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Hydrogen Spillover Limitations for Onboard Hydrogen 
Storage 
The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (DOE 
EERE) Hydrogen Storage sponsored research projects are focused on the development of 
hydrogen storage systems that meet or exceed the DOE’s goals for the onboard hydrogen storage 
in hydrogen-powered vehicles. Recently there has been a tremendous interest and controversy 
concerned with the disparity of results associated with weak chemisorption, i.e., spillover, 
materials for hydrogen storage. The National Renewable Energy Laboratory (NREL) and DOE 
dedicated considerable resources over the last few years to develop/perform the requisite 
measurements in order to establish the validity, capacity, kinetics, and overall performance of 
these materials. 

‘Hydrogen spillover’ is a well-known phenomenon in catalysis, involving the dissociative 
chemisorption of hydrogen molecules on metal nanoparticles, followed by the migration of 
atomic hydrogen onto a support. In hydrogen storage applications, this storage enhancement 
mechanism has been investigated in detail most notably via the noble metal decoration of high 
surface area (>2,500 m2/g) carbon-based supports.1-8 Overall, the observations of hydrogen 
storage that can be attributed to a spillover-type effect vary widely, from a several-fold 
enhancement to a negligible effect within the experimental uncertainty.9 In part, this wide 
variation may be caused by micro-structural changes resulting from the metal doping, such as 
reduced pore volume and specific surface area. A significant result of the extensive DOE-NREL 
efforts was the first reported spectroscopic (DRIFTS and Neutron Scattering) evidence of 
“spiltover” hydrogen atoms onto a carbon surface. Disappointingly, however, it was only 
observed with modest (<15%) enhancements of sorption resulting in total capacities considerably 
less than the 2020 DOE targets. While larger enhancements up to 50% were observed for low 
hydrogen capacity materials, this was found to be primarily caused by the reduction of the metal 
centers and the formation of water. After multiple hydrogen sorption cycles and once the metal 
was reduced, the observed enhancement was considerably less (<15%). Overall, the spillover 
mechanism onto carbon-based sorbents is not yet fully understood and still under considerable 
debate9-15 due to the absence of consistent empirical results and a fundamental microscopic 
picture. 

It is important to note however, that as interest in the hydrogen storage spillover process peaked 
in the early part of this decade, a considerable amount of new information has come to light 
regarding the intrinsic problems that could complicate the interpretation of empirical results, 
beyond systematic instrumentation errors. The following list provides examples of the items 
most often reported: (1) hydrogenation reactions can occur if the metal nanoparticles are in a 
fully or partially oxidized state;16 (2) residual organics may occlude the noble metal deposition 
precursor from accessing deep into the pores, and these precursors can undergo catalytic 
reduction reactions (which would appear as an erroneous hydrogen sorption) for multiple 
hydrogen sorption/desorption cycles;17 (3) a variation of H2 interaction properties at unsaturated 
atomic sites inside carbon support could lead to irreversible side reactions such as the 
hydrogenation of the carbon (C-H bonds) and oxygen (O-H) sites being the most obvious;10, 12 
(4) the variation of substituents that populate the pore structure in very high surface area carbon
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materials can lead to multiple side reactions; (5) theory which predicts the existence of 
thermodynamic energy valleys resulting in water formation (which also would appear as an 
erroneous hydrogen sorption);18-20 and most recently (6) results indicating that catalytic activity 
of the metal certainly can enhance adsorption kinetics, but with significant irreversible sorption 
hysteresis attributed to irreversible chemical hydrogenation of the substrate.21-22 

Therefore, even though there are validated results in the literature that the hydrogen spillover 
process may result in an observed 10% to 50% increase in hydrogen sorption capacities, it has 
only been verified for well-defined, low surface area materials with inherently low (<0.5 wt.% 
H2) gravimetric capacity—and even in these cases after 2–3 cycles the enhancement is greatly 
reduced. Thus, although there is now definitive spectroscopic evidence in the literature 
(DRIFTS, NMR, RAMAN, Neutron Scattering) of studies that confirm reversible hydrogen 
adsorption/desorption spillover behavior, these confirmations have only been observed for 
materials with low initial hydrogen capacity. 

In a recent paper,23 we address the above issue through systematic density-functional-theory 
calculations. Unlike the conventional experimental study of H chemisorption using an atomic H 
source, hydrogen storage studies use molecular hydrogen sources; therefore, the chemisorption 
state must be in a much lower energy level. In order to lower the total energy, each chemisorbed 
H atom must be paired up with another H atom on the opposite side of the graphene sheet. The 
two H atoms in a pair are strongly correlated and must move cooperatively. In this situation, 
recombination of H atoms on the same side is mostly suppressed because each recombination 
breaks two H pairs and is energetically very unfavorable. Surprisingly, we found that H 
migration can actually happen at room temperature through a cooperative motion of H pairs 
when mediated by water molecules. This study is important for both hydrogen storage 
technology and organic chemistry in terms of C-H bond activation. 

If one assumes that hexagonal patches form and grow simultaneously surrounding a catalytic 
particle, then ideally, six such patches with a size similar to the catalytic particle roughly fills the 
360° angular space, which terminates the spillover around that catalytic particle. That gives a 
maximum area ratio of 6:1 of H covered graphene over that of metal covered graphene. Based on 
this ratio, the lattice parameters, standard atomic weights (12.011 for C, 106.45 for Pd), a 
homogeneous distribution of Pd nanoparticles (3 atomic layer thickness, 2 nm diameter) on 
graphene, and an optimum inter-particle distance of 5–6 nm, the maximum H capacity is derived 
as 2.5–3.0 wt.%. 

Overall, the primary thermodynamic paradox of how a reversible hydrogenation reaction can 
occur at room temperature with the formation of a mobile 30 kJ/mol C-H bond has not been 
adequately addressed. However, as shown in the recent paper by Zhao et al., once the known 
region of influence of the metal center is calculated, along with the metal added to the material in 
the optimal spacing that would allow for 100% hydrogenation of the carbon surface, the 
maximum theoretical capacity would only be 2.75 +/- 0.5 %w/w. Spillover is an interesting 
scientific phenomena; however, the current use of 2 nm metal particles to mediate the sorption of 
hydrogen onto a sorbent is not viable for application to transportation applications. So while the 
investigation of hydrogen sorption via a spillover process is of considerable interest, at this time 
it is still, at a scientific level, at too early of a research and development stage to be considered as 
a viable alternative to other more well-developed hydrogen storage technologies. However, this 
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is not to say that research in this area is not important. Fundamental research, such as work 
sponsored by the Office of Basic Energy Sciences or the National Science Foundation, where the 
mechanism could be established in great detail in order to better define substrate chemistries as 
well as the nano- and meso-scale structures needed to optimize materials suitable for 
incorporation with the spillover mechanism could be beneficial. 

In summary, hydrogen sorption via a spillover process is not considered a viable pathway 
to achieve the 2020 DOE metrics as a hydrogen sorption material for transportation 
applications. 
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