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A Hybrid Framework Combining Model-Based and
Data-Driven Methods for Hierarchical Decentralized

Robust Dynamic State Estimation
Marcos Netto, Student Member, IEEE, Venkat Krishnan, Senior Member, IEEE, Lamine Mili, Life Fellow, IEEE,

Yoshihiko Susuki, Member, IEEE, and Yingchen Zhang, Senior Member, IEEE

Abstract—This paper combines model-based and data-driven

methods to develop a hierarchical, decentralized, robust dynamic

state estimator (DSE). A two-level hierarchy is proposed where

in the lower level comprises robust, model-based, decentralized

DSEs. The state estimates sent from the lower level are received

at the upper level, where they are filtered by a robust data-driven

DSE after a principled sparse selection. This selection allows us to

shrink the dimension of the problem at the upper level and hence

significantly speed up the computational time. The proposed hy-

brid framework does not depend on the centralized infrastructure

of the control centers; thus it can be completely embedded into

the wide-area measurement systems. This feature will ultimately

facilitate the placement of hierarchical decentralized control

schemes at the phasor data concentrator locations. Also, the

network model is not necessary, thus a topology processor is

not required. Finally, there is no assumption on the dynamics

of the electric loads. The proposed framework is tested on the

2,000-bus synthetic Texas system, and shown to be capable of

reconstructing the dynamic states of the generators with high

accuracy, and of forecasting in the advent of missing data.

Index Terms—Compressed sensing, data-driven dynamical sys-

tems, dynamic state estimation, Kalman filtering, Koopman mode

decomposition, sparse selection.

I. INTRODUCTION

The large-scale deployment of phasor measurement units
(PMUs) and other grid-edge metering devices, such as smart
meters [1] and micro-PMUs [2], is enabling the application of
data analytics in electric power systems. This is fueling interest
in data-driven methods that can enhance power system’s
reliability and resilience [3]. Simultaneously, and perhaps most
importantly, we are witnessing an unprecedented increase in
the share of renewable energy sources [4], [5], which are
inherently intermittent and uncertain. The consequent increase
in the stochastic dynamics of the net load challenges the
traditional deterministic model-based, real-time monitoring
and control methods applied in the legacy systems [6], [7].
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Therefore, power engineers are looking to exploit the fast
sampled measurement data to advance grid modeling, state
estimation, forecasting, and controls through data analytics
[8], [9], including by proposing data-driven dynamic state
estimators (DSEs) [10], [11], which can track system dynamic
states [12].

In this paper, we develop a two-level, hierarchical, decen-
tralized, robust DSE by combining model-based and data-
driven methods. The model-based decentralized DSEs at the
lower level provide the necessary data for performing data-
driven model identification at the upper level by using the
Koopman mode decomposition (KMD) [13], which further
allows for dynamic stability assessment and modal analysis of
nonlinear dynamical systems [14]. The paper also illustrates
the application of the proposed framework for large-scale
systems by using compressed sensing [15] to find sparse state
estimate selection. Because the use of all state estimates at the
upper level could be prohibitive for high-dimensional systems,
we rely on compressed sensing to find a sparse selection of
state estimates, following the work of Brunton et al. [16], [17].
The proposed hybrid framework provides the opportunity to
devise powerful tools by combining concepts from dynamical
systems, estimation, and control theory. Firstly, the use of
decentralized DSEs and KMD makes it independent of the
network model; hence, it does not require a topology proces-
sor. Secondly, by virtue of the data-driven KMD, the method
does not need to make assumptions about the underlying
load model dynamics. Thirdly, and most notably, it can be
completely embedded into the wide-area measurement systems
instead of being an add-on to the energy management systems
installed at the control centers. This attribute will ultimately
facilitate the hierarchical control design of electric power
systems [18] with the placement of control schemes at the
phasor data concentrator (PDC) location, thereby exploiting
the synergies between agile, low-latency, decentralized and
holistic centralized monitoring and control architectures.

The paper proceeds as follows. Section II summarizes
relevant literature and motivation for this work. Section III
briefly introduces the data-driven robust DSE, and Section IV
presents the sparse selection approach. Numerical results are
discussed in Section V. The conclusions and directions for
future research are given in Section VI.

II. BACKGROUND AND MOTIVATION

Following the work of Modir and Schlueter [19], several
DSEs [20]–[23] have been proposed based on the conceptual
idea of transmitting all the PMU measurements to a centralized
location, such as the control center, where the DSE is suppos-
edly installed. We refer to this configuration as the centralized
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Fig. 1. Comparison of the conceptual idea of different dynamic state estimators proposed in the literature. Note, in all the cases, system-level stability
assessments such as inter-area oscillations [27], [28] will be done in a centralized manner, either supported by a centralized or decentralized DSE.

DSE; see Fig. 1a for more details. The assumptions are that
the system is fully observable by PMUs and that the Kron-
reduced network model (KNM) [24] is accessible. Although
this may be true for independent system operators (ISOs)
and regional transmission organizations (RTOs), access to the
KNM is a hurdle for local utilities and transmission operators
because of limited data sharing across neighboring systems.
One alternative is to build dynamic reduced-order models [25];
unfortunately, this approach will increase the existing model
uncertainties. Further, the KNM assumes that the electric loads
are modeled as constant admittances, thereby not allowing for
capturing the rich dynamics of composite electric loads [26].
Another important point that has been overlooked is that a
topology processor is required to determine the KNM in real
time; the existing topology processors embedded on the static
state estimators cannot supply this demand. Nevertheless,
although of reduced dimension, the graph of the KNM is
full [24] rather than sparse, hence sparsity techniques cannot
be exploited. The computational burden is another important
barrier to the adoption of model-based centralized DSEs.

As an attempt to overcome the aforementioned problems,
model-based decentralized DSEs have been investigated; see,
for instance, [29], [30]. The idea is to individually estimate the
states of each generator at their own location, as in Fig. 1b.
Given that each decentralized DSE is designed for a particular
generation location, only a PMU at the generator terminal is
assumed. The decentralized DSE requires neither the model
of the network nor the model of the electric loads, and it
is computationally inexpensive because of a reduced number
of involved state variables. Further, it offers the additional
benefit of performing model calibration [31] without taking the
generator offline, which is an appealing attribute from the sys-
tem’s reliability and economic standpoints. However, although
a decentralized DSE allows for local stability assessment,
control, and protection, for wide-area stability assessment and
control, the DSE states will still need to be communicated
to centralized processing, like any other architecture shown
in Fig. 1; and, although the data transmissions in this case
are not raw measurements but actual system states, it is
still necessary to ensure data integrity, cybersecurity, and
robustness against bad or missing information at the receiving
end, i.e., at the control center. Additionally, in the event of loss
of communication with a decentralized DSE, the states of the
associated generator must be forecast. To circumvent some
of these issues, Paul et al. [32] proposed a computationally
distributed but physically centralized DSE, wherein the con-

ceptual idea is to send all the measurements to a centralized
location instead of performing the estimation separately for
each generator; see Fig. 1c. Although ingenious, the approach
in [32] relies on the reference signals of voltage and power
that are accessible only to ISOs and RTOs, thereby precluding
its adoption by transmission companies and alike utilities. The
state forecasting capability is also not available.

Given the promise that decentralized DSEs have in terms of
reducing the computational burden on increasing proliferations
of sensors and data, and given its favorable trade-off between
local and wide-area assessments, we delve deeper into the
decentralized DSE. Presuming that model-based decentralized
DSEs are available, we pose the following questions:

• Suppose that the state estimates are sent to a centralized
location. How could one verify the data integrity of the
received state estimates without relying on any model?

• How could one forecast the dynamic states in case of a
communication problem with a given decentralized DSE?

To address these questions, we suggest the use of the robust,
data-driven DSE, which is presented next.

III. ROBUST KOOPMAN KALMAN FILTER

This section introduces the data-driven method, namely, the
Koopman operator-based method that enables studying nonlin-
ear dynamical systems without relying on any model. Further,
the developed robust Koopman Kalman filter (KKF) [10],
[11] lays the foundation for ensuring that the state estimates
received from the decentralized DSEs will be robustly filtered.

A. The Koopman Operator
Consider a discrete-time autonomous dynamical system:

xk = f(xk�1), (1)

where the state x is an element of the state space S ⇢ Rn,
f : S ! S is the discrete map, and k 2 Z is the time index.
Define g : S ! R, a vector-valued observable in (1). The
Koopman operator, K, is a linear transformation on this vector
space:

Kg(xk) = g � f(xk) = g(f(xk)). (2)

The Koopman eigenvalues, µi, and the Koopman eigenfunc-
tions (KEFs), 'i, of K are defined as follows:

K'i(xk) = µi'i(xk), i = 1, 2, ... (3)
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If all the elements of g lie within the span of the KEFs,
then we have:

g(xk) =

1X

i=1

'i(xk)�i =

1X

i=1

'i(x0)�iµ
k
i , (4)

where �i are the Koopman modes [13], and {µi,'i,�i}, i =
1, 2, ..., are referred to as the Koopman tuples. The interested
reader is referred to [13] for more details on the derivation of
(4). For power systems, because of the existence of multiple
attractors, we estimate a subset of the Koopman tuples, such
that g(xk) ⇡

Pq
i=1 'i(xk)�i =

Pq
i=1 'i(x0)�iµ

k
i .

B. Koopman Canonical Coordinates [33]
Consider the discrete-time autonomous dynamical system:

xk = f(xk�1), yk = h(xk), (5)

where x and f are defined as in (1), y 2 Rm is the system
observation vector, and h : S ! Rm. Let Fq

= span{'i}qi=1
be a subset of the KEFs, such that x,y 2 Fq . Then, we have:

xk ⇡
qX

i=1

'i(xk�1)�
(x)
i µi, yk ⇡

qX

i=1

'i(xk�1)�
(y)
i µi.

(6)
Now, suppose that the Koopman tuples are ordered such

that complex conjugate pairs appear adjacent to each other. It
can be shown [11] that a nonlinear change of coordinates is
given by TK : Rn ! Rq , expressed as:

TK(x) = x =

⇥
x1, ..., xq

⇤>
, (7)

where ·> denotes the transpose of a vector,
8
<

:

xi = 'i, if 'i is real-valued,
xi = 2<{'i} and xi+1 = �2={'i}, if ('i,'i+1)

form a complex conjugate pair,

<{'i} and ={'i} are the real and imaginary parts of 'i,
respectively. Using (7), and after some algebraic manipulation
[11], we have:

xk = ⌦xk�1, xk = �(x)
xk, yk = �(y)

xk, (8)

and, remarkably, the nonlinear dynamical system in (5) can
be mapped to the linear dynamical system (8). The KEFs
define the Koopman canonical coordinates (KCC). If 'i is
real-valued, ⌦i,i = µi. If ('i,'i+1) form a complex conjugate
pair, then we have:


⌦i,i ⌦i,i+1

⌦i+1,i ⌦i+1,i+1

�
=


<{µi} ={µi}

�={µi} <{µi}

�
,

and, thus, ⌦ is a block diagonal matrix.
The matrix �(x) 2 Rn⇥q is a mapping between the states in

the KCC, x, and the original state space coordinates, x. If 'i

is real-valued, �(x)
:,i = �

(x)
i . Conversely, if ('i,'i+1) form a

complex conjugate pair, �(x)
:,i = <{�(x)

i }, �(x)
:,i+1 = ={�(x)

i }.
The matrix �(y) 2 Rm⇥q is a mapping between the states

in the KCC, x, and the observation vector in the original state
space coordinates, y. If 'i is real-valued, �(y)

:,i = �

(y)
i . If

('i,'i+1) form a complex conjugate pair, �(y)
:,i = <{�(y)

i },
�(y)

:,i+1 = ={�(y)
i }.

C. Robust Koopman Kalman Filter

In the KKF form, (8) becomes:

xk = ⌦xk�1 +wk�1,

yk = �(y)
xk + vk, (9)

where w stands for the system process error, and v denotes
the measurement noise. In what follows, we rely on [34] to
solve (9). The interested reader is referred to [11] for details
on the derivation of the robust KKF.

Now, the practical experience suggests that the synchronous
generators oscillate coherently; see Fig. 2. This is equivalent of
saying that the dynamics of electrical power systems evolve on
a low-dimensional attractor. In the next section, this property
is leveraged to perform a sparse selection of the state estimates
used to identify the KKF, which is applicable to larger power
systems.

IV. SPARSE SELECTION OF STATE ESTIMATES

Following Manohar et al. [17], suppose that a state x evolv-
ing according to the nonlinear dynamics (1) has a compact
representation in a transform basis  . In a universal basis
 2 Rn⇥n, x might have a sparse representation:

x =  s, (10)

s 2 Rn is a sparse vector. In a tailored basis  r 2 Rn⇥r,
such as a basis defined by a proper orthogonal decomposition,
x might have a low-rank representation:

x =  r`, (11)

` 2 Rr. We seek to find a matrix C 2 Rp⇥n consisting of a
small number (p ⌧ n) of optimized measurements:

b = Cx, (12)

b 2 Rp, which facilitates the accurate reconstruction of s or `,
and thus x. Note that C = [e�1 e�2 ... e�p ]

>, where e�i is the
unit vector with a unit entry at index �i and zeros elsewhere.
Combining (10) and (12) yields:

b = (C ) s = ✓s. (13)

Eq. (13) is referred to as the compressed sensing problem.
Conversely, combining (11) and (12) yields:

b = (C r) ` = ✓`. (14)

If C is properly structured such that ✓ is well conditioned,
it is possible to solve for the low-rank coefficients ` given the
measurements b in (14) as follows:

ˆ̀
=

(
✓

�1
b =

�
C r

��1
b, p = r,

✓

†
b =

�
C r

�†
b, p > r,

(15)

✓

† denotes the Moore-Penrose pseudoinverse of ✓. Thus, x can
be estimated as x̂ =  r

ˆ̀. From (15), one seeks columns of
 r corresponding to point sensor locations in the state space,
e�i , that optimally condition the inversion of the matrix ✓.
The structure of the elements e�i affect the condition number
of C and consequently of M

�

= ✓

>
✓. The condition number

of the system might be indirectly bounded by optimizing the
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spectral content of M
�

using its determinant, trace, or spectral
radius. For example, we have:

�⇤ = argmax

�,|�|=p
|det M

�

| = argmax

�

Y

i

|�i(M�

)|

= argmax

�

Y

i

�i(M�

), (16)

where �i and �i are, respectively, the i-th eigenvalue and sin-
gular value of M

�

. The QR factorization with column pivoting
decomposes a matrix M

�

2 Rm⇥n into a unitary matrix Q, an
upper triangular matrix R, and a column permutation matrix
C, that is:

M

�

C

>
= QR. (17)

The key idea from [17] is, when applied to an appropriate
basis, the QR pivoting procedure provides an approximate
greedy solution method for the optimization in (16), also
known as a submatrix volume maximization because the
matrix volume is the absolute value of the determinant.

A. Sparse Selection of State Estimates
In [17], the QR pivoting procedure is proposed as a tool to

optimize sensor placement, in particular for the reconstruction
of high-dimensional states from point measurements given
tailored bases. Instead of measurements, here, we have access
to the state estimates received from the robust, model-based,
decentralized DSEs. Our objective is to shrink the number of
state estimates used by the robust KKF so as to speed up its
processing.

Algorithm 1 Sparse selection of state estimates
1: procedure

2:  r  svd(x̂)
3: if p == r then

4: �  pivot( r) . [Q,R, pivot] = qr( r)
5: else if p > r then

6: �  pivot( r 
>
r ) . [Q,R, pivot] = qr( r 

>
r )

7: b x̂� . x̂� = x̂�1:�p

After b is determined as in Algorithm 1, we make use of
(7) such that:

TK(b) = x =

⇥
x1, ..., xq

⇤>
. (18)

V. NUMERICAL RESULTS

We carry out simulations on the 2,000-bus synthetic
Texas system [35] comprising 544 synchronous and 87 non-
synchronous generators; the latter are modeled as variable-
speed wind generators with full converters and do not con-
tribute to the electromechanical modes. A three-phase short-
circuit is applied to Bus 1017 and cleared after 10 mil-
liseconds. Fig. 2 shows the rotor angle of the synchronous
generators relative to the system average angle, with removed
mean. We observe that 456 of 544 synchronous generators
present coherent dynamics, whereas 88 of 544 synchronous
generators do not contribute at all to the dynamics; see
constant line at zero degrees in Fig. 2.

Upon application of the KMD explained in Section III, the
10 most important Koopman eigenvalues–i.e., the ones with
the smaller damping coefficient–are shown in Fig. 3. They
were estimated using 10 seconds of rotor speed estimates. The
black crosses indicate results obtained with all 544 estimates
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Fig. 2. Rotor angle, �, of the 544 synchronous generators relative to system
average angle, after removing the mean.

obtained from the decentralized DSE (assuming we have
local PMU measurements), whereas the blue circles indicate
results obtained with 240 principled selected estimates from
the sparse state measurement selection technique explained
in Section IV. The remaining 5 seconds of the time domain
simulation are used for testing. We consider three different
scenarios, as presented next.
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Fig. 3. The Koopman modes calculated using estimates of the rotor speed of
the synchronous generators.

1) No outliers: The results are shown in Fig. 4a. True state,
received state estimate, and filtered state estimate, respectively,
refer to the outcome of the time-domain simulation, the data
received from the robust model-based decentralized DSEs, and
the outcome of the robust KKF.

2) Impulsive noise: The results are shown in Fig. 4b. We
observe that the robust KKF is able to suppress the impulsive
noise.

3) Loss of the communication link with a decentralized
DSE: The results are shown in Fig. 4c. This case demonstrates
the forecasting capability of the robust KKF.

VI. CONCLUSIONS AND FUTURE RESEARCH

The proposed hybrid framework offers a balance between
model-based and data-driven methods, and it has several
important advantages compared to other methodologies. It
is completely independent of the network model, does not
attempt to model the dynamics of the loads, and, most impor-
tantly, does not depend on the infrastructure that is exclusively
available at the control centers.
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Fig. 4. Rotor speed deviation, �!, of the synchronous generator 4. (a) No outlier. (b) Impulsive noise at t = 12 seconds. (c) Loss of communication with
the decentralized DSE between t = 12 and t = 13 seconds.

Although promising, the proposed approach requires further
investigations. One important aspect is the system observ-
ability at the upper level, i.e., the sparse selection must be
conditioned to a certain degree of redundancy. We will rely
on the correspondence between the Koopman operator and the
Lie derivatives to pursue this effort. In addition, the estimation
of the KEFs [36] is an important open problem and must be
addressed. Future work will also look into the applicability of
using other observables from sensors in the upper level system
identification by either partially or completely bypassing the
lower level DSE in certain scenarios to gain increased agility.
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[18] M. Ilić and S. Liu, Hierarchical Power Systems Control: Its Value in a
Changing Industry. Springer, 1996.

[19] H. Modir and R. A. Schlueter, “A Dynamic State Estimator for Dynamic
Security Assessment,” IEEE Trans. Power App. Syst., vol. PAS-100,
no. 11, pp. 4644–4652, Nov 1981.

[20] E. Ghahremani and I. Kamwa, “Dynamic State Estimation in Power
System by Applying the Extended Kalman Filter With Unknown Inputs
to Phasor Measurements,” IEEE Trans. Power Syst., vol. 26, no. 4, pp.
2556–2566, Nov 2011.

[21] E. Ghahremani and I. Kamwa, “Online State Estimation of a Syn-
chronous Generator Using Unscented Kalman Filter From Phasor Mea-
surements Units,” IEEE Trans. Energy Conversion, vol. 26, no. 4, pp.
1099–1108, Dec 2011.

[22] M. Netto, J. Zhao, and L. Mili, “A robust extended Kalman filter for
power system dynamic state estimation using PMU measurements,” in
IEEE Power Energy Soc. Gen. Meeting, July 2016, pp. 1–5.

[23] J. Zhao, M. Netto, and L. Mili, “A Robust Iterated Extended Kalman
Filter for Power System Dynamic State Estimation,” IEEE Trans. Power
Syst., vol. 32, no. 4, pp. 3205–3216, July 2017.

[24] F. Dörfler and F. Bullo, “Kron Reduction of Graphs With Applications
to Electrical Networks,” IEEE Trans. Circuits and Systems I: Regular
Papers, vol. 60, no. 1, pp. 150–163, Jan 2013.

[25] J. H. Chow, Power System Coherency and Model Reduction. Springer,
2013.

[26] “Load representation for dynamic performance analysis,” IEEE Trans.
Power Syst., vol. 8, no. 2, pp. 472–482, May 1993.

[27] M. Netto and L. Mili, “A Robust Prony Method for Power System
Electromechanical Modes Identification,” in IEEE Power Energy Soc.
Gen. Meeting, July 2017, pp. 1–5.

[28] M. Netto and L. Mili, “Robust Data Filtering for Estimating Electrome-
chanical Modes of Oscillation via the Multichannel Prony Method,”
IEEE Trans. Power Systems, vol. 33, no. 4, pp. 4134–4143, July 2018.

[29] A. K. Singh and B. C. Pal, “Decentralized Dynamic State Estimation in
Power Systems Using Unscented Transformation,” IEEE Trans. Power
Syst., vol. 29, no. 2, pp. 794–804, March 2014.

[30] E. Ghahremani and I. Kamwa, “Local and Wide-Area PMU-Based
Decentralized Dynamic State Estimation in Multi-Machine Power Sys-
tems,” IEEE Trans. Power Systems, vol. 31, no. 1, pp. 547–562, Jan
2016.

[31] Z. Huang et al., “Application of extended Kalman filter techniques for
dynamic model parameter calibration,” in IEEE Power Energy Soc. Gen.
Meeting, July 2009, pp. 1–8.

[32] A. Paul, I. Kamwa, and G. Joos, “Centralized Dynamic State Estimation
Using a Federation of Extended Kalman Filters with Intermittent PMU
Data from Generator Terminals,” IEEE Trans. Power Syst., 2018.

[33] A. Surana and A. Banaszuk, “Linear observer synthesis for nonlinear
systems using Koopman Operator framework,” IFAC-PapersOnLine,
vol. 49, no. 18, pp. 716–723, 2016.

[34] M. A. Gandhi and L. Mili, “Robust Kalman Filter Based on a General-
ized Maximum-Likelihood-Type Estimator,” IEEE Trans. Signal Proc.,
vol. 58, no. 5, pp. 2509–2520, May 2010.

[35] A. B. Birchfield et al., “Grid Structural Characteristics as Validation
Criteria for Synthetic Networks,” IEEE Trans. Power Syst., vol. 32, no. 4,
pp. 3258–3265, July 2017.
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