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Abstract This paper proposes an adjustable and distribu-

tionally robust chance-constrained (ADRCC) optimal

power flow (OPF) model for economic dispatch consider-

ing wind power forecasting uncertainty. The proposed

ADRCC-OPF model is distributionally robust because the

uncertainties of the wind power forecasting are represented

only by their first- and second-order moments instead of a

specific distribution assumption. The proposed model is

adjustable because it is formulated as a second-order cone

programming (SOCP) model with an adjustable coefficient.

This coefficient can control the robustness of the chance

constraints, which may be set up for the Gaussian distri-

bution, symmetrically distributional robustness, or

distributionally robust cases considering wind forecasting

uncertainty. The conservativeness of the ADRCC-OPF

model is analyzed and compared with the actual distribu-

tion data of wind forecasting error. The system operators

can choose an appropriate adjustable coefficient to tradeoff

between the economics and system security.

Keywords Economic dispatch, Adjustable and

distributionally robust chance-constrained optimization,
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1 Introduction

Recently, the increased deployment of wind power has

brought challenges to electric power systems operation

because of its power output uncertainty. To reliably operate

the system, stochastic optimization, such as chance-con-

strained optimal power flow (CC-OPF), has been intro-

duced [1, 2] to minimize the cost of system generation

while maintaining reliability and avoiding constraint vio-

lations within a defined risk level. Previously, the Gaussian

distribution was used to represent wind power forecasting

uncertainty [3, 4], but this assumption might lead to an

estimation error for the system condition. Distributionally

robust CC-OPF (DRCC-OPF) is proposed in [3], which

needed only the forecasting mean and variance informa-

tion, and can lead to a conservative dispatch and high

generation cost because the result is robust for any fore-

casting errors distribution. This violation probability is

either higher or lower than the predefined violation level

using the predefined distribution assumptions. A higher

violation means the system risk level is higher than the

preferred level. A lower violation means that the system

cost is higher than the optimal value. Therefore, choosing
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an appropriate coefficient can give a trade-off between the

system reliability and cost. In this letter, an adjustable and

distributionally robust chance-constrained (ADRCC) opti-

mal power flow (OPF) model is proposed to obtain this

optimal coefficient.

When the wind power forecasting uncertainty is taken

into consideration, the CC-OPF model is given by:

min
XN

i¼1

ciGexp;i ð1Þ

s:t:
XN

i¼1
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XN

i¼1
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Pr
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Pr �LUl �
XN

i¼1

GSFl;i � Gi þ Pi � Dið Þ
 !

� 1� �

ð4Þ

Pr Gi �Gi;max

� �
� 1� � ð5Þ

Pr Gi;min �Gi

� �
� 1� � ð6Þ

Gi ¼ Gexp;i þ DGi ð7Þ

Pi ¼ Pexp;i þ DPi ð8Þ

DGi ¼ bi �
XN

i¼1

DPi

 !
ð9Þ

XN

i¼1

bi ¼ 1 ð10Þ

�
XN

i¼1

DPi ¼
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where N is the number of generators in the system; Gi is

the generation power output; Di is the load amount; Pi is

the forecasted wind power; ci is the offer price of gener-

ation; Gexp;i is the expected generation power output; Pexp;i

is the expected wind power; DGi is the generation response

to the wind uncertainty; DPi is the uncertain output of wind

power; bi is the sharing factor of generation for the wind

uncertain power output; GSFl;i is the system generation

shift factor; LUl is the transmission limit; Gi;max and Gi;min

are the generation upper and lower limits, respectively;

(3)–(6) are the chance constraints considering the impact of

the wind uncertainty on the transmission overload and

generation output violation; � is the confidence level in the

chance constraints (mostly between 1% and 5%). The

decision variable in the model is the generation dispatch

Gexp;i and the balancing factor bi.
Define that the uncertain part of wind power output DP

has the mean as l and covariance as R which is a positive

semidefinite matrix. In addition, define al bð Þ as a one-

column matrix whose element al;i bð Þ is given by (12), and

bi bð Þ as a one-column matrix given by (13).

al;i bð Þ ¼ �
XN

k¼1

GSFl;k � bk þ GSFl;i ð12Þ

bi bð Þ ¼ ½ bi � � � bi �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
W

T ð13Þ

where W is the number of wind power plants.

Then, introduce auxiliary variables gPF;l and gg;i as

shown in (14) and (15).
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al bð ÞTRal bð Þ

q
� gPF;l ð14Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi bð ÞTRbi bð Þ

q
� gg;i ð15Þ

Equations (14) and (15) can be formulated as second-

order cone constraints as:

kR1
2al bð Þk2 � gPF;l ð16Þ

kR1
2bi bð Þk2 � gg;i ð17Þ

The CC-OPF model is then formulated as (1), (12), (13),

(16)–(22).

XN

i¼1

Gexp;i þ Pexp;i

� �
�
XN

i¼1

Di ¼ 0 ð18Þ

�
XN

i¼1

GSFl;i � Gexp;i þ Pexp;i � Di

� �
þ al;i bð Þli

� �

� K�gPF;l � � LUl ð19Þ

XN

i¼1

GSFl;i � Gexp;i þ Pexp;i � Di

� �
þ al;i bð Þli

� �
� K�gPF;l �

� LUl

ð20Þ

�Gi � bi
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lk � K�gg;i � � Gi;max ð21Þ

Gi þ bi
XN
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lk � K�gg;i �Gi;min ð22Þ

where K� is the coefficient to control the robustness of the

chance constraints to wind power forecasting errors. If the

forecasting error follows a Gaussian distribution [5], the

value of K� is decided by (23).

K� ¼ W�1 1� �ð Þ ð23Þ

where W xð Þ is the cumulative distribution function (CDF)

of Gaussian distribution.
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2 ADRCC-OPF

In (23), K� is obtained based on the Gaussian distribution

assumption for the wind power forecasting errors, which is

not always the case in actual practice, as shown in Fig. 1 [4].

This section discusses the proposed ADRCC-OPF model

that does not need the Gaussian distribution assumption for

wind power forecasting errors and can control the tradeoff

between the reliability and the system cost.

First, the assumption is that the first- and second-order

moments of the uncertain variables (mean and covariance)

are estimated based on the historical data [2]. A set p of all

the possible distributions P satisfying the mean and

covariance values are represented as:

p ¼ P 2 P0 R vj j� �
: EP x½ � ¼ l;EP xxT

� �
¼ R

� 	
ð24Þ

where x is the uncertain variable (here is the wind power

forecasting error); P0 R vj j� �
denotes the set of all of the

probabilistic distributions on R vj j with mean as l and

covariance matrix as R; EP x½ � represents the expectation of
x [3, 6, 7].

When only the mean and covariance of the distribution

are obtained from the historical data, for � 2 0; 1ð Þ, the
distributionally robust chance constraint is formulated with

K� value decided by (25) [1].

K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ=�

p
ð25Þ

If the forecasting error distribution is symmetrical with

observing the historical forecasting error data, then the

DRCC-OPF is formulated [1] with K� value decided by

(26).

K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2�ð Þ

p
ð26Þ

The values of K� in the three cases are listed in Table 1

for � varying from 2% to 5%.

However, the actual wind power forecasting errors

might not be Gaussian or symmetrical. Therefore, using the

K� listed in Table 1 might lead to over-optimistic or over-

conservative results. Using the K� values of the distribu-

tionally robust case will lead to over-conservative results

that has a higher operating cost and is not likely to be

adopted by the system operators. Therefore, it is important

to choose an appropriate K� value leading to a predefined

reliability and system cost tradeoff.

For the given � value under each distribution assumption

(Gaussian, symmetric distributionally robust and distribu-

tionally robust), the CC-OPF is performed to obtain the

dispatch results and the balancing factors using K� values

listed in Table 1. With the actual historical wind power

forecasting error data, the system actual violations under

each distribution assumption are obtained. Comparing the

obtained violation value with the predefined value (�), the

operators can choose the adjustable coefficient as shown in

(27) to make the system violation value as close to the

predefined value as possible to avoid over-optimistic or

over-conservative results shown in Fig. 2.

K� ¼ K�1 þ �� V1ð ÞK�2 � K�1

V2 � V1

ð27Þ

where K�1 and K�2 are the coefficients leading to the vio-

lation higher and lower than the predefined value, respec-

tively; V1 and V2 are the realized violation values. Here a

linear approximation is used for simplicity because the

forecasting errors have a linear relationship with K� shown

in the chance constraints in (19)–(21).

Note that after obtaining the generation dispatch and the

balancing factors, the historical forecasting error data are

used to calculate the system violation. In this process, the

computation procedure can be paralleled to obtain the

violation values under different distribution assumption

fast and efficiently.

In the system operation, the system operators can choose

the appropriate K� based on the actual historical data for

each operation interval using the actual system realized

wind power deviation. Then in the actual operation, they

can choose the appropriate coefficients based on the offline

simulation. Similar mechanism can be found in Electricity

Reliability Council of Texas (ERCOT) dynamic reserve

curve [8].

3 Case studies

The test system has been modified from the PJM 5-bus

system depicted in Fig. 3. The numbers besides the gen-

erators represent the generation offer price ($/MWh) and

capacity (MW). The system parameters are from [9]. In this

study, the peak load in this system is 1500 MW in theFig. 1 Wind power forecasting error distribution
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studied interval, and the total load is equally distributed

among buses B, C, and D. Two wind power plants with 300

MW as their forecasted mean power output are located at

buses B and C. One-year 8760-hour historical wind fore-

casting error data are utilized from California Independent

System Operator (CAISO) to obtain the forecasting error

mean and covariance [4], which are also utilized to

examine the system violation with DRCC-OPF.

Table 2 lists the system generation cost with different

distribution assumptions and confidential levels from 2% to

5%. It is obvious that the cost increases with the confidence

level. In Gaussian distribution assumption, the cost

increase from $15094.8 to $15170.8 when � changes from

5% to 2%. In the distributionally robust case, the cost

increases from $15597.7 to $16332.5. In addition, the cost

increases with the robustness of the wind power forecasting

error distribution assumption. For instance, the cost in the

distributionally robust case is the highest, the symmetri-

cally distributionally robust case has the second highest

cost, and the Gaussian distribution case has the lowest

generation cost. It is clear from Table 1 that higher confi-

dence level (lower �) and higher robustness of wind power

forecasting error distribution lead to a higher K�. However,

this comes at a cost.

Figure 4 shows the generation dispatch with � of 5%.

The generation changes with the conservativeness of the

wind power forecasting error. In the distributionally robust

case, Gen4 and Gen5 reduce their power outputs while

Gen3 increases its power to mitigate the wind power

uncertainty. This leads to the increment of system

Fig. 2 Illustration of K� calculation

Fig. 3 PJM 5-bus system and generation parameters

Table 2 System generation cost under different distribution

assumptions

� (%) System generation cost ($)

Gaussian Symmetric

distributionally robust

Distributionally

robust

2 15170.8 15716.3 16332.5

3 15138.7 15546.6 15882.8

4 15114.5 15445.4 15697.7

5 15094.8 15376.3 15597.7

Table 1 K� values under different distribution assumptions

� (%) K�

Gaussian Symmetric

distributionally robust

Distributionally

robust

2 2.0538 5.0000 7.0000

3 1.8810 4.0825 5.6862

4 1.7507 3.5355 4.8990

5 1.6450 3.1623 4.3589

Fig. 4 Generation dispatch under different distribution assumptions
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generation cost, since Gen3 has a higher cost than Gen5, as

shown in Fig. 3.

After the generation dispatch and sharing factors are

obtained from the proposed ADRCC-OPF, the historical

8760 wind power forecasting error scenarios are utilized to

represent the actual wind power realization and the system

violation such as generation violation is calculated [10].

Table 3 shows the output violation of Gen4 under different

confidence levels and various distribution assumptions.

Figures 5 and 6 are the power flow realization of line 6 and

the power output of Gen4 considering the wind power

forecasting error.

Table 3 demonstrates that the Gaussian distribution

assumption will lead to an optimistic result. For instance,

when the confidence level is 1%, Gen4 has a 4.64%

probability of violating its generation upper limit. In actual

system operation, this will bring risk to system operations.

The symmetrically distributionally robust and distribu-

tionally robust cases lead to a conservative dispatch

because the actual violation possibility of Gen4 is lower

than the predefined � value in these cases. This over-con-

servativeness leads to a higher generation cost. Therefore,

appropriately choosing the distribution assumption of wind

power forecasting error (the value of K�) to represent the

predefined risk level is of importance for the system

operators to tradeoff between the system reliability and the

cost. Again, this is also the reason that the proposed

method is adjustable in addition to being distributionally

robust. In this table, the adjustable coefficients K� leading

to the violation probability close to the predefined � value

are also listed. The value of K� is obtained using (27). The

violation in Gaussian distribution is V1, and the violation in

symmetrical distributionally robust case is V2. The values

of K� in Table 1 for Gaussian and symmetrical distribu-

tionally robust are K�1 and K�2.

In Fig. 5, it is obvious that the transmission power flow

will reduce to a narrow range, and that the maximum

potential power flow realization reduces, which also leads

to lower transmission power flow violations. The black

dashed line in Fig. 6 is the upper limit of Gen4. Figure 6

clearly shows that with the conservativeness increases the

generation power output will reduce which leads to a lower

generation output violation.

The IEEE 118-bus system is tested to verify the pro-

posed model in a large-scale system. The system data is

from [9, 11]. Four wind power plants are connected at bus

2, bus 5, bus 53, and bus 86 with the expected power output

equal to 300 MW for the studied interval. The confidence

level is 5%. The system generation cost and output viola-

tion probabilities of Gen2 are listed in Table 4. In this case,

the K� that leads to the closest value to the defined confi-

dence level should be within the values of the symmetri-

cally distributionally robust case and the distributionally

robust case in Table 1.

Table 3 Violation probability of Gen4 under different distribution

assumptions

� (%) Violation probability of Gen4 (%) K�

Gaussian Symmetric

distributionally robust

Distributionally

robust

2 3.27 0.021 0 3.205

3 4.40 0.169 0 2.609

4 5.43 0.350 0.021 2.253

5 6.25 0.630 0.106 1.982

Fig. 5 Power flow of line 6 considering wind forecasting errors under

different distributions

Fig. 6 Output of Gen4 considering wind forecasting errors under

different distributions
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4 Conclusion

This work proposes a new chance-constrained OPF

model called ADRCC-OPF. The influence of the distribu-

tional robustness for wind power forecasting on the gen-

eration cost and system violations is studied. It shows that

the Gaussian distribution assumption for wind power

forecasting can lead to overoptimistic results for the system

violations and bring risk to system operation. The tradi-

tional distributionally robust CC-OPF model will lead to

over-conservative results with a high operating cost. It is

demonstrated in this work that the proposed ADRCC-OPF

can achieve an appropriate tradeoff between the conser-

vativeness and the system cost when an appropriate

adjustable coefficient is chosen to control the robustness of

the chance constraints.
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