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Introduction / Motivation

• Feedstock energy accounted for 
70% of plastics manufacturing 
energy requirements (MECS 2014)

• Feedstock requirements may limit 
overall potential of fossil energy 
reductions

Goals of this analysis
• Compare conventional and bio-

based Polyethylene terephthalate 
(PET) supply chains

• Apply MFI tool to analyze a novel 
PET upcycling process for 
composite manufacturing

Photo by Chris Standlee, NREL 7265 
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The Materials Flows though Industry (MFI) Tool

• Linear network model
• US-based supply chains
• Cradle-to-gate; does not include 

use-phase or end-of-life
• Coproduct offsets; all estimates 

are on a “net” basis
• Energy requirements and 

combustion GHG emissions only
• Web application now publicly 

available to try out!

⬤ Step 0
⬤ Step 1
⬤ Step 2
⬤ Step 3

Modeled PET Supply Chain Network in MFI– 3 steps



Bio-Based PET Supply Chain

• Supply Chain Total Energy
• Supply Chain Feedstock Energy
• Supply Chain GHG Emissions
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Conventional and Bio-Based Supply Chain
Energy Requirements

• Biomass-derived 
terephthalic acid (TPA) 
monomer

• Supply chain fossil energy 
requirement  reduced by 
37%

• Additional renewable 
energy inputs (green 
bars) more than offset 
fossil energy reductions, 
leading to increased total 
energy requirement
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Conventional and Bio-Based Supply Chain
Feedstock Energy Requirements

• Total fossil feedstock 
energy requirement 
reduced by 72%

• Crude oil feedstock 
requirement reduced 
by 94%
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Conventional and Bio-Based Supply Chain
GHG Emissions

• Negligible total GHG 
emissions change, but 
the dominant GHG 
source has changed

• Reductions in process 
fuel GHG emissions 
nearly offset by 
increased electricity 
requirements



PET Upcycling Case Study

Photo by Dennis Schroeder, NREL 47350
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rPET Upcycling Background & Motivation

• Most commercial PET 
recycling is mechanical

• Mechanical recycling leads 
to lower-grade plastic with 
fewer applications (carpet 
fiber, etc.)

• Chemical recycling of PET 
bottles back to its 
monomers is expensive

• What if we could make 
higher value products with 
recycled PET?

Photo from pxhere.com
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Conventional and Bio-Based GFRP Production
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Scenario Name PET Bottle (First Life) 
Allocation

1 Conventional 
GFRP

N/A
(No rPET Used)

2
Waste Valuation; 
Reclaimed
Clear rPET

≈54%
(Economic)

3
Waste Valuation; 
Reclaimed
Green rPET

≈32%
(Economic)

4 Reclaimed rPET -
Cutoff 0%

Comparison of Supply Chain Energy Requirements
for GFRP from Conventional vs Upcycled rPET

• Depending on the allocation method, 
supply chain fossil energy reductions 
range from 37% to 58%.

• 2016 GFRP production in US estimated 
at 780,000 metric tons per year based 
on 2016 US consumption of UPE (IHS) 
and assumed 40:60 GF:UPE ratio.
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Supply Chain Feedstock Energy Requirements
for GFRP from Upcycled PET

Overall, supply chain 
fossil feedstock energy 
reductions range from 

58% to 79%

Scenario Name PET Bottle (First Life) 
Allocation

1 Conventional 
GFRP

N/A
(No rPET Used)

2
Waste Valuation; 
Reclaimed
Clear rPET

≈54%
(Economic)

3
Waste Valuation; 
Reclaimed
Green rPET

≈32%
(Economic)

4 Reclaimed rPET -
Cutoff 0%
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Supply Chain Combustion GHG Emissions
for GFRP from Upcycled PET

• Overall, supply chain GHG 
emissions reductions range from 
30% to 40%

• 0.7 – 1.0 MMT-CO2e offsets; 
Equivalent to taking 150,000  -
200,000 cars off the road

Scenario Name PET Bottle (First Life) 
Allocation

1 Conventional 
GFRP

N/A
(No rPET Used)

2
Waste Valuation; 
Reclaimed
Clear rPET

≈54%
(Economic)

3
Waste Valuation; 
Reclaimed
Green rPET

≈32%
(Economic)

4 Reclaimed rPET -
Cutoff 0%
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Summary / Conclusion

• Bio-based PET plastic supply chain:
o ~ 40% lower total fossil energy 
o ~ 70% lower fossil feedstock energy

• Upcycling PET could significantly reduce total 
GFRP supply chain energy, including fossil 
feedstock energy, as well as GHG emissions

• Journal article for rPET upcycling process and 
energy analysis forthcoming– to be 
submitted to Joule later this month

Photo by Dennis Schroeder NREL 47349 

GFRP from Upcycled PET Bottles
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MFI Web App Link:
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