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Abstract—This paper explores Home Energy Management 
System (HEMS) algorithms to minimize household cost while 
maintaining comfort when faced with uncertain weather, and 
demand. Specifically, we consider a HEMS that optimizes 
forward looking schedules for a home’s heating, ventilation, and 
air conditioning (HVAC); water heater (WH); and electric vehicle 
(EV) charging while considering uncertainty in outside 
temperature, hot water usage, and non-controllable load (NCL). 
We adopt a Dynamic Programming (DP) formulation and utilize 
the Dynamic programming for Adaptive Modeling and 
Optimization (DYNAMO) toolkit to implement DP and 
approximate dynamic programming (ADP) algorithms. 
Simulation results under a single tariff plan compare the quality 
of the solution generated by ADP to that of DP, and show 
significant improvement in computation time while maintaining 
acceptable solution accuracy. 

Index Terms—Approximate dynamic programming, demand 
response, electric vehicle, home energy management system, 
stochastic mixed-integer programming 

NOMENCLATURE 
𝒟𝒟 Discomfort Function 
𝒞𝒞 Cost Function  
𝓈𝓈𝑡𝑡HVAC State of HVAC at time t (℉) 
𝓈𝓈𝑡𝑡WH State of WH at time t (℉) 
𝓈𝓈𝑡𝑡EV State of EV at time t (% State of Charge (SOC)) 
𝓍𝓍𝑡𝑡HVAC Decision for HVAC at time t (℉) 
𝓍𝓍𝑡𝑡WH Decision for WH at time t (℉) 
𝓍𝓍𝑡𝑡EV Decision for EV at time t (% SOC) 
𝓊𝓊�𝑡𝑡OUT Stochastic outside temperature (℉) 
𝓊𝓊�𝑡𝑡WH Stochastic hot water demand of household (gal./hr) 
𝓊𝓊�𝑡𝑡NCL Stochastic NCL demand of household (kW) 
α𝑡𝑡𝒟𝒟 Weighted sum coefficient for discomfort 
α𝑡𝑡𝒞𝒞 Weighted sum coefficient for cost 
s𝑡𝑡HVACd Desired state of HVAC at time t (℉) 
s𝑡𝑡WHd Desired state of WH at time t (℉) 
std
EVd Desired state of EV at departure time  td (% SOC) 
𝓈𝓈td
EVd State of EV at departure time  td (% SOC) 
β𝑡𝑡HVAC HVAC discomfort coefficient 
β𝑡𝑡WH WH discomfort coefficient 
βtd
EV EV discomfort coefficient at departure time  td 
𝒸𝒸𝑡𝑡 Price of electricity at time t ($/kWhr) 

𝓅𝓅𝑡𝑡
G Power purchased from the grid (kW)  

γRM Room insulation thermal efficiency coefficient 
γOUT Outside temperature thermal influence coefficient 
γHVAC HVAC unit conversion coefficient (kW/℉) 
s𝑡𝑡HVAC Min. temperature setting for HVAC at time t (℉) 
s𝑡𝑡
HVAC Max. temperature setting for HVAC at time t (℉) 

x�HVAC Max. HVAC decision limit (℉) 
xHVAC Min. HVAC decision limit (℉) 
γWH,C Thermal natural cooling coefficient of WH  
γUSG Hot water usage unit conversion coefficient (℉/gal) 
γWH WH unit conversion coefficient (kW/℉) 
s𝑡𝑡WH Min. temp. setting for WH at time t (℉) 
s𝑡𝑡
WH Max. temp. setting for WH at time t (℉) 

x𝑡𝑡WH Min. WH decision limit (℉) 
x𝑡𝑡
WH Max. WH decision (℉) 
γEV EV unit conversion coefficient (kW/%SOC) 
γEV,L EV energy loss (self-discharge) coefficient 
γEV,C EV charging efficiency coefficient 
γEV,NCL EV SOC unit conversion coefficient (% SOC/kWh) 
s𝑡𝑡EV EV minimum state of charge 
s𝑡𝑡
EV EV maximum state of charge 

x𝑡𝑡EV EV minimum decision limit (% SOC) 
x𝑡𝑡
EV EV maximum decision limit (% SOC) 

ta/td Arrival/departure time of EV 
∆𝑡𝑡 Time interval resolution 
T Look-ahead horizon 

I. INTRODUCTION 
Automated home energy management systems (HEMS) can 

help residential energy users realize the full potential of demand 
response (DR) schemes by optimally scheduling their 
distributed energy resources (DER) [1]. The goal of HEMS is 
to provide systems that provide autonomous control of 
appliances to limit the need for user intervention while 
minimizing cost and maximizing comfort [2]. Market analysis 
studies indicate that there is a growing consumer awareness of 
the potential of HEMS to help manage home energy 
consumption and energy costs [3]. This presents an opportunity 
to develop efficient and computationally tractable algorithms 
that can be embedded in HEMS products. In this context, 
stochastic variables such as electricity prices, weather 
conditions, and user consumption behavior introduce 
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publication, acknowledges that the U.S. Government retains a nonexclusive, 
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form of this work, or allow others to do so, for U.S. Government purposes. 
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challenges when attempting to optimize the schedules of home 
appliances and other energy uses.  

A stochastic dynamic programing (DP) formulation can 
capture this complexity and has been used successfully for 
HEMS in the past [16]. However, traditional DP faces multiple 
curses of dimensionality that limit scalability [4]. Approximate 
dynamic programming (ADP) is a large class of algorithms that 
use various approaches to speed up DP and enable its use for 
larger optimal decision making under uncertainty [4], [5]. 

A number of past HEMS efforts have explored using ADP 
for PV-battery management [1], [6]-[8]. In [1], authors use 
ADP with temporal difference learning to implement a 
computationally efficient HEMS that optimizes PV-battery 
system scheduling for minimal cost and user discomfort. 
Reference [6] proposes a novel distributed iterative ADP to 
solve the multi-battery optimal coordination control problems. 
Reference [7] develops a self-learning scheme based on ADP 
to optimize residential energy systems. Reference [8] compares 
different methods for home energy resource scheduling and 
analyzes their performance dependency on the battery model 
employed, focusing on battery capacity and charge/discharge 
rates. A few other studies have used ADP to control energy use 
of building cooling systems to minimize energy consumption, 
while preserving occupant comfort [9], [10]. 

In this paper, we focus on scheduling multiple appliances 
and use HEMS to determine setpoints for the heating, 
ventilation, and air conditioning (HVAC) system; setpoints for 
the water heater (WH), and the charge/discharge schedule for 
an electric vehicle (EV). The HEMS minimizes expected cost 
and discomfort to the household, under a range of uncertainties. 
To the best of our knowledge, this is the first of its kind to model 
and optimize multiple appliances schedules using ADP. We use 
the DYNAMO toolkit developed by the National Renewable 
Energy Laboratory (NREL) to easily implement the DP and 
ADP algorithms and enable easy and fair comparisons. 

II. MODEL 
Consider the HEMS schematic in Fig.1. The goal is to 

minimize a weighted sum of the household’s discomfort and 
cost by determining the HVAC setting, WH setting, and EV 
charge/discharge schedule “here and now” while looking 
forward multiple time steps in the future to also endogenously 
capture future uncertainty. This problem can be modeled in 
terms of a DP with states, decisions, and stochastic variables. 
At every time step, the HVAC, WH, and EV states are 
respectively considered as the room temperature, water 
temperature, and EV battery state-of-charge (SOC). The 
decision set captures whether or not to run the HVAC system 
and at what fan speed, whether or not to heat water in the WH, 
and how much energy to inject into the EV battery. We also 
consider uncertainty in outside temperature, hot water demand, 
and other non-controllable loads (NCL) of the household. In 
addition, we make the following timing assumptions:  

1) The appliance is in state 𝓈𝓈𝑡𝑡 when HEMS makes a 
decision 𝓍𝓍𝑡𝑡 at the beginning of the time step. 

2) The decision is applied immediately and impacts the 
remainder of the time step. 

 
Figure 1.  Home Energy Management System schematic 

3) The stochastic variable associated with the appliance is 
realized after the decision is applied and lasts for the remainder 
of the time step. 

As an example, Fig. 2 diagrams the HVAC cooling setting 
portion of problem as a decision tree. Here, squares represent 
decision nodes, circles represent uncertainty nodes, and  

 
Figure 2.  Decision tree for HVAC with highlighted route that minimizes 

expected weighted sum of cost and discomfort. 

triangles show terminal nodes. The decisions are STAY (no 
action), COOL, or H.COOL (highly cool). The outside 
temperature is drawn from historic data, but its forecast is 
estimated as a generalized random walk that may go up or down 
a few degrees or remain unchanged. The optimal DP solution 
can be found using backward induction [11] as follows: 
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1. Compute the thermal discomfort at the terminal nodes.  

2. Compute the expected cost and discomfort of each 
preceding uncertainty node. 

3. For each decision node, pick the decision with lowest 
sum of weighted decision cost (energy and discomfort) 
and expected future value. 

4. Repeat steps 2 and 3, working backward in time, until 
the optimal first period decision is found. 

Mathematically, the state, decision, and uncertainty sets 
tuple {𝓼𝓼𝑡𝑡 ,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡} covers HVAC, WH and EV for all time 
periods, i.e. ∀ t ∈ {1, … , T}, 

{𝓼𝓼𝑡𝑡 ,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡} = �
�𝓈𝓈𝑡𝑡HVAC,𝓈𝓈𝑡𝑡WH,𝓈𝓈𝑡𝑡EV�, �𝓍𝓍𝑡𝑡HVAC,𝓍𝓍𝑡𝑡WH,𝓍𝓍𝑡𝑡EV�,

(𝓊𝓊�𝑡𝑡OUT,𝓊𝓊�𝑡𝑡WH,𝓊𝓊�𝑡𝑡NCL)
�.  

The HEMS objective can be achieved in terms of the 
following optimization problem using a form of Bellman’s 
equation [5], [12]. 

Minimize with respect to 𝓍𝓍𝑡𝑡HVAC,𝓍𝓍𝑡𝑡WH,𝓍𝓍𝑡𝑡EV: 

𝔼𝔼 ��α𝑡𝑡𝒟𝒟 ∙ 𝒟𝒟𝑡𝑡(𝓼𝓼𝑡𝑡,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡) + α𝑡𝑡𝒞𝒞 ∙ 𝒞𝒞𝑡𝑡(𝓼𝓼𝑡𝑡 ,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡)
𝑇𝑇

𝑡𝑡=0

� 

Subject to: 

HVAC, WH, EV  constraints  ∀ t ∈ {1, … . , T}   (1) 

The objective function in (1) shows the expected weighted 
sum of discomfort 𝒟𝒟𝑡𝑡 and cost 𝒞𝒞𝑡𝑡 over the look-ahead horizon. 
The discomfort and cost functions are given below. 

𝒟𝒟𝑡𝑡(𝓼𝓼𝑡𝑡,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡) = ��
β𝑡𝑡HVAC�s𝑡𝑡HVACd − 𝓈𝓈𝑡𝑡HVAC�

2

+β𝑡𝑡WH�s𝑡𝑡WHd − 𝓈𝓈𝑡𝑡WH�2
�

𝑇𝑇

𝑡𝑡=1

                                        +βtd
EV�std

EVd − 𝓈𝓈td
EVd�2 (2)

 

𝒞𝒞𝑡𝑡(𝓼𝓼𝑡𝑡 ,𝔁𝔁𝑡𝑡 ,𝓾𝓾�𝑡𝑡) = �𝒸𝒸𝑡𝑡𝓅𝓅𝑡𝑡
G∆𝑡𝑡

T

𝑡𝑡=1

                                       (3) 

In (2), the discomfort due to each appliance is modeled as 
the square of the deviation from their respective desired values. 
Each discomfort term is weighted differently to accommodate 
the user’s preferences for each appliance. For EV, only the 
departure time dissatisfaction is included. This is because we 
assume the user only cares about the departure time SOC and 
may not experience any discomfort due to low SOC when the 
EV is at home. The cost function in (3) is computed as the total 
electricity cost of the imported grid power over the look ahead 
horizon. Here, every household is assumed to be a price taker. 
The imported grid power is computed as the sum of decisions, 
i.e. 𝓅𝓅𝑡𝑡

G = γHVAC𝓍𝓍𝑡𝑡HVAC + γWH𝓍𝓍𝑡𝑡WH + γEV𝓍𝓍𝑡𝑡EV. 

The constraints in (1) are given as the state transition 
functions and other limiting constraints explained below. 

HVAC:   

𝓈𝓈𝑡𝑡HVAC = �γ
RM𝓈𝓈𝑡𝑡−1HVAC − 𝓍𝓍𝑡𝑡HVAC + γOUT𝓊𝓊�𝑡𝑡OUT, if cooling
γRM𝓈𝓈𝑡𝑡−1HVAC + 𝓍𝓍𝑡𝑡HVAC + γOUT𝓊𝓊�𝑡𝑡OUT, if heating

(4) 

s𝑡𝑡HVAC ≤ 𝓈𝓈𝑡𝑡HVAC ≤ s𝑡𝑡
HVAC                                                       (5) 

x𝑡𝑡HVAC ≤ 𝓍𝓍𝑡𝑡HVAC ≤ x𝑡𝑡
HVAC                                                      (6) 

x𝑡𝑡HVAC ≤ 𝓍𝓍𝑡𝑡HVAC ≤ x𝑡𝑡
HVAC                                                      (7) 

Equation (4) shows the state transition of the room 
temperature for both cooling and heating modes that are pre-
determined. The room temperature is changed by the HVAC 
decision and the uncertain change is due to outside temperature. 
Note that in this control implementation, the HVAC efficiency 
is embedded in the cost function and building thermal 
properties as captured by building and outside air temperature 
driven factors  γRM and γOUT, respectively. Also, the native 
control decision, 𝓍𝓍𝑡𝑡HVAC, is computed in units of thermal energy 
added or removed. This control can be later adapted to 
corresponding thermostat settings. Equations (5)–(7) indicate 
that, for both cooling and heating cases, the states and the 
decisions have to lie within the specified bounds.  

WH: 

𝓈𝓈𝑡𝑡WH = γWH,C𝓈𝓈𝑡𝑡−1WH + 𝓍𝓍𝑡𝑡WH − γUSG𝓊𝓊�𝑡𝑡WH∆𝑡𝑡                        (8) 

s𝑡𝑡WH ≤ 𝓈𝓈𝑡𝑡WH ≤ s𝑡𝑡
WH                                                               (9) 

x𝑡𝑡WH ≤ 𝓍𝓍𝑡𝑡WH ≤ x𝑡𝑡
WH                                                            (10) 

Similarly, (8)–(10) show the water temperature state 
transition and the state and decision limit constraints of the WH. 

EV: 

𝓈𝓈𝑡𝑡EV = �γ
EV,L𝓈𝓈𝑡𝑡−1EV + γEV,C𝓍𝓍𝑡𝑡EV − γEV,NCL𝓊𝓊�𝑡𝑡NCL∆𝑡𝑡, 𝑡𝑡𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑑𝑑

Constant ,                                                         Otherwise
                                                                                                        (11)

 

s𝑡𝑡EV ≤ 𝓈𝓈𝑡𝑡EV ≤ s𝑡𝑡
EV                                                                 (12) 

−x𝑡𝑡EV ≤ 𝓍𝓍𝑡𝑡EV ≤ x𝑡𝑡
EV                                                             (13) 

When the EV is at home, (11) captures its SOC loss by self-
discharge over time [13], charging decision of HEMS, and the 
amount of random NCL consumed. In this paper, it is assumed 
that when EV is at home, it feeds the household stochastic NCL. 
However, when EV is not at home, the grid directly feeds the 
stochastic NCL, and HEMS only optimizes decisions for 
HVAC and WH. Equations (12) and (13) indicate that the EV 
state and decision must lie within the specified bounds. 

III. SIMULATION RESULTS 
The HEMS model was coded in MATLAB using the 

standard DYNAMO toolkit problem structure, which enables 
solving with both DP and ADP without changes. We used the 
simple sampled backward induction ADP algorithm which 
works similarly to traditional DP, but only considers a sampled 
subset of states, decisions, and uncertainty realizations. These 
are used to build a function approximation—we selected a local 
average—of the post-decision value function that is used to 
inform the previous period decision. 

The discomfort and cost function coefficients, 𝛼𝛼𝑡𝑡𝒟𝒟 and 𝛼𝛼𝑡𝑡𝒞𝒞 in 
the objective function were equally weighted. HVAC 
parameters in the state transition expression in (4) were 
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obtained by applying linear regression to a historical data set 
for a residential house located in Hillsboro, Oregon [2], [14]. A 
cooling case is studied here. WH parameters were extracted 
from [15]. EV battery parameters and the forecast data for 
outside temperature, hot water demand, and NCL were adopted 
from [14]. For both DP and ADP simulations, appliances range 
of operation and other data are summarized in Table I.  

TABLE I.  SIMULATION PARAMETERS FOR HVAC, WH, & EV 

We adopt the Pacific Gas & Electric (PG&E) time-of-use 
electricity rate, ETOU-E6 (Fig. 3). This plan contains three 
price levels: $0.24/kWh, $0.32/kWh, and $0.44/kWh that are 
referred to as base, Peak A, and Peak B prices. Peak A is applied 
during hours 10–12, 19, and 20, and Peak B is applied during 
hours 13–18. In the remaining hours, base prices are applied. 
Since both DP and ADP compute the current decision by 
looking forward, two separate cases were simulated as follows. 

 
Figure 3.  The PG&E ETOU-B time of use electricity tariff. 

The first case is simulated to show the performance of ADP 
versus DP. In this case, both DP and ADP were run only once 
to optimize for the current decision by looking ahead for 24 
hours. Fig. 4 shows the expected household utility generated by 
DP and, with different state samplings, for ADP. Notice that 
increasing the number of state samples returns a higher 
expected utility. With 1200 or more state samples, ADP returns 
a good enough solution compared to DP while performing 
much faster. Table II shows computation time of ADP 
compared to DP for varying state sample sizes. Increasing the 
number of state samples increases the ADP computation time 
sublinearly, while the solution converges to that from DP, 
rapidly at first then roughly asymptotically. However, even at 
the maximum considered number of 1200 samples, ADP still 
computes the decision in 508s while DP takes nearly ten times 
longer at 5011s. The DP solution takes longer as it exhaustively 

traverses the entire state, decision, and uncertainty spaces to 
find the optimal decision.  

 
Figure 4.  Household expected utility, i.e. objective function, attained by 

ADP with increasing number of samples. 

TABLE II.  ADP & DP RUN TIME FOR DIFFERENT STATE SAMPLE SIZES  

DP Time (s) 5011 
ADP Samples # 50 100 300 500 600 800 900 1000 1200 

 Time (s) 66 103 205 277 314 382 415 442 508 

The second case was simulated to examine the HEMS 
decisions for 24 hours starting at 12:00 am. At every hour, ADP 
with 1200 samples and 12-hour look-ahead was implemented 
in a rolling window fashion to generate HVAC, WH, and EV 
decisions for the current time step. The results of this simulation 
are shown in Fig. 5 along with shaded regions showing Peak A 
and B prices. In each figure, the horizontal dotted line shows 
the target state and the line graph (both solid and dotted) with 
square and circle markers show the HEMS-estimated state 
transitions as a result of the HEMS decision and stochastic 
variable impact. The bars at every hour show the first hour 
forecast of the 12-hour look ahead stochastic variable plus a 
small noise generated at random. During each hour, there are 
two data points shown by a square and a circle marker 
representing pre-decision and post-decision state respectively 
while matching Fig. 2. Each pre-decision state is connected to 
the post-decision state by a solid line representing decision 
impact and each post-decision state is connected to the next pre-
decision state by a dotted line representing stochastic variable 
impact on the HEMS state.  

Fig. 5 (a) shows the HEMS air temperature state for the case 
of cooling. Notice that the air temperature state fluctuates 
around the desired values of 77 °F to minimize discomfort. 
There are multiple time steps at which HEMS precools the air 
temperature. At hour 9, when price is at baseline, HEMS 
initiates precooling before prices increase to Peak A and the 
outside temperature gets hotter. A similar precooling effect is 
observed for time step 12. Analogously, at hours 17 and 18, due 
to current high price and upcoming lower prices, HEMS does 
not take any cooling action and let the temperature warm up to 
minimize electricity cost. As soon as the price drops to Peak A 
level, the HEMS opts to cool the air considerably to minimize 
discomfort after successive hours with no cooling actions 
during higher prices. The effect of stochastic variable 
realization is clearly seen after each decision is applied.  

Similar observations can be made for WH schedules shown 
in Fig. 5 (b). At hour 9, HEMS decides to preheat the water 
temperature significantly in preparation for expected high 

Appliance Range of Operation and other Parameters 

Algorithm DP Backward Induction ADP Sampled Backward 
Induction 

State Range {[70,85], [108,118], 
[20,100]} 

{[70,85], [108,118], 
[20,100]} 

Stochastic Variable 
Range {{85, 100},{0,10},{0,5}} {{85, 100},{0,10},{0,12}} 

Desired Values {77,113,92} {77,113,92} 
EV 

Arrival/Departure 
Time 

{17,9} {17,9} 

State Samples 3600 ( Total #of States) 1200 
Decision Samples NA 60 

Uncertainty Samples NA 30 



5 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

demand and price in upcoming hours. During hours with no 
water demand, the HEMS decides not to heat the water.  

 
Figure 5.  HEMS states, decisions, and uncertainty for 24 hours with 12 

hour look-ahead (a) HVAV, (b) WH, and (c) EV.  

For the EV, we assume that the initial SOC is at 48% and it 
departs at 9 am and arrives back at 6 pm while travelling a 
known commuting distance that reduces the SOC by 36%. 
Fig.5(c) shows that the deviation from the desired SOC is high 
during hours other than the departure time. This is because the 
discomfort due to EV SOC is applied only at the departure time, 
i.e., no penalty is applied for deviation from the desired SOC 
when EV is parked at home. Notice that initially, during certain 
hours, the HEMS decides to charge the EV to meet the desired 
SOC at the departure time. When driving, the SOC drops 
according to the driving distance and the efficiency of the EV 
battery, which is considered here to be 36%. Since the EV 
arrives home during the Peak A prices, the HEMS postpones 
charging until the baseline price hours. 

IV. CONCLUSIONS 
Based on numerical results, ADP offers a promising 

approach to HEMS-based appliance scheduling under 
uncertainty. In particular, careful selection of the number of 
state samples used in sampled backward induction can provide 
a very near optimal solution compared with DP in an order of 

magnitude less computation time. Further computational 
savings can be achieved with slight degradation in solution 
accuracy. We were able to rapidly develop the DP problem 
framing using DYNAMO and then seamlessly reuse the code 
to solve the problem in ADP.  

Our future work will model ADP-based HEMS with more 
appliances such as dishwasher, washer/dryer, pool pumps, etc. 
and compare HEMS performance to other stochastic 
optimization approaches including commercial mixed integer 
linear programming (MILP) solvers [14]. We also plan to 
compare the controller estimates to more sophisticated physics-
based models for homes and end-uses. Looking ahead, 
DYNAMO also offers the opportunity to explore additional 
ADP algorithms and to apply similar approaches to other 
domains, such as distribution system planning and operation 
with stochastic distributed renewable generation. 
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