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Goals of this analysis

Introduction / Motivation

Feedstock energy accounted for
70% of plastics manufacturing
energy requirements (MECS 2014)

Feedstock requirements may limit
overall potential of fossil energy
reductions

Compare conventional and bio-
based Polyethylene terephthalate
(PET) supply chains

Apply MFI tool to analyze a novel
PET upcycling process for
composite manufacturing
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The Materials Flows though Industry (MFI) Tool

Modeled PET Supply Chain Network in MFI- 3 steps
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Bio-Based PET Supply Chain

* Supply Chain Total Energy
* Supply Chain Feedstock Energy
* Supply Chain GHG Emissions



Conventional and Bio-Based Supply Chain

Energy Requirements
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Conventional and Bio-Based Supply Chain

Feedstock Energy Requirements

PET Bottles
. = ay
* Total fossil feedstock 2 8
. - 60- a
energy requirement =3 "200 &
> ]
reduced by 72% 5 g
. L g
* Crude oil feedstock g . 1903 Feedstock Type
requirement reduced 3 5 [ comsStover
b 94(y £ § =gat:raloclalas
c _ rude Oi
y ? -‘_g 100 I'3I'I . Coal
(0]
© g
= d <
g 20 g
2 0§
= 35
2 ®
6 ~
T o 0 2

Conve'ntional Bio-Dérived

Scenario NREL | 6



Conventional and Bio-Based Supply Chain

GHG Emissions

* Negligible total GHG
emissions change, but
the dominant GHG
source has changed
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* Reductions in process
fuel GHG emissions
nearly offset by
increased electricity
requirements
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rPET Upcycling Background & Motivation

e Most commercial PET
recycling is mechanical

 Mechanical recycling leads
to lower-grade plastic with
fewer applications (carpet
fiber, etc.)

* Chemical recycling of PET
bottles back to its
monomers is expensive

 What if we could make
higher value products with
recycled PET?

NREL | 9



Conventional and Bio-Based GFRP Production
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Comparison of Supply Chain Energy Requirements

PET Bottle (First Life)
Allocation

1

for GFRP from Conventional vs Upcycled rPET

Depending on the allocation method,
supply chain fossil energy reductions
range from 37% to 58%.

2016 GFRP production in US estimated
at 780,000 metric tons per year based
on 2016 US consumption of UPE (IHS)
and assumed 40:60 GF:UPE ratio.
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PET Bottle (First Life)
Allocation

1

Supply Chain Feedstock Energy Requirements

Overall, supply chain
fossil feedstock energy
reductions range from

58% to 79%
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Supply Chain Combustion GHG Emissions

for GFRP from Upcycled PET

]
Conventional i Waste Valuation Cutoff

e  Overall, supply chain GHG
emissions reductions range from
30% to 40%
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S umma ry / CO N CI u S|O N GFRP from Upcycled PET Bottles

* Bio-based PET plastic supply chain:
o ~40% lower total fossil energy
o ~ 70% lower fossil feedstock energy

* Upcycling PET could significantly reduce total
GFRP supply chain energy, including fossil
feedstock energy, as well as GHG emissions

e Journal article for rPET upcycling process and
energy analysis forthcoming— to be
submitted to Joule later this month
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Contact Info:

Scott.Nicholson@nrel.gov Th a n k yo u

Alberta.Carpenter@nrel.gov

Rebecca.Hanes@nrel.gov www.nrel.gov

MFI Web App Link:
mfitool.nrel.gov
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