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Data-Driven Preemptive Voltage Monitoring and
Control Using Probabilistic Voltage Sensitivities

Kumarsinh Jhala, Student Member, IEEE, Venkat Krishnan, Member, IEEE,
Balasubramaniam Natarajan, Senior Member, IEEE, Yingchen Zhang, Senior Member, IEEE

Abstract—Increased penetration levels of distributed variable

renewable generation can cause random voltage fluctuations

and violations at multiple nodes. Traditional methods of voltage

control typically involve reactionary responses of capacitor banks,

tap changers, and recently even smart inverters. But because

of the lack of foresight in voltage violations, these controls

are ineffective to completely mitigate the issue. Therefore, new

methods of predicting voltage violations subject to random power

injection changes in the distribution network are needed, which

can be used to guide optimal and dynamic methods of voltage

control. This work lays the foundation for such preemptive

voltage monitoring and control by proposing an analytical and

sensor data-driven voltage sensitivity analysis method. Driven by

stochastic data and forecasts, the method can be used to develop

probabilistic voltage sensitivities and consequently to predict

system nodes with high likelihood of voltage limit violations.

The effectiveness of this method is tested on IEEE 69-node

distribution system integrated with distributed solar. The results

demonstrate the proposed method’s ability to successfully predict

nodes with high probability of voltage violations for a specific

time-series simulation. The results also demonstrate the ability

to guide timely power injection control actions to mitigate future

voltage violations.

Index Terms—Distributed Generation, Distribution System,

Sensitivity, Sensor Measurement, Voltage

I. INTRODUCTION

The power system is evolving significantly with the prolifer-
ation of new smart grid technologies. Increased penetration of
renewable generation, electric vehicles and active consumers
at the grid edge create new challenges as well as opportunities.
More specifically, the distribution grid is anticipated to expe-
rience random fluctuations in voltages and even ANSI limit
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violations under higher penetrations of rooftop photovoltaics
(PV) [1], [2]. Traditional methods of voltage control such as
on-load tap-changing transformers, voltage regulators and ca-
pacitor banks are not designed for bi-directional current flow,
and typically are controlled to provide reactive support after
an event is detected [3]. Additionally, under increasing levels
of variable renewable, sole dependence on the installation of
more traditional voltage control devices may not be viable [4],
[5]. Therefore, extensive research have looked into utilizing
the reactive power capabilities of PV systems by integrating
them via smart inverters under either centralized [6]–[10] or
decentralized [11]–[13] control approaches. IEEE 1547 (2018)
standards and utilities have also begun to look into such smart
inverter options to mitigate voltage violations. Studies [14]
have shown Volt-Var and Volt-Watt options provide much-
needed grid support; however, these strategies also provide
reactionary support post-event, and testing studies [15] have
shown them to not eradicate voltage violations completely
given the maximum allowable limits of reactive power pro-
visions and/or real power curtailments.

Therefore, a computationally efficient preemptive voltage
control mechanism is needed that predicts future voltage
and their uncertainty bounds and guides preventive actions
in power distribution systems interconnected with renewable
generation. This paper considers a power distribution system
with multiple active consumers with flexible load and gen-
eration participating in demand response program with third-
party aggregators. Goal of this work is to develop a data-
driven approach to predict nodes with high probability of
voltage violation and devise a preemptive control action by
modifying consumer load/generation to prevent steady-state
voltage violations.

In order to predict voltage responses, this paper assumes
the availability of voltage and power measurements from all
nodes in the distribution system, and uses them to estimate
probabilistic sensitivities of node voltages with respect to
real and reactive power injection changes at various nodes.
The probabilistic sensitivities will be used to dynamically
predict nodes with high probability of voltage violations [16],
[17] as well as mitigate them using a preemptive control
strategy that modifies nodal injections (load/generation). Major
contributions of this paper are listed below.

• Develops an analytical expression to compute the upper
bound of change in voltage resulting from change in
complex power at multiple nodes [16], which is compu-
tationally efficient and dynamic with use of sensor data.

• Provides a probabilistic voltage sensitivity analysis-based
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method that predicts probability of future voltage subject
to forecasts and detects highly vulnerable nodes (sec. III).

• A simple preemptive voltage control mechanism in IEEE
69-node system where the accuracy and effectiveness of
voltage prediction and control is tested. (section IV).

II. BACKGROUND: VOLTAGE SENSITIVITY ESTIMATION

Voltage sensitivity analysis estimates change in complex
voltage at a given node (observation node o) due to change in
complex power at another node (actor node a) in a power dis-
tribution system. Traditionally, voltage sensitivity is calculated
using Newton-Raphson load flow method (from the Jacobian
or its eigenvectors) or perturb-and-observe method [18]. Both
methods are numerical and computationally complex. This
section presents an analytical upper bound for voltage change
at an observation node (�V

o

) due to change in complex power
at an actor node (�S

a

) in a radial distribution network for
constant power model of loads, originally developed in [16].
When an actor node (a) changes its complex power from S

a

to S

a

+ �S

a

, voltage at the observation node changes from
V

o

to V

o

+�V

oa

, which can be calculated from Theorem 1.
Here �V

oa

is change in complex voltage at the observation
node o due to change in complex power at the actor node a.

Theorem 1. For a radial power distribution network, change

in voltage at an observation node due to change in power of

an actor node is upper bounded by

�V

oa

 ��S

a

Z

oa

V

⇤
a

, (1)

where V

⇤
a

is complex conjugate of voltage at the actor node;

and Z

oa

is impedance of shared line between the observation

node o and the actor node a from the source node.

Proof. see [16]

Here, inequality sign for complex number indicates the
upper bound on real and imaginary values. Equation (1)
provides a linear upper bound on generally non-linear power
flow calculations. This notation is used throughout the paper.
Effect of multiple actor nodes on the observation node voltage
can be calculated using the following lemma.

Lemma 1. Superposition Law: If A is a set of actor nodes

in the network, effective change in complex voltage at the

observation node due to the cumulative effect of all the actor

nodes is bounded by (2).

�V

o


X

a2A

��S

a

Z

oa

V

⇤
a

, (2)

where A is set of all the actor nodes.

Proof. see [16]

This lemma proves that the proposed analytical method rep-
resented by (2) holds the law of superposition. The analytical
equation derived in Lemma 1 can be used to calculate the
probability distribution of voltage change at any given node
in the power distribution system. Calculating sensitivity matrix
for the IEEE 69-node test system using the classical load-
flow method takes 4.52 seconds, whereas using the proposed

analytical method takes only 0.58 seconds [16]. This paper
further advances the application of these sensitivities for dy-
namic prediction of future power states, by integrating phasor
data from sensors and renewable forecasts. Impact of sensing
errors are not considered.

III. PREEMPTIVE ANALYSIS: PREDICTION AND CONTROL

The analytical sensitivity estimation method presented in
Section II is used as the basis for developing data-driven
probabilistic voltage sensitivity analysis for predicting the
probability of voltage violation at a given node. We make an
assumption that complex power and voltage measurements (or
estimations) are available at each node of the balanced three
phase distribution system in real time.

Random changes in power drawn/injected by active con-
sumers with renewable generation cause random voltage fluc-
tuations, which makes voltage at any given node in the distri-
bution system random. This work assumes normal distribution
for power injection changes. Let V

p

o

be current value of
complex voltage at any observation node o, which is obtained
from measurements or state estimation, and V

f

o

represent
the predicted future complex voltage at node o. Due to the
variability and uncertainty introduced by renewable generation
in power system, V f

o

is random and can be written as:

V

f

o

= V

p

o

+�V

o

, (3)

where �V

o

is random change in complex voltage at obser-
vation node due to random changes in net power injections.
Change in real and imaginary part of voltage at an observation
node due to change in complex power at an actor node can
be written as:

�V

oa

= �V

r

oa

+ i�V

i

oa

, (4)

where

�V

r

oa

= � 1

|V
a

| (�P

a

(R

oa

cos ✓

a

�X

oa

sin ✓

a

)

��Q

a

(R

oa

sin ✓

a

+X

oa

cos ✓

a

)) ,

(5)

and

�V

i

oa

= � 1

|V
a

| (�Q

a

(R

oa

cos ✓

a

�X

oa

sin ✓

a

)

+�P

a

(R

oa

sin ✓

a

+X

oa

cos ✓

a

)) .

(6)

From superposition law (Lemma 1), change in voltage at an
observation node due to cumulative effect of multiple actor
nodes can be written as sum of changes in voltage at the
observation node due to every actor node.

�V

o

=

X

a

�V

oa

=

X

a

�V

r

oa

+ i

X

a

�V

i

oa

, (7)

Behavior of nodal net-loads in a distribution network in-
tegrated with variable renewables can be modeled as random
variables. In this work, change in real and reactive power injec-
tions at a distribution system node is modeled as Gaussian ran-
dom variable. Let �S = [�P

1

, · · · ,�P

n

,�Q

1

, · · · ,�Q

n

]

T

be a Gaussian random vector with mean µ and covariance
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matrix ⌃. Here, mean of real and reactive power reflects fore-
cast of future net-load changes (i.e., estimated using load and
renewable generation forecasts). The covariance matrix will
be estimated using historical data, supplemented with prob-
abilistic forecasts that provide variances of forecasts around
the mean [19]. The cross-correlations could be estimated by
generating scenarios of random forecasts for various locations,
and estimating their cross-correlations. Additionally, the effect
of spatial correlation of variable renewables is captured by
the off-diagonal elements of the covariance matrix. Detailed
modeling of variability and uncertainty in the voltage sensi-
tivity assessment is beyond the scope of this paper, but will
be undertaken for future work.

A. Computing Voltage Sensitivity Probability Distribution

Given the normal distribution assumption for power injec-
tion changes, the resultant voltage sensitivity is also expected
to be normally distributed due to their linear relationship
modeled by equations (5) and (6) [20]. This section further
elaborates the estimation of |�V

o

| distributions using follow-
ing steps:

1) Define ⌃, and compute vectors C
r

and C
i

:

⌃ =

2

666664

�

2
p1 · · · cov(pn, p1) cov(q1, p1) · · · cov(qn, p1)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
cov(p1, pn) · · · �

2
pn

cov(q1, pn) · · · cov(qn, qn)

cov(p1, q1) · · · cov(pn, q1) �

2
q1 · · · cov(qn, p1)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
cov(p1, qn) · · · cov(pn, qn) cov(q1, qn) · · · �

2
qn

3

777775

(8)
where n is number of nodes in the network. For nodes that do
not have PV, values of variance can be set to zero. In this work,
we assume that network topology is known. Value of complex
bus voltages is gathered from measurements and values of line
impedance are assumed to be known from network topology.
The vectors C

r

and C

i

are defined and computed as follows,
using equations (9) and (10). Values of C

r

and C

i

can be
computed as following.

C
r

=

2

6666666664

�R

o1 cos ✓1�X

o1 sin ✓1
|V1|
...

�R

on

cos ✓

n

�X

on

sin ✓

n

|V
n

|
R

o1 sin ✓1+X

o1 cos ✓1
|V1|

...
R

on

sin ✓

n

+X

on

cos ✓

n

|V
n

|

3

7777777775

, (9)

C
i

=

2

6666666664

�R

o1 sin ✓1+X

o1 cos ✓1
|V1|
...

�R

on

sin ✓

n

+X

on

cos ✓

n

|V
n

|
�R

o1 cos ✓1�X

o1 sin ✓1
|V1|
...

�R

on

cos ✓

n

�X

on

sin ✓

n

|V
n

|

3

7777777775

. (10)

2) Compute distribution of �V

r

o

and �V

i

o

: Real and imag-
inary part of change in voltage at an observation node can be
written as weighted sum of elements of vector �S as depicted

by equation (11) and (12). Weighted sum of Gaussian random
variables are normally distributed. Therefore, probability dis-
tribution of �V

r

o

and �V

i

o

can be derived as follows

�V

r

o

=

X

a

�V

r

oa

= CT

r

�S ⇠ N(CT

r

µ,CT

r

⌃C
r

) (11)

�V

i

o

=

X

a

�V

i

oa

= CT

i

�S ⇠ N(CT

i

µ,CT

i

⌃C
i

) (12)

3) Define bi-variate normal vector

ˆ�V
o

: Covariance
between �V

r

o

and �V

i

o

can be written cov
�
�V

r

o

,�V

i

o

�
=

CT

r

⌃C
i

. Therefore, the change in real and imaginary part of
voltage change will be a bi-variate normal vector, i.e.

�V
o

,

�V

r

o

�V

i

o

�
⇠ N (µ

1

,⌃
1

) (13)

where,

µ

1

=


CT

r

µ

CT

i

µ

�
,⌃

1

=


CT

r

⌃C
r

CT

r

⌃C
i

CT

r

⌃C
i

CT

i

⌃C
i

�
(14)

4) Calculate probability distribution of Vf

o

: Let Vf

o

be
vector of real and imaginary part of future voltage at node
o defined as:

Vf

o

,

V

rf

o

V

if

o

�
=


V

rp

o

V

ip

o

�
+


�V

r

o

�V

i

o

�
(15)

Voltage at observation node in next time slot Vf

o

can be written
as Gaussian random vector as following.

Vf

o

⇠ N

✓
V

rf

o

+CT

r

µ

V

if

o

+CT

i

µ

�
,


CT

r

⌃C
r

CT

r

⌃C
i

CT

r

⌃C
i

CT

i

⌃C
i

�◆
(16)

The covariance matrix, voltage measurements and fore-
casted change in mean power injections will be updated as
new forecasts and sensor data are available. This process
will be continued for future estimations of voltage at some
regular time intervals (though in this work, for a given time
series simulation, such an update is not done for simplicity of
illustration).

B. Detecting Vulnerable Nodes and Preemptive Control

Equation (16) shows that |V f

o

| is Gaussian random variable
with numerically computed mean and variance, which can be
used to find probability of voltage violation. Let P

o

(t) be the
probability of voltage violation at node o at time t defined as:

P
o

(t) = 1� P (0.95 < |V f

o

| < 1.05). (17)

Performing this calculation for each node in the distribution
system, we can identify nodes that have probability of voltage
violation. After identifying nodes that are highly vulnerable
to voltage violation an effective voltage control action can
be taken. To test effectiveness of the proposed method, a
voltage sensitivity-based heuristic voltage control approach
is considered, where an upper bound on maximum power
drawn/injected is enforced for nodes that are vulnerable to
voltage violation. In a case where node is vulnerable to high-
voltage violation, amount of power injected by the node into
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the grid is upper bounded by x% of current power injection for
future time period. Similarly, in a case where node vulnerable
to low-voltage violation, amount of power drawn from the grid
is upper bounded by x% of current power for future time pe-
riod. The amount of power injection change is estimated based
on voltage sensitivity information. Let N(t) be set of nodes
that are vulnerable to voltage violation at time t, and �V

t

be voltage change required to mitigate voltage violation at
node with highest/lowest voltage in case of over/under-voltage
violations in the neighborhood. Eliminating highest voltage
violation should result in elimination of voltage violation at
most of the nodes in the neighborhood. This procedure will be
undertaken iteratively until a premptive power injection control
strategy for eliminating all violations is estimated. To ensure
fairness between nodes, generation at all nodes is reduced by
same amount. Percentage load/generation curtailment can be
computed as following:

�V

t � �
X

a2N

xS

a

Z

oa

V

⇤
a

(18)

x  � �V

t

P
a2N

S

a

Z

oa

V

⇤
a

(19)

Here �V

t is selected such that the probability of voltage
violation (equation (17)) is less than the threshold used to
identify nodes that have high probability of voltage violation.
In ideal situation, an optimal control strategy will utilize this
algorithm to estimate the time for which such power injection
change has to be done. But an optimal control strategy is
beyond the scope of this paper. However to show the value of
having voltage violation foresight, we impose a simple 2-hour
time period over which the estimated power injection changes
will be implemented.

IV. SIMULATION AND RESULTS

To test proposed voltage violation prediction algorithm an
IEEE 69 bus test system is considered [16]. Synthetic sensor
data is produced using power flow solutions. A hypothetical
scenario is considered from noon to 6 p.m. with voltage and
power data available every 5-minute interval. MicroPMUs
and other distribution level sensors are capable of providing
voltage and power measurements at higher rate; however, for
simplicity of demonstration 5-minute interval is considered.
Roof top PVs in 20 nodes with varying generation capacity
are considered. Solar generation is modeled as random process
with some trend and seasonality components that reflect real
world scenario as shown in equation (20) [21]–[24].

P

solar

(t) = S(t) + n

s

(t) (20)

Here, S(t) is PV generation mean forecast trend, and n

s

(t) is
zero mean Gaussian random variable that models variability
and uncertainties. Gaussian random noise in solar generation is
correlated across different nodes to reflect spatial correlation of
solar generation. In this simulation, synthetic solar generation
data is generated dynamically to reflect real world scenario.
Correlation coefficient of solar generation is chosen as 0.7.
Load at each node is synthetically produced based on typical
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Fig. 1: Total load and generation

load profile of residential household. Figure 1 shows load,
solar generation and net power of the distribution system. The
figure shows that load is lowest and PV generation is highest
at noon resulting in negative net power. This reverse power
flow causes high-voltage violations in parts of the distribution
system. For simplicity, this work considers a scenario where
no low-voltage violations occur. However, the proposed pre-
emptive voltage control algorithm is general enough to apply
in case where high or low-voltage violations occur.

The aggregator receives power injection and voltage mea-
surements at all nodes. This information along with bus
impedance data is used to compute voltage sensitivity ma-
trix using proposed analytical method of voltage sensitivity
analysis discussed in section II in a computationally efficient
manner. The mean and variance of real and imaginary part
of voltage change at each node is estimated analytically
as shown in section III. Vectors C

r

and C
i

are computed
based on network topology and synthetic measurement data.
Covariance matrix ⌃ is estimated based on probabilistic vari-
ance of historical data. Based on node voltage measurements
and calculated probability distribution of voltage change, the
probability of high and low-voltage violation is computed
numerically. Nodes that have probability of voltage violation
greater than threshold are classified as highly vulnerable nodes
for voltage violation perspective. In this illustration, nodes
that have probability of voltage violation more than 50% are
considered as highly vulnerable. Number of voltage violation
in the system every time slot are shown in Figure 2 by blue
bars. Red stem plot in Figure 2 shows number of voltage
violations predicted by proposed method, based on nodes with
probability of voltage violation greater than 50%. The pro-
posed method predicts nodes vulnerable to voltage violation
accurately, thereby giving a foresight to system operators for
optimal control.

To demonstrate preemptive control, a voltage sensitivity
based heuristic voltage control method is used. An upper
bound on power injected into the grid is enforced for next
two hours for nodes that are identified as highly vulnerable
to voltage violations. Value of upper bound is calculated
using equation (19), which is 65% of power injected into
the grid. Figure 3 shows voltage at node 65 of IEEE 69
bus test system with and without (no foresight or prediction)
preemptive voltage control. Figure 3 shows that proposed
method successfully eliminates high-voltage problems.
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Fig. 2: Number of voltage violations
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V. CONCLUSION AND FUTURE-WORK

This paper develops a preemptive voltage control method
that mitigates voltage violation in a power distribution system
with renewable generation by taking a control action before
actual voltage violation. This paper uses an analytical method
of voltage sensitivity analysis with phasor measurements and
nodal power injection forecasts to compute probability of
future voltage violations. With this foresight, vulnerable nodes
prone to voltage violations are detected (greater than certain
probability of voltage violation), and appropriate power injec-
tion control actions can be taken. The paper illustrated a simple
preemptive control approach that is capable of mitigating
future voltage issues altogether, thereby laying the founda-
tion for future investigations on real-time optimal control
strategies. Related future work will also include improving
voltage sensitivities prediction using empirical probabilities
(rather than gaussian distributions) and developing methods to
ensure complete system observability even under sparse sensor
proliferation scenarios.
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