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Abstract— This paper applies a robust technique for 
determining the available power reserve from a curtailed 
utility-scale photovoltaic (PV) power plant. The 
proposed technique does not require deploying any 
additional equipment or sensors and is based only on the 
addition of new control logic to the existing power plant 
controller. Also, the proposed method is universally 
applicable to PV plants with any type of smart inverters 
and PV modules. Accurate determination of available 
power is important for using curtailed PV generation as 
a resource for various types of active power controls, 
such as spinning reserves and primary and secondary 
frequency control. For PV plants to be able to maintain 
the desired regulation range, the plant controller must be 
able to estimate the available aggregate peak power that 
all the plant’s inverters can produce at any point in time 
and ensure that the control error stays within the 
tolerance band at all times. In this paper, we explore a 
highly accurate control method that uses dedicated 
inverters within the plant as reference units and 
evaluates the available aggregate peak power for the 
whole plant under different cloud variability conditions. 

Keywords-component; Photovoltaics; Active power control 
style; Power reserves; Maximum power point estimation 

I.  INTRODUCTION 
All over the world, system operators and utilities are 

continually adapting their grid codes, interconnection 
requirements, operational practices, and market mechanisms 
to make the integration of shares of fast-growing variable 
renewable generation both reliable and economic [1]. As 
power system continues to evolve, the Federal Energy 
Regulatory Commission (FERC) noted that there is a 
growing need for a refined understanding of the services 
necessary to maintain a reliable and efficient system. In 
orders 755 and 784, FERC required improving the 
mechanisms by which frequency regulation service is 
procured and enabling compensation by fast-response 
resources such as energy storage. In addition, FERC recently 
issued a notice of proposed rulemaking to enable aggregation 
of distributed storage and distributed generation [2]. The 
North American Electric Reliability Corporation’s (NERC) 
Integration of Variable Generation Task Force made several 

recommendations for requirements for variable generators 
(including solar) to provide their share of grid support, 
including active power control (APC) capabilities [3], [4].  
Similar requirements for renewable energy plants have been 
introduced in Europe at both the transmission and 
distribution levels [5], [6]. In 2018, FERC Order No. 842 
amended the pro forma interconnection agreements to 
include certain operating requirements, including maximum 
droop and deadband parameters, and sustained response 
provisions [7]. 

NERC’s BAL-003-1 Standard on Frequency Response 
and Frequency Bias Setting establishes target contingency 
protection criteria for each North American interconnection 
and individual balancing authorities (BAs) within 
interconnections [8]. BAs need to meet a minimum 
frequency response obligation (FRO), so the generating 
resources that are operated in a mode and range to meet their 
FRO need to have adequate headroom to respond to 
frequency transients and load-frequency control set points. 
Establishing this headroom is not a problem for the 
conventional generation fleet, but the varying nature of solar 
and wind generation makes it challenging to set and maintain 
adequate headroom for these varying resources. In general, 
all system operators have processes and procedures in place 
to ensure grid reliability by monitoring market participant 
operation. For example, provisions of the California 
Independent System Operator (CAISO) tariff [9] sets 
penalties for deviations from dispatch and regulation 
capacity for market participants that fail to comply. The 
permitted area of variation for performance requirements of 
resources used for various purposes is provided in the 
CAISO tariff [9]. The tolerance band is expressed in terms 
of energy (MWh) for generating units and imports from 
external dynamic system resources for each settlement 
interval, and it equals the greater of the absolute value 
calculated using either of the following methods: (1) 5 MW 
divided by the number of settlement intervals per settlement 
period; (2) 3% of the relevant generating unit’s maximum 
output (Pmax), as registered in the master file, divided by the 
number of settlement intervals per settlement period.  

This CAISO tariff and similar requirements from other 
system operators imply that the accurate real-time estimation 
of available maximum power from a curtailed photovoltaic 
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(PV) plant is important for avoiding excessive penalty 
payments if utility-scale PV plants become market 
participants for energy and various reliability services 
related to active power controls.     

A typical modern utility-scale PV power plant is a 
complex system of large PV arrays and multiple power 
electronic inverters, and it can contribute to mitigating the 
impacts on grid stability and reliability through sophisticated 
automatic “grid-friendly” controls. To provide active power 
reserves (or a headroom margin) for up-regulation that can 
be automatically dispatched as needed, a PV plant needs to 
operate below its maximum power point (MPP); however, 
evaluating that MPP in curtailed mode is not a trivial task, 
especially for large PV power plants during various types of 
variable conditions caused by clouds. One paper [10] 
proposed an experimentally validated maximum power point 
estimation (MPPE) method, which operates in real time 
using irradiance and cell temperature measurements to 
ensure that sufficient reserve power is available. Another 
paper [11] proposes an advanced real-time MPP estimation 
algorithm by applying curve fitting on voltage and current 
measurements obtained during inverter operation. Some 
previously proposed MPPE methods used offline prediction 
and employed regression analysis or neural networks [12], 
[13]. These methods seem to be accurate but might require 
excessive processing power. Others have proposed methods 
for real-time calculation ([14]– [16]) by making assumptions 
that reduce the accuracy of the PV model or, in some cases, 
require knowledge that is not typically available on PV 
module data sheets[14], [17]. Another important limitation 
of MPPE estimation methods is that modifications are 
needed based on inverter types and topologies. For example, 
in single-stage inverters (no DC/DC conversion), the power 
reserve capability can be achieved by inverter control 
modifications [18], [19]; however, in two-stage systems 
(inverter and DC/DC converter), the DC/DC converter 
control needs to be modified [20]. This makes the use of 
maximum peak power estimation for curtailed PV systems 
challenging and highly dependent on inverter make and 
topology, types of modules used in PV plants, and accurate 
knowledge of inverter and PV module parameters.  

The variability of solar PV output in the regulation 
reserve time frame among various arrays within a large-scale 
(~50 MW) solar PV plant in the southwestern United States 
was explored in [21]. Although the distributions of changes 
in aggregate power output throughout all timescales 
considered were clustered around a strong peak at zero, the 
distributions at all timescales exhibited significant instances 
of higher magnitude ramps in the tails of the histograms. The 
results achieved in [21] were very important because the 
method presented in this paper was also tested using the data 
from the same PV power plant. 

In 2015, a demonstration project was conducted in the 
U.S. territory of Puerto Rico using a 20-MW grid-connected 
PV power plant [22]. This plant was controlled to provide 
different types of reliability services to the island’s grid, 
including various types of active power controls. Testing on 
this plant provided “real-world” data on levels of uncertainty 
that can be introduced by traditional MPPE estimation 
methods based on irradiance and temperature measurements 

as well as inverter I-V characteristics. One example of such 
uncertainty is shown in Figure 1 during operation when the 
PV plant was responding to an automatic generation control 
AGC) signal sent from system operator. The AGC system 
assumed that there was still some available headroom for up-
regulation because its evaluation was based on the available 
plant power value that was communicated by the power plant 
controller (PPC); however, the calculated available power is 
overly optimistic, and inverters are not able to produce as 
much power because they are already operating at maximum 
peak power point.     

 
Figure 1. Example of inaccurate maximum peak power estimation 

 
Figure 2. Example of maximum peak power estimation using a single 
reference inverter 

A different method for estimating the maximum power 
was used during a demonstration testing a 300-MW PV 
power plant in California [1]. In this case, a single 4-MVA 
inverter was taken from the AGC scheme and set to operate 
at the power level determined by its maximum power point 
tracking (MPPT) algorithm. The measured AC power of this 
inverter was used as an indicator of available power for the 
other 79 inverters (80 inverters total), so the plant was able 
to operate with a fixed 30 MW of headroom (Figure 2). This 
method also has inherent uncertainties because it assumes 
uniform solar irradiation conditions across the whole 300-
MW plant. Fortunately, cloud conditions were favorable for 
this method to be acceptable because there was a clear sky 
above the plant during most of the day of testing.  

The method proposed in this paper is also based on using 
dedicated reference inverters within a curtailed PV power 
plant for estimating the maximum available power; however, 
it is based on use of multiple reference inverters to achieve 
high levels of real-time maximum peak power estimation 
under extreme variability conditions. 
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II. PROPOSED METHOD 
For utility-scale PV power plants to be able to maintain 

the desired regulation range or spinning reserve levels, the 
plant controller must be able to estimate the available 
aggregate peak power that all the plant’s inverters can 
produce at any point in time. The available power is normally 
estimated by an algorithm that considers solar irradiation, PV 
modules I-V characteristics and temperatures, inverter 
efficiencies, etc.; however, this method has many 
uncertainties, depends on the availability of accurate system 
models, and does not account for other factors, such as panel 
soiling because of dust. The proposed method can determine 
the available peak power of the PV plant and maintain 
desired reserves with high levels of accuracy without the use 
of external sensors or devices. The existing plant hardware 
and controls can perform this task after the addition of the 
new optimized control algorithm in the power plant 
controller software. 

Under clear-sky conditions, a single PV inverter can be 
used as a reference for the whole plant to determine the 
available power at any point in time (Figure 3, upper graph); 
however, under variable cloud-cover conditions, a single 
inverter method will not be accurate enough for large PV 
power plants. Instead, we propose a concept that can 
accurately allocate reserves for PV power plants by: 

  
• Creating dynamic virtual control zones in the PV 

plant    
• Determining which PV inverter will serve as a 

reference by operating at MPP 
• Determining the optimal dispatch interval for the 

reference MPP inverters based on the rate of change 
of power in each zone (indicator of cloud 
movement)  

• Determining the optimized combinations of 
curtailment set points for participating inverters in 
each zone for maximum aggregate inverter 
efficiency (or minimum electric losses in the plant) 
for every control interval.        

The idea for this method is shown in the lower graph in 
Figure 3. The plant controller allocates virtual dynamic 
control zones consisting of two or more inverters depending 
on cloud conditions over the plant. Then, a single inverter in 
each virtual group is operated at MPP and is used as a 
reference for determining the maximum available power for 
the zone so that appropriate curtailment set points can be sent 
to all participating inverters within that zone. After a certain 
time interval, the process is repeated, ensuring accurate 
reserve allocation by the whole plant and avoiding excessive 
curtailments.   

In this paper, we use the following abbreviations: 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: total number of inverters in a PV power plant 
𝑁𝑁𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧 : number of control zones (same as the number of 
reference inverters 𝑁𝑁𝑟𝑟𝑧𝑧𝑟𝑟 ) 
𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖   =  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

𝑁𝑁𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧  
: number of inverters in each control zone 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑚𝑚𝑡𝑡𝑚𝑚 : total power production of the plant when all 
inverters are operating at MPP 

𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚,𝑖𝑖: power production of zone 𝑖𝑖 when all inverters in the 
zone are operating at MPP 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑖𝑖: power production by a single inverter operating at 
MPP in zone 𝑖𝑖.  

 

 
Figure 3. Large PV power plant divided into control zones during cloud 
conditions 

Estimated maximum available power from the plant 
using instantaneous power produced by single MPPT 
inverters in each zone (blue inverters shown in Figure 3): 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑚𝑚𝑡𝑡𝑚𝑚𝑧𝑧𝑧𝑧𝑡𝑡 =  ∑ 𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖 ∙ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑖𝑖
𝑁𝑁𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧  
𝑖𝑖=1    (1) 

The plant curtailment set point as a percentage of 
estimated maximum available power from the plant is 
determined by: 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡 = (1 − ∆𝑃𝑃) ∙ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑚𝑚𝑡𝑡𝑚𝑚𝑧𝑧𝑧𝑧𝑡𝑡     (2) 

where ∆𝑃𝑃  (in per units) is a curtailment set point. For 
example, ∆𝑃𝑃 = 0.1  means that the plant is expected to 
operate with 10% active power reserve margin or at 90% of 
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡 . The power set points to all individual inverters in zone 
𝑖𝑖 that are participating in the curtailment scheme (orange 
inverters in Figure 4) can then be calculated: 

𝑃𝑃𝑖𝑖𝑧𝑧𝑖𝑖,𝑖𝑖 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑖𝑖 ∙
𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖(1−∆𝑃𝑃)−1

𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖−1
    (3) 

Therefore, the power production of zone 𝑖𝑖 can be calculated 
as: 

𝑃𝑃𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧,𝑖𝑖 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑖𝑖 + (𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖 − 1) ∙ 𝑃𝑃𝑖𝑖𝑧𝑧𝑖𝑖,𝑖𝑖   (4) 

And the total power production of the plant operating 
with curtailment set point ∆𝑃𝑃 is: 

𝑃𝑃𝑚𝑚𝑡𝑡𝑡𝑡𝑧𝑧𝑡𝑡 = ∑ 𝑃𝑃𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧,𝑖𝑖
𝑁𝑁𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧
𝑖𝑖=1 = [𝑁𝑁𝑖𝑖𝑧𝑧𝑖𝑖(1 − ∆𝑃𝑃) − 1] ×

∑ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝑖𝑖
𝑁𝑁𝑧𝑧𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧
𝑖𝑖=1       (5) 

III. DESCRIPTION OF PV PLANT DATA 
In this work, we examined the applicability of the 

proposed method using solar PV output power data among 
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different arrays in a single utility-scale (~50 MW) PV plant 
in the western United States. The plant consists of 96 
individual inverters, each rated at 0.5 MW. We use 1-s power 
data from each individual inverter collected from the plant 
during a period of several months, allowing us to analyze the 
accuracy of the proposed method under different resource 
variability scenarios.  

A depiction of the geographic layout of individual 0.5-
MW PV arrays is shown Figure 4. The same figure also 
shows a snapshot of the variability of the measured AC 
electric power among different sections of the plant. After 
analyzing many days of measured data, we decided to use 
plant data sets from four different days characterizing four 
different variability scenarios: (1) clear sky, (2) moderate 
variability, (3) intense variability, and (4) extreme variability. 
One-second time series for each selected variability case are 
shown in Figure 5A. For comparison purposes, we show the 
1-s rate of change of the total plant power (Figure 5B) and the 
frequency distribution of 1-s power changes (Figure 5C). The 
extreme variability case shown in Figure 5C has the largest 1-
s changes in plant power output during the whole period of 
observation. The maximum positive and negative 1-s changes 
in power are +0.6 MW and -0.42 MW, respectively (or 
+1.25% and -0.87% of plant rated power). One observation 
from Figure 5C is that the distribution of the 1-s power 
changes for the extreme variability case is nonsymmetric; the 
distribution has a longer positive tale. This can be explained 
by different up- and down-ramp limit settings in the inverters. 
When selecting these data sets, care was taken to ensure that 
variability in the output was caused by changing solar 
irradiance conditions only and not caused by inverter trip-off 
events. 

 
Figure 4. Snapshot of real AC power output variability across the PV plant 

Note that the proposed method is expected to provide an 
accurate estimation of available peak power only for 
curtailment levels that are more than a certain minimum 
curtailment threshold determined by the number of inverters 
as follows from equations (1)–(5). For example, for the case 
of 𝑁𝑁𝑟𝑟𝑧𝑧𝑟𝑟 = 48 , 48 inverters will be operating at MPPT, 
leaving the remaining 48 inverters available for curtailment. 
Therefore, the plant can be curtailed only down to 50% of 
available power for 𝑁𝑁𝑟𝑟𝑧𝑧𝑟𝑟 = 48. 

 
Figure 5. Four variability cases used in the analysis 

IV. PLACEMENT OF REFERENCE INVERTERS 
The total plant 1-s production data and data from 96 

individual inverters for four variability cases were used to 
evaluate the ability of the proposed method to accurately 
predict the maximum available power from the entire plant 
for different numbers of reference inverters. The following 
numbers of control zones with a single reference inverter in 
each zone were used in the analysis number of reference 
inverters: 𝑁𝑁 = 1, 2, 3, 4, 6, 8, 12, 24, 48.  A simple algorithm 
was developed to select the locations of the reference 
inverters using the equidistant approach. The selected 
locations of the reference inverters for each case are shown 
in Figure 6, where the red dots represent single 0.5-MW 
arrays with their inverters operating in MPPT mode 
(reference inverters). For example, for the 𝑁𝑁 = 1 case, there 
is only one reference inverter, and the algorithm choose for 
it to be in the center of the plant. For 𝑁𝑁 = 2, there are two 
reference inverters, which are placed in two sections of the 
plant, etc. For 𝑁𝑁 = 48, there are 48 reference inverters out 
of the total 96 inverters. In this case, the algorithm breaks the 
whole plant into pairs of inverters where one inverter 
operates in MPPT reference mode.   

 
Figure 6. Assigning different numbers of reference inverters within an 
array footprint (red dots represent sections of the array connected to 

reference MPPT inverters) 

The estimated maximum power of the plant can be calculated 
using equation (1) for any number of reference MPPT 
inverters. Then, the estimation error can be evaluated as 
shown in Figure 7. 

V. CORRELATION BETWEEN MEASURED AND 
ESTMATED MAX POWER FOR ENTIRE PV PLANT 

First, we analyze the ability of the proposed method to 
estimate the available peak plant power for a clear-sky case 
(as defined in Figure 5). In this case, even with one reference 
inverter, there is a very strong correlation between measured 
and estimated 1-s peak power data, as shown in Figure 8 
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(upper graphs). This observation is consistent with the results 
of the test conducted on a 300-MW PV plant as described in 
[1]. With increasing numbers of reference inverters, the 
correlation becomes even stronger. For example, with only 
four reference inverters, the correlation is basically ideal, as 
shown in Figure 8 (lower graphs). 

 
Figure 7. Calculating error in estimated maximum power   

 
Figure 8. Clear-sky case: a high level of accuracy in maximum power 
evaluation can be achieved even with a single reference inverter, and it can 
be further improved with four inverters (blue: measured total plant power 
when operating in MPPT mode; red: estimated total plant power for 
different numbers of reference inverters, which cannot be distinguished 
from blue because of high accuracy of estimation) 

Calculations performed for three variability cases 
(moderate, intense, and extreme) demonstrated continuous 
improvements in the accuracy of the estimated maximum PV 
plant power. This can be observed from both 1-s time-series 
graphs for the extreme variability case (Figure 9).  

The best correlation is achieved at the highest number 
of reference MPPT inverters. This is explained by the 
varying nature of the solar irradiance across the plant 
footprint causing diversity in the output power level between 
individual inverters. Therefore, having a larger number of 
dedicated reference MPPT inverters scattered throughout the 
PV power plant would help achieve better accuracy in peak 
power estimation. 

Figure 10A and B show the frequency distribution of 
error in estimating the maximum available PV plant power 
for different numbers of reference inverters in the moderate 
and extreme variability cases, respectively. These 
distributions were calculated for a large number of bins and 
are shown in a logarithmic scale as a visual representation of 
the difference in estimation error between the number of 
inverters and large range of values. These distribution shapes 

are concentrated in the center, with large visible tales for a 
smaller number of reference inverters. The distribution tales 
drop significantly with an increasing number of reference 
inverters, achieving essentially no-tail distribution when N = 
24 or 48 for both the moderate and extreme variability cases. 

 
Figure 9. Improving accuracy for an extreme variability case (blue: 

measured total plant power when operating in MPPT mode; red: estimated 
total plant power for different numbers of reference inverters) 

 
Figure 10. Reduction of control error with increasing numbers of reference 
inverters (A: moderate variability case; B: extreme variability case) 

In addition, Figure 11 shows how correlation 
coefficients between actual and estimated 1-s available 
power improve significantly with increasing numbers of 
reference inverters for all four variability conditions. The 
same data are consolidated in TABLE 1 as well. 

More statistical analysis of peak power estimation error 
was conducted using methods described in [23]– [26] to 
analyze mean error, standard deviation, min/max errors, and 
skewness and kurtosis of error distributions (skewness is a 
measure of symmetry of distribution, and kurtosis is a 
measure of peakedness of distribution). This analysis also 
demonstrated the impact of an increased number of reference 
inverters on improving the accuracy of the estimation 
statistics of power available; however, we do not show these 
results here because of space constraints. The results of the 
full statistical analysis for peak power error distribution will 
be published in an extended NREL technical report. 

A.

B.

Increasing N Increasing N

Increasing N Increasing N
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Figure 11.Correlation coefficients for all variability cases 

TABLE 1. Correlation coefficients between actual and estimated available 
power for all variability cases 

Nref Clear Sky Moderate 
Variability 

Intense 
Variability 

Extreme 
Variability 

1 0.995 0.979 0.947 0.947 
2 0.998 0.983 0.955 0.947 
3 0.999 0.987 0.963 0.956 
4 0.999 0.988 0.968 0.959 
6 0.999 0.990 0.974 0.967 
8 0.999 0.992 0.976 0.977 
12 0.999 0.994 0.992 0.990 
24 1.000 0.998 0.995 0.995 
48 1.000 0.999 0.998 0.998 

VI. CONCLUSIONS 
In this paper, we examined the peak power estimation 

method for curtailed PV power plants based on using 
dedicated reference inverters within a plant. The proposed 
technique does not require deploying any additional 
equipment or sensors and is based only on the addition of 
new control logic to the existing power plant controller. 
Based on our calculations using real measured 1-s power 
production data from the entire PV power plant and 
individual inverters, the method has the potential to produce 
highly accurate real-time estimates of available aggregate 
peak power that all the plant’s inverters can produce at any 
point in time and ensure that the control error stays within 
tight tolerance bands at all times. 
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