboratory’s Fleet DNA database.  
Data sampled from the Fleet DNA database included vehicle location, vehicle speed, engine 
coolant temperature and engine speed at a one Hertz sampling rate. Data from the engine coolant 
temperature signal was used to identify “key-on” ignition conditions, which was then used to 
estimate package delivery destinations along the routes. 

To accurately quantify the energy benefits of shifting to multimodal AEV package delivery 
within cities, delivery destinations needed to be identified for use as inputs into the hybrid 
model. Since the number of total delivery destinations does not vary too much, randomly 
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selected weekday delivery data for all trucks were used for analysis to quantify the energy 
impact. Using the coolant temperature signal, a method to create package delivery “destinations” 
was created and, based on this method, a total of 1,996 destinations were identified for the 18 
delivery trucks in an average day’s delivery, as shown in FIGURE 4. The marker indicates a 
distribution center (origin) from which all the trucks depart. All the colored dots represent 
estimated delivery destinations of each individual truck that were used for the modeling and 
analysis. The number of destinations for each truck ranges from 37 to 163, with an average of 
111. 

 
FIGURE 4 Estimated delivery destinations for 18 delivery trucks in Columbus, Ohio 

Once the delivery destinations were estimated from the truck trajectory data, a distance matrix 
that describes the travel distance between any two delivery destinations of the same truck was 
obtained for each truck by querying the shortest route using the MapQuest direction application 
programming interface. Multiplying the travel distance by the average fuel consumption rate 
derived from Fleet DNA delivery truck data, a fuel consumption matrix was estimated for each 
truck. In this study, the average fuel consumption rate of a conventional diesel fueled delivery 
truck was estimated to be 11.54 gallons per 100 miles. 

Results 
Other than total energy consumption, the performance metrics, including total delivery time and 
total vehicle miles traveled (VMT), were also evaluated. The performance metrics are defined as 
follows: 
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• Total energy consumption: the total energy consumed, in gallons of gasoline, for 
delivering all packages to their destinations in a one-day analysis.  

• Total delivery time: the total time for all vehicles to finish delivering all packages to their 
destinations and travel back to departure origins in a one-day analysis. It includes both 
vehicle travel time and vehicle stopping time for package delivery. Estimated from the 
trajectory data, the average vehicle stopping time for a package delivery is 130.9 seconds. 
The unit is vehicles per hour. 

• Total VMT: the total miles traveled by all vehicles during the process of delivering all 
packages to their destinations.  

The TSP in both the baseline and multimodal AEV scenarios was solved by a solver in the R 
software package called “TSP” (12, 13). For the baseline scenario, TSP was directly applied to 
each delivery truck separately. For the multimodal AEV scenario, a number of assumptions need 
to be made before applying the hybrid model. They are as follows: 

1. Each conventional delivery truck is responsible for the same packages that need to be 
delivered to the same destinations as the baseline scenario. Instead of delivering all the 
packages to the destinations, each truck drops off the packages at several subdepots. 
AEVs deliver the packages from subdepots to the final destinations.  

2. For the 𝑖𝑖th conventional delivery truck, to determine the number of subdepots, 𝑁𝑁𝑖𝑖, the 
average delivery capacity of AEV, 𝐶𝐶𝑖𝑖, needs to be assumed. The number of subdepots is 
calculated as: 

𝑁𝑁𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑀𝑀𝑖𝑖

 𝐶𝐶𝑖𝑖
�, 

where 𝑀𝑀𝑖𝑖 is the number of packages the 𝑖𝑖th conventional delivery truck carries. In this 
analysis, the average delivery capacity of the AEVs is assumed to be 50 
packages/vehicle.  

3. For the 𝑖𝑖th conventional delivery truck, after clustering destinations to 𝑁𝑁𝑖𝑖 destination 
clusters, the locations of subdepots are randomly selected within the cluster areas. 

4. The AEVs are assumed to have the same vehicle size as a conventional delivery trucks 
and to consume one-third of the energy of a conventional delivery truck. 

Subsets of the optimized routes for both the baseline and multimodal AEV scenarios are 
displayed in FIGURE 5. The colored lines and dots in FIGURE 5(a) represent routes and 
delivery destinations for each conventional delivery truck. In FIGURE 5(b), the light green lines 
represent AEV routes, while other colored lines represent conventional delivery truck routes. The 
small light green dots represent delivery destinations, while the large colored dots represent 
subdepots of each conventional delivery truck. 
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(a) 

 
(b) 

FIGURE 5 Subset of optimized routes (a) Baseline scenario, (b) Multimodal AEV scenario 
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The total energy consumption, along with the other two performance metrics, of both scenarios 
are compared in TABLE 1. In the “Savings” column, “-” indicates the reduction of performance 
metrics after adopting AEVs in the multimodal shift when compared with the baseline, and “+” 
indicates an increase. The benefits are shown in green, while the negative impacts are shown in 
red. Although the total VMT increased by 14.9% after adopting the AEVs, there were 19.4% 
savings on total energy consumption, as well as 44.9% of savings on total delivery time. This 
means that the energy savings are solely attributable to the improvement of EV powertrain 
technology. 

TABLE 1 Performance Metrics Comparison 
 Baseline Autonomous EV Savings 

Total Energy Consumption (gal) 85.3 68.8 -19.4% 

Total Delivery Time (veh×hour) 4.5 2.5 -44.9% 

Total VMT (mile) 739.2 849.3 +14.9% 

Sensitivity Analysis 
A sensitivity analysis was performed to understand how AEV delivery capacity and subdepot 
location choice affect the energy impact. The AEV capacity was set to be from 20 to 150 
packages per vehicle with an increment of 10 packages per vehicle. For each AEV capacity 
value, the hybrid tour-based model ran for 20 different random seeds with subdepot locations 
being randomly chosen within the cluster area. The changes in performance metrics are shown in 
FIGURE 6. The solid red line is the mean value, while the green dashes are the maximum and 
minimum bounds. FIGURE 6 demonstrates that adopting AEVs in multimodal package delivery, 
on average, saved 13.6% to 24.3% of energy usage, and 8.0% to 57.3% of delivery time, whereas 
it increased 8.6% to 21.9% of VMT. The higher AEV delivery capacity resulted in more energy 
savings and fewer VMT, but also less delivery time savings. With the increase in AEV delivery 
capacity, package delivery required fewer subdepots, which resulted in fewer miles traveled for 
trucks to drop off packages at subdepots, as well as fewer miles traveled for AEVs to travel 
between subdepots and destinations at the beginning and end of delivery. Therefore, less energy 
was consumed. At the same time, more delivery time was needed with fewer AEVs delivering 
simultaneously. In addition, FIGURE 6 indicates that subdepot location choice had a more 
significant effect on the energy consumption and VMT as AEV delivery capacity increased. The 
higher delivery capacity enabled AEVs to deliver packages to more destinations in a larger 
cluster area, leading to a larger variation in subdepot location choice and route optimization 
results. 
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(a) (b) 

 

 

(c)  

FIGURE 6 Performance metrics of changes with different AEV delivery capacity assumptions (a) 
Total energy savings, (b) Total VMT increase, (c) Total delivery time savings 

Conclusions 
Using a TSP framework combined with k-means clustering, a hybrid tour-based model was 
developed for multimodal intracity package delivery via adopting AEVs. The hybrid model was 
then applied to a case study in Columbus, Ohio, where conventional delivery truck trajectory 
data were analyzed. Based on a number of reasonable assumptions, the analysis results revealed 
that adopting AEVs in multimodal intracity package delivery was able to save 19.4% of energy 
usage and 44.9% of delivery time whereas it increased total VMT by 14.9%. In addition, a 
sensitivity analysis was performed to quantify the effect of AEV delivery capacity and subdepot 
location choice on the performance metrics. It was found that higher AEV capacity resulted in 
more energy savings and less VMT, but also less delivery time savings. AEV capacity ranging 
from 20 to 150 packages per vehicle on average resulted in 13.6% to 24.3% of energy savings 
and 8.0% to 57.3% of delivery time savings whereas VMT increased by 8.6% to 21.9%. 
Subdepot location choice had a more significant effect on energy usage and VMT as AEV 
capacity went up. 
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In this study, the energy savings estimation was conservative since AEVs were assumed to have 
the same capacity as conventional delivery trucks. But in real-world applications, the AEV 
vehicle size could be smaller since it carries only a subset of packages than conventional delivery 
trucks. In future studies, detailed vehicle size and package weight information will be included. 
Instead of assuming average AEV delivery capacity, more realistic metrics, such as AEV 
maximum delivery capacity and charging distance, will be considered. A more comprehensive 
model that simultaneously optimizes both routes and subdepot location choice will be developed. 

The methodology presented in this paper is location-agnostic. It can be applied to evaluate the 
energy impacts of adopting AEVs in multimodal shifts in any city, given the package delivery 
destinations. The location-agnostic methodology to evaluate and quantify the energy impacts of 
other multimodal intra-city package delivery scenarios, such as drone delivery, Uber-style 
delivery, and the use of centralized package lockers will be also developed in the future. 
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