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Abstract—This paper presents a chance constrained, model
predictive control (MPC) algorithm for demand response (DR)
in a home energy management system (HEMS). The HEMS
optimally schedules controllable appliances given user prefer-
ences such as thermal comfort and energy cost sensitivity, and
available residentially-owned power sources such as photovoltaic
(PV) generation and home battery systems. The proposed control
architecture ensures both the DR event and indoor thermal
comfort are satisfied with a high probability given the uncertainty
in available PV generation and the outdoor temperature forecast.
The uncertainties are incorporated into the MPC formulation
using probabilistic constraints instead of computationally limit-
ing sampling-based approaches. Simulation results for various
user preferences and probabilistic model parameters show the
effectiveness of the HEMS algorithm response to DR requests.

NOMENCLATURE
Butil DR reduction request from utility (kW)
ce Cost of Pgrid ($/kWh)
dhvac HVAC control signal (duty cycle)
E Battery state of charge (kWh)
Emax Maximum energy storage in battery (kWh)
Emin Minimum energy storage in battery (kWh)
η Battery charging/discharging efficiency
Pc Power consumed by HVAC when cooling (kW)
Pch Power injected into battery storage (kW)
Pdis Power drawn from battery storage (kW)
Pgrid Power consumed from the grid (kW)
Pmax Maximum charging/discharging power (kW)
Ppred Predicted Pgrid consumption with no DR (kW)
PPV Solar power consumed (kW)
Prad Solar Irradiance (W/m2)
Psol Available solar power (kW)
Puc Residential load from uncontrollable devices (kW)
ρDR Probability that DR request is satisfied
ρT Probability that Tin bounds are satisfied
tDR,f End time of DR period
tDR,n Time of DR notice
tDR,s Start time of DR period
Tin Indoor air temperature (◦F)
Tmax Maximum indoor air temperature (◦F)
Tmin Minimum indoor air temperature (◦F)
Tout Outdoor air temperature (◦F)
Ucurt PV curtailment (percent)

I. INTRODUCTION

Renewable energy integration into the power grid has pre-
sented new challenges due to uncertainty in weather fore-
casts and renewable energy generation availability. While
generation-side energy management solutions have been
widely studied to account for intermittent renewable energy
generation challenges, demand-side energy management so-
lutions present another approach for integrating renewable

energy sources given the current power grid architecture. In
particular, residential demand-side energy management can
be used to address stable renewable energy integration since
the residential buildings account for 37.6% of total electricity
consumption in the U.S., which is more than the commercial
building, industrial building, or transportation sector [1]. Home
energy management systems (HEMS) provide demand-side
energy management by coordinating multiple residential appli-
ances in real-time given user preferences and renewable energy
resource forecasts [2], [3]. HEMS can increase the energy
efficiency of a home by leveraging controllable residential
devices, such as heating, ventilation, and air-conditioning
(HVAC) systems, which account for over 50% of total res-
idential load [1]. This work provides a stochastic model
predictive control (MPC) algorithm for demand response (DR)
in a HEMS that optimally coordinates home appliances and
residentially-owned generation and storage given user comfort
preferences, energy cost sensitivity, and uncertainty in avail-
able PV generation and outdoor temperature forecast.

Various HEMS architectures have been proposed for in-
creasing residential energy efficiency [3]. Many of the con-
trol methods studied for HEMS applications also include
DR grid service capabilities such as real-time pricing and
direct load control, which encourage consumers to shift the
load of flexible devices away from peak demand periods
[2], [3]. Typically, advanced HEMS algorithms use optimiza-
tion techniques such as MPC [2], [4], mixed-integer linear
programming (MILP) [5], or various artificial intelligence
techniques [3], [6], [7]. One approach to using stochastic
optimal control methods in HEMS algorithms is the use of
Monte Carlo sampling for representing uncertainties in various
parameters such as outdoor temperature and renewable energy
source generation [8], which is computationally restrictive.
Another approach for incorporating uncertainty in HEMS
algorithms is using the Markov chain modeling framework
[9]. To include probabilistic models in a HEMS algorithm,
we propose a chance constrained MPC-based optimization
formulation. Chance constrained optimization has been used
to incorporate uncertainty in renewable energy generation
into optimal energy storage sizing problems [10] and AC
optimal power flow problems [11]. Chance constrained MPC
has also been used to include uncertainty in weather forecasts
for energy efficient HVAC system usage in buildings [12].
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Fig. 1. Overall HEMS control and data schematic.

Chance constrained optimization for a HEMS has been used
to incorporate uncertainty in dynamic pricing and system loads
[13]. However, in this work we use a chance constrained MPC-
based HEMS to incorporate uncertainty in the weather forecast
and renewable energy generation while ensuring both the DR
request and users’ thermal preferences are satisfied with high
probability.

In this work, we provide a chance constrained MPC al-
gorithm for a HEMS capable of satisfying grid DR requests
where usage of flexible (i.e. controllable) devices, such as
HVAC systems, are shifted away from peak demand periods
on the power grid. We assume the DR event is communicated
to the HEMS before the DR period begins in the form of a
request for some amount of grid power reduction Butil relative
to amount of grid power the HEMS predicts the home requires
during the DR period. We consider a HEMS that coordinates
a residentially-owned PV array and battery storage system,
an HVAC system, and uncontrollable devices to satisfy the
DR event while ensuring user thermal comfort. Uncontrollable
residential devices include lighting, television, and plug loads,
which we assume cannot be controlled with a HEMS. The
chance constraints in the HEMS algorithm are used to ensure
that both the DR reduction request and the users’ thermal
comfort are satisfied with high probability given uncertainty in
available PV power and outdoor air temperature. An overview
of the considered HEMS system is shown in Fig. 1.

The rest of this paper is organized as follows: Section II
provides the mathematical formulation of the HEMS device
models and chance constraints for modeling uncertainty in PV
generation and outdoor air temperature forecast. In Section III,
we provide the overall stochastic MPC HEMS optimization
problem. The simulation results of the proposed HEMS algo-
rithm are provided in Section IV. In Section V, conclusions on
the effectiveness of the proposed stochastic MPC-based HEMS
algorithm are discussed, as well as areas of future work.

II. RESIDENTIAL DR CONTROL STRUCTURE

In this section, the mathematical models for the indoor air
temperature dynamics and residential devices are provided.
In this work, we assume that the HEMS must coordinate
the HVAC system, the residential PV generation, the battery
storage system, uncontrollable loads, and any additional power
needed from the grid to satisfy the load. The chance constraint

formulations for incorporating the uncertainty in PV genera-
tion PPV and outdoor air temperature Tout are also provided.
The temporal index is denoted with the superscript (t).

A. HEMS Device Models

The residential indoor temperature model, coupled with the
HVAC model and thermal comfort preferences, is given by the
following dynamic equations:

T
(t+1)
in = T

(t)
in + β1(T

(t)
out − T

(t)
in )− β2d(t)hvac + β3P

(t)
rad, (1)

Tmin ≤ T (t+1)
in ≤ Tmax, (2)

where d(t)hvac ∈ [0, 1] is the HVAC duty cycle, β1 represents
the building envelope, β2 is the cooling gain, and β3 is the
solar gain. The residential PV system model is given by

P
(t)
PV = (1− U (t)

curt)P
(t)
sol , (3)

where Ucurt ∈ [0, 1] is the fraction of available PV generation
that is curtailed, and P (t)

sol is a function of the solar irradiance,
array size, and array efficiency.

The residential battery storage system state of charge (SOC)
and power charged/discharged are modeled by the following:

E(t+1) = E(t) + ηP
(t)
ch ∆t− 1

ηP
(t)
dis∆t, (4)

Emin ≤ E(t+1) ≤ Emax, (5)

0 ≤ P (t)
dis , P

(t)
ch ≤ Pmax, (6)

where Emin and Emax are 15% and 85% of the rated energy
storage capacity, respectively, which limits battery degradation
when operating in this region [14]. From the structure of this
problem, it is assumed the optimization will not find it optimal
for the battery to charge and discharge simultaneously. This
simplification can be addressed with MILP or including the
constraint P (t)

ch P
(t)
dis = 0. While the constraint is not included

in this work, we have confirmed that for all simulation results
provided in Section IV, the battery does not simultaneously
charge and discharge.

The overall power balance in a home is given by the
following equation:

0 = −P (t)
grid + P

(t)
load − P

(t)
PV + P

(t)
ch − P

(t)
dis , (7)

where the total power demand for a home is given by
P

(t)
load = P

(t)
uc + Pcd

(t)
hvac. The total HVAC load is given by

P
(t)
hvac = Pcd

(t)
hvac.

B. Inclusion of Uncertainty

Chance constraints are introduced into the problem to ensure
both the DR request is satisfied and the user thermal comfort
is maintained with high probability given uncertainty in fore-
casting errors in weather parameters that dictate available PV
power and the indoor air temperature. First, we will focus on
the constraint that ensures the DR reduction request is satisfied
with probability ρDR, which is given by the following:

Pr

(
tDR,f∑
t=tDR,s

P
(t)
pred −

tDR,f∑
t=tDR,s

P
(t)
grid ≥ Butil

)
≥ ρDR, (8)
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where the actual grid power consumed P (t)
grid is dependent on

the power balance equation in (7). The available PV power
can be represented as P (t)

PV = P
(t)
f + P

(t)
err , where P

(t)
f and

P
(t)
err are the solar forecast and solar forecast error at time
t, respectively. We assume the solar forecast error P (t)

err is
Normally distributed P

(t)
err ∼ N (µ

(t)
Perr

, σ
2(t)
Perr

) and P
(t)
err are

independent. Then, we obtain the following for P (t)
grid in (8):

P
(t)
grid = Pcd

(t)
hvac + P (t)

uc + P
(t)
ch − P

(t)
dis − P

(t)
f − P (t)

err . (9)

Notice that the sum of Normally distributed forecast errors
will result in another Normally distributed random variable
denoted Perr ∼ N (µP , σP ) where µP =

∑tDR,f

t=tDR,s
µ
(t)
Perr

and

σ2
P =

∑tDR,f

t=tDR,s
σ
2(t)
Perr

. Then we can write the constraint in (8)
that ensures DR is met with probability ρDR as the following:

Pr(XP ≤ 0) ≥ ρDR. (10)

where P (t)
grid is given in (9) and XP is given by:

XP =
tDR,f∑
t=tDR,s

P
(t)
grid + Butil −

tDR,f∑
t=tDR,s

P
(t)
pred.

Since Perr is Normally distributed, XP is also Normally
distributed with the following mean µ and variance σ:

µ =
tDR,f∑
t=tDR,s

(Pcd
(t)
hvac + P

(t)
uc + P

(t)
ch − P

(t)
dis − P

(t)
f )− µP

+Butil −
tDR,f∑
t=tDR,s

P
(t)
pred,

σ = σP .

The chance constraint in (10) can be written as:

Pr(XP ≤ 0) = Φ
(
0−µ
σ

)
≥ ρDR, (11)

where Φ(·) is the CDF of the Normal distribution N (0, 1).
The chance constraint that ensures the DR request is satisfied
with a high probability is obtained by taking the inverse CDF
of both sides of (11), which is given by:

tDR,f∑
t=tDR,s

P
(t)
pred−

tDR,f∑
t=tDR,s

(Pcd
(t)
hvac +P (t)

uc +P
(t)
ch −P

(t)
dis −P

(t)
f )

+ µP −Butil ≥ Φ−1(ρDR)σP . (12)

Next, we provide the mathematical formulation for the
chance constraints that ensure the users’ thermal comfort
preferences are satisfied with a high probability during the DR
period given uncertainty in the outdoor temperature. Given
the thermal comfort bounds in (2), the constraints requiring
that the thermal comfort bounds are satisfied with at least
probability ρT during the DR period are as follows:

Pr(Tmin ≤ T (t+1)
in ) ≥ ρT , (13)

Pr(T
(t+1)
in ≤ Tmax) ≥ ρT . (14)

For the probabilistic equation in (13), let the outdoor tem-
perature be written in terms of the forecasting error: T (t)

out =

T
(t)
f +T

(t)
err , where T (t)

f is the forecast outdoor temperature and
T

(t)
err is the outdoor temperature forecast error. The outdoor

temperature forecast error is assumed to be Normally dis-
tributed T (t)

err ∼ N (µ
(t)
T , σ

2(t)
T ) [15]. With similar analysis, we

obtain the following constraint that ensures the users’ thermal
comfort lower bound in (13) is satisfied with probability εT :

(1− β1)T
(t)
in + β1(T

(t)
f + µ

(t)
T )− β2d(t)hvac + β3P

(t)
rad − Tmin

≥ −Φ−1(ρT )β1σ
(t)
T . (15)

Similarly, the chance constraint for the thermal comfort upper
bound in (14) is obtained

Tmax − (1− β1)T
(t)
in − β1(T

(t)
f + µ

(t)
T ) + β2d

(t)
hvac − β3P

(t)
rad

≥ Φ−1(ρT )β1σ
(t)
T . (16)

III. STOCHASTIC MPC FORMULATION FOR HEMS
In this section, we provide the overall chance constrained

MPC optimization problem for the HEMS. The following ob-
jective function is minimized at each step of the optimization:

fcost(t, {x(t),u(t)}Nh
t=1) =

Nh∑
t=1

(ceP
(t)
grid + P

(t)
solU

(t)
curt),

where Nh denotes the prediction horizon, the optimization de-
cision variables at each time t are collected in the vector u(t) =
[P

(t)
grid, U

(t)
curt, d

(t)
hvac, P

(t)
ch , P

(t)
dis ], and the state variables at each

time t are collected in the vector x(t) = [T
(t)
in , E

(t), P
(t)
PV]. The

overall chance constrained convex optimization problem is the
following:

min
{x(t),u(t)}Nh

t=1

fcost(t, {x(t),u(t)}Nh
t=1) (17)

subject to

0 ≤ P (t)
grid ∀t, (18)

0 ≤ U (t)
curt ≤ 1 ∀t, (19)

P
(t)
PV = (1− U (t)

curt)P
(t)
sol ∀t, (20)

0 ≤ d(t)hvac ≤ 1 ∀t, (21)

T
(t+1)
in = T

(t)
in + β1(T

(t)
out − T

(t)
in )− β2d(t)hvac + β3P

(t)
rad

∀t ∈ [1, . . . , Nh − 1], (22)

Tmin ≤ T (t+1)
in ≤ Tmax ∀t /∈ [tDR,s, tDR,f ], (23)

Tmax − (1− β1)T
(t)
in − β1(T

(t)
f + µ

(t)
T ) + β2d

(t)
hvac

− β3P (t)
rad ≥ Φ−1(ρT )β1σ

(t)
T ∀t ∈ [tDR,s, tDR,f ], (24)

(1− β1)T
(t)
in + β1(T

(t)
f + µ

(t)
T )− β2d(t)hvac + β3P

(t)
rad

− Tmin ≥ −Φ−1(ρT )β1σ
(t)
T ∀t ∈ [tDR,s, tDR,f ], (25)

P
(t)
grid + P

(t)
PV + P

(t)
dis = P (t)

uc + Pcd
(t)
hvac + P

(t)
ch ∀t, (26)

E(t+1) = E(t) + ηP
(t)
ch ∆t− 1

η
∆tP

(t)
dis ∀t ∈ [1, . . . , Nh − 1], (27)

Emin ≤ E(t+1) ≤ Emax ∀t ∈ [1, . . . , Nh − 1], (28)

0 ≤ P (t)
dis ≤ Pmax ∀t, (29)

0 ≤ P (t)
ch ≤ Pmax ∀t, (30)

tDR,f∑
t=tDR,s

P
(t)
pred −Butil −

tDR,f∑
t=tDR,s

P
(t)
grid + µP

≥ Φ−1(ρDR)σP ∀t ∈ [tDR,n, tDR,f ]. (31)
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IV. SIMULATIONS: LOAD SHEDDING IN SUMMER

To demonstrate the effectiveness of the proposed HEMS
algorithm in (17)-(31), we provide simulation results for DR
during a summer afternoon for two different houses. The
MATLAB-based modeling system for solving disciplined con-
vex programs, CVX, is used in this work. For all simulations,
we assume the DR notice is received by the HEMS 2 hours
before the start of the summer load reduction DR event from
4pm to 6pm, and the DR reduction request needs to be satisfied
with probability ρDR = 95% while maintaining the thermal
comfort bounds with probability ρT = 95%. The preferred
indoor thermal comfort band is 68◦F ≤ T

(t)
in ≤ 72◦F from

9am to 5pm and restricted to 69◦F ≤ T
(t)
in ≤ 71◦F otherwise

when the residence is assumed to be occupied. The simulation
has a 24 hour prediction horizon with 1 hour time intervals.

The device models for both houses are assumed to have the
same parameters. The residential PV array size is 20m2 with
a tilt of 30◦ and an efficiency of 16%. The 5-kWh residential
battery system is restricted to 15% to 85% of the maximum
SOC to preserve the battery lifetime [14]. The battery inverter
power limit is 3 kW with an inverter efficiency of 95%. The
battery charging/discharging efficiency η is 95%. The power
consumption of the HVAC when cooling Pc is 3 kW. The
cost of energy from the grid is assumed to be a flat rate of
$0.11/kWh. The outdoor air temperature and solar irradiance
forecasts were obtained from NOAA USCRN data [16].

A. Simulation Results

The proposed HEMS algorithm is simulated for two homes,
denoted House 1 and House 2, which have different house
model parameters and are given in Table I. The model pa-
rameters are designed such that House 2 is a less-insulated
version of House 1 and has a less efficient HVAC cooling
system. The initial battery SOC is 1.5 kWh and initial indoor
temperature is 73◦F for both homes. The simulation results
for House 1 are shown in Figs. 2 and 3 for a DR reduc-
tion request Butil = 0.75 kW with uncertainty in available
PV σP = 0.5 kW and uncertainty in the outdoor forecast
σT = 6◦F. From Fig. 2, we can see that the battery only
charges when the available PV power exceeds the base load of
the home, and is discharging (supplying power to the home)
otherwise. During the DR notice period, the Pgrid usage is
greater than the predicted grid usage without DR Ppred to
account for pre-cooling before the DR event. During the DR
period, the HEMS reduces grid power usage of House 1 by
leveraging the stored energy in the battery system. The indoor
air temperature T (t)

in stays within the preferred thermal comfort
band throughout the simulation, as shown in Fig. 3 (top). The
battery SOC is shown in Fig. 3 (middle), which highlights the
usage of energy stored in the battery during the DR period.
The battery behavior is included in Fig. 3 (bottom) to show
there is no simultaneous battery charging and discharging.

Additional simulation results for both houses with varying
DR requests Butil and uncertainties σP and σT are given in
Table II. Let BH1 and BH2 denote the actual reduction in grid

TABLE I
HOUSE MODEL PARAMETER VALUES FOR HOUSE 1 AND HOUSE 2.

Parameter House 1 House 2
β1 0.03 0.035
β2 4 3
β3 0.000163 0.000326

Fig. 2. Power profiles for House 1 with proposed HEMS algorithm responding
to a summer load reduction DR event of Butil = 0.75 kW with uncertainty
σP in available PV forecast and σT in outdoor air temperature forecast. The
battery is discharging when Pbatt < 0 and charging when Pbatt > 0. The
HEMS predicted grid power usage is given by Ppred. The actual grid power
usage in the case of a DR event is denoted Pgrid.

Fig. 3. Simulation of House 1 with proposed HEMS algorithm responding to
a summer load reduction DR event of Butil = 0.75 kW with uncertainty σP
in available PV forecast and σT in outdoor air temperature forecast. Indoor
air temperature Tin (top). The outdoor air temperature forecast Tf is shown
for reference. Residential battery system SOC (middle). Battery charging and
discharging behavior (bottom).

power usage that House 1 and House 2 were able to achieve,
respectively. From Table II, we can see that the BH1 and BH2

increase as the uncertainty in the solar forecast increases. For
House 1 with constant σP , as the uncertainty in the outdoor
air temperature forecast increases, BH1 decreases since more
energy is required to maintain the indoor house temperature.
For the simulation of House 2 with constant σP , in some cases
the HEMS does not need to compensate further as σT varies
since the uncertainty in the available PV is more restrictive.
House 1 is able to achieve grid power usage reduction greater
than or equal to the reduction achieved by House 2 due to
the increased cooling efficiency and lower building envelope
coefficient of House 1 relative to House 2.

B. Chance Constraint Validation

Monte Carlo simulations were conducted to validate that
the chance-constrained optimization solutions actually satisfy
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TABLE II
ADDITIONAL HEMS ALGORITHM SIMULATION RESULTS.

σP (kW) σT (◦F) Butil (kW) BH1 (kW) BH2 (kW)
0.25 3 0.5 0.9443 0.9172
0.25 6 0.5 0.9392 0.9139
0.5 3 0.5 1.3379 1.3224
0.5 6 0.5 1.3348 1.3224

0.25 3 0.75 1.1836 1.1626
0.25 6 0.75 1.1787 1.1612
0.5 3 0.75 1.5802 1.5724
0.5 6 0.75 1.5771 1.5724

TABLE III
MONTE CARLO SIMULATIONS FOR CHANCE CONSTRAINT VALIDATION.

Constraint House 1 House 2
BH ≥ Butil 95.28% 95.16%

Tmin ≤ T
(17)
in ≤ Tmax 95.16% 95.2%

Tmin ≤ T
(18)
in ≤ Tmax 95.24% 95.4%

the DR request with probability ρDR = 95% and the thermal
comfort bounds are satisfied with probability ρT = 95%.
Monte Carlo simulations use the chance-constrained optimal
solution and solar forecast error and outdoor temperature fore-
cast error sampled randomly from their respective distributions
to check that constraints in (2) and (8) are satisfied. Using 5000
Monte Carlo simulations for validating the HEMS solutions
for both House 1 (shown in Figs. 2 and 3) and House 2
with the same simulation parameters, it is confirmed that the
chance constrained optimal solution satisfies the constraints
in (2) and (8), which is shown in Table III. The percent-
ages in Table III represent the empirical distributions of the
Monte Carlo simulations that satisfy the DR request in (8)
and temperature bounds in (2) during the DR period. Thus,
in view of Table III, the Monte Carlo simulations validate
that the solution obtained with the chance constrained MPC
optimization problem ensures the DR request and temperature
bounds are satisfied with probability ρDR and ρT , respectively.

V. CONCLUSION

A chance-constrained MPC-based algorithm is proposed for
a HEMS capable of responding to grid DR events. Chance
constraints were incorporated into the optimization problem
to ensure the DR request and home temperature preferences
are satisfied with a high probability given uncertainty in both
the solar and outdoor temperature forecasts. The chance con-
strained optimization solution was validated with Monte Carlo
simulations. Simulation results show the proposed HEMS
algorithm responded to the DR request by coordinating flexible
devices during the DR notice period prior to DR event.

Future work includes validating the proposed HEMS on
hardware in the loop testbeds such as Foresee [2]. Additionally,
incorporating other flexible loads such as a dishwasher, water
heater, and electric vehicles (EVs) into the proposed HEMS
framework may allow for further load flexibility during the
DR notice and DR event period to ensure both the DR request
and users’ thermal comfort are satisfied with a high probability

given uncertainties in PV availability and outdoor temperature.
Further work on a stochastic HEMS algorithm also includes
incorporating uncertainty in home occupancy schedules, which
is not effectively modeled by a Gaussian distribution in the
chance constraint formulation. While we assume the random
variables in this work are Normally distributed, the use of
chance constraints can be extended to non-Gaussian distribu-
tions using existing techniques in the literature [11].
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