SiC Power Electronics in Medium Voltage Motor Drives
Trade and Manufacturing Analysis

SiC Simplified Value Chain for Medium Voltage Variable Frequency Drive & Regional Cost and Manufacturing Analysis

Bottoms-up Regional Manufacturing Costs and Modeling Assumptions
- Regional costs are computed for each manufacturing processes based on input data from materials and equipment suppliers and manufacturers.
- MSP is the minimum sustainable price that a company must not produce in order to pay back the capital and operating expenses during the plant lifetime.
- Manufacturing cost modeling base case:
 - Modeled the effect of core country factors:
 - Effective corporate tax rates
 - Electricity prices
 - Manufacturing competitiveness is less driven by core country factors, but this may change over time.

Techno-economic Modeling Can Help Inform Research and Investment
- Analytically model costs instead of using antitodal references.
- Help guide research and manufacturing advancements.
- Understand impact before committing development resources.

Material Cost Summary
- Majority of SiC Power Module manufacturing cost is material cost.
- Currently SiC Devices are 40% of the material cost.
- Potential cost reduction scenario reduces manufacturing cost 33%.
- SiC Devices become 49% of cost.

Potential SiC-based 1MW VFD
- Hypothetical, no known products available on the market.

For more detailed information on our assumptions, see our accompanying technical report:

"Global Cost and Competitiveness Issues in Manufacturing SiC Power Electronics for Medium Voltage Motor Drives,"
NREL/TP-6A20-67694 (Feb. 2017)
http://www.nrel.gov/docs/fy17osti/67694.pdf

This work was supported by Joe Cresko, Advanced Manufacturing Office, U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under contract number DE-AC36-08GO28308.

Samantha Reese, Kelsey Horowitz, Tim Remo, Margaret Mann

Established in 2015 by the U.S. Department of Energy’s Clean Energy Manufacturing Initiative, CEMAC engages the DOE national lab complex, DOE offices, U.S. federal agencies, universities, and industry to promote economic growth and competitiveness in the transition to a clean energy economy. CEMAC is operated by the Joint Institute for Strategic Energy Analysis at the DOE’s National Renewable Energy Laboratory.