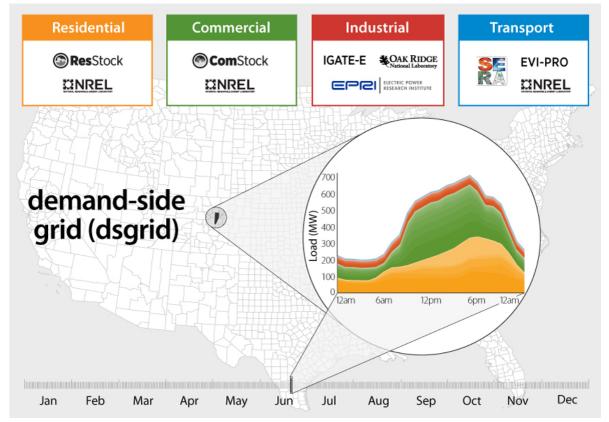
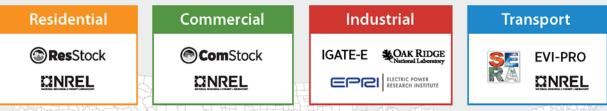


The demand-side grid (dsgrid) model

Elaine T. Hale, Ph.D. September 6, 2018

20th century energy perspectives

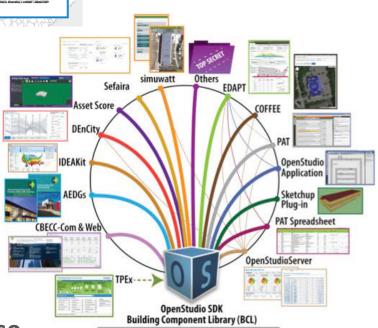

Source: https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf


Emerging 21st century perspectives

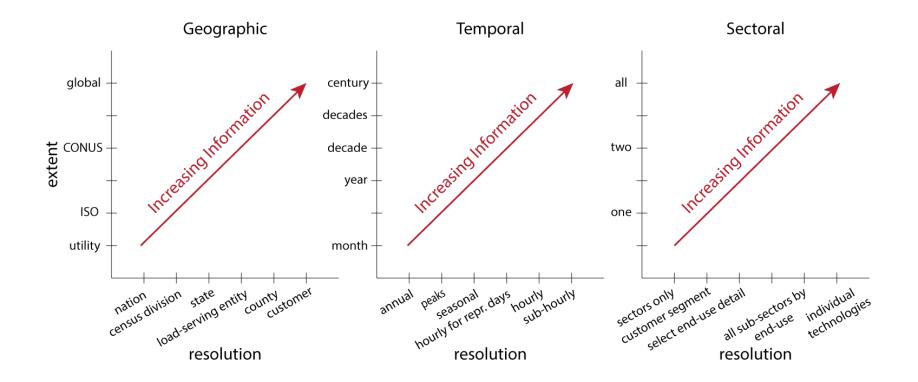
The demand-side grid (dsgrid) model creates highly resolved timesynchronous load data by leveraging sector-specific modeling expertise

Bottom-up modeling of buildings, industry, and electric vehicles to enable:

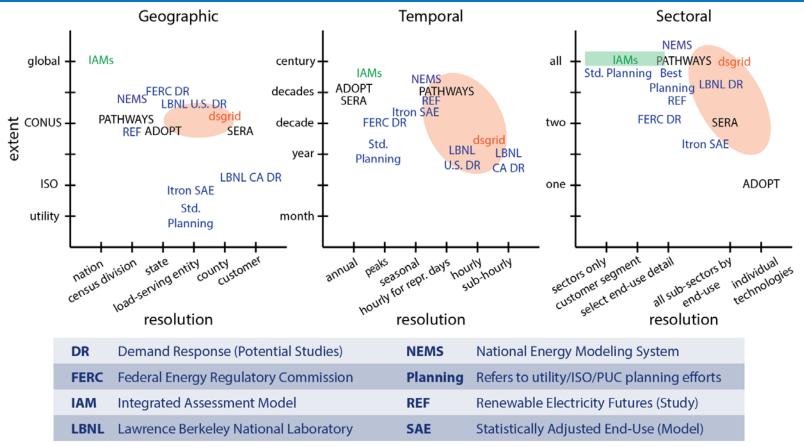
- Future projections and whatif scenarios for load shape in addition to magnitude
- Realistic estimates of potential **load flexibility** (i.e., demand response)
- Understand interactions between energy efficiency and demand response potential (also renewables and DERs)

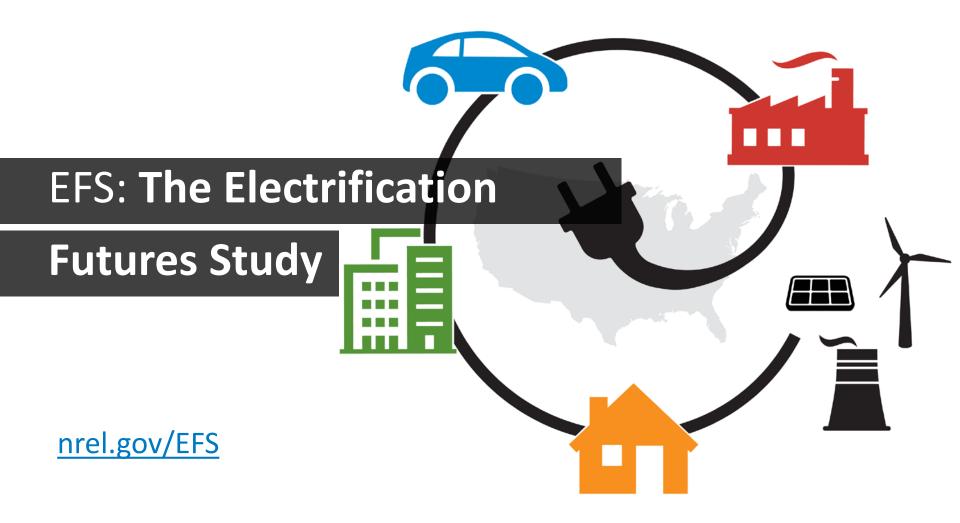


dsgrid leverages decades of sectorspecific energy modeling


- High-quality modeling of each sector
- Breaks down energy-sector silos to enable cross-disciplinary understanding and holistic design

Buildings represent 71% of U.S. electricity use, and building energy modeling is a particularly mature field




Load models vary in extent, resolution, data, and methods

dsgrid provides high resolution for large geographic and temporal extents

This graphic only shows load model resolution. The modeling resolution for other energy system components (e.g., electricity supply) modeled by the referenced tools (e.g., IAMs or NEMS) may differ.

How do we plan for **widespread electrification**?

NREL-led collaboration, multi-year study

Collaborators from:

- EPRI
- Evolved Energy Research
- Northern Arizona University
- Oak Ridge National Laboratory
- Lawrence Berkeley National Laboratory
- U.S. Department of Energy

- Strategic Energy Analysis
- Transportation and Hydrogen Systems
- Buildings and Thermal Systems

+ Technical Review Committee of 19 experts from industry and consultants, labs, government, NGOs

Answering crucial questions about:

Technologies

What electric technologies are available now, and how might they **advance**?

Consumption

How might electrification impact electricity **demand** and **use patterns**?

System Change

How would the electricity system need to **transform** to meet changes in demand?

Flexibility

What role might demand-side flexibility play to support reliable operations?

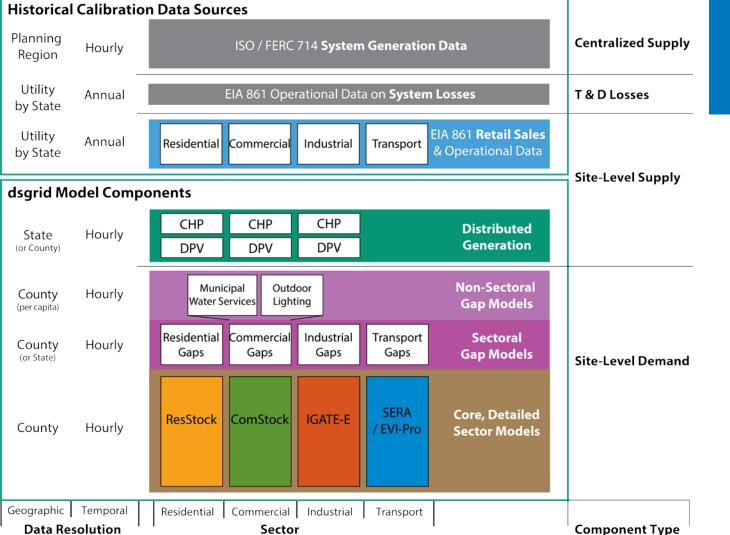
Impacts

What are the potential costs, benefits, and impacts of widespread electrification?

Progress to date

Technology cost and performance (December 2017)

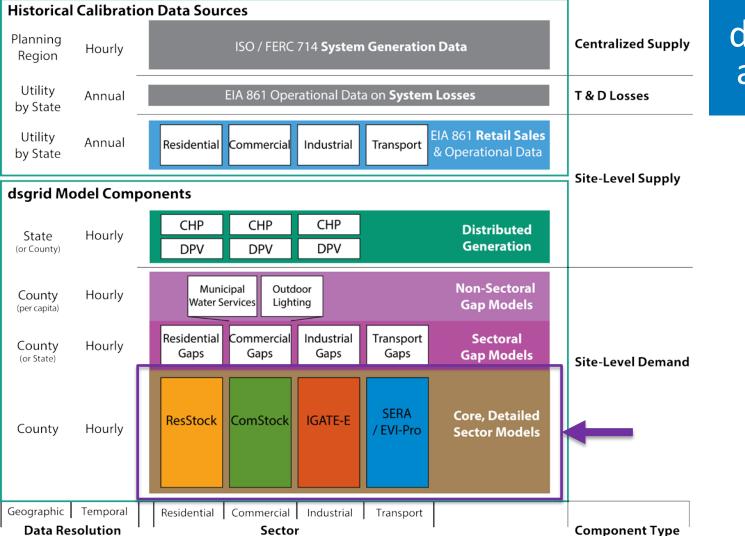
Demand-side adoption scenarios (June 2018)


dsgrid model documentation (August 2018)

Supply-side evolution scenarios (2019)

Impacts of electrification (2019)

Electricity system operations (~2020)

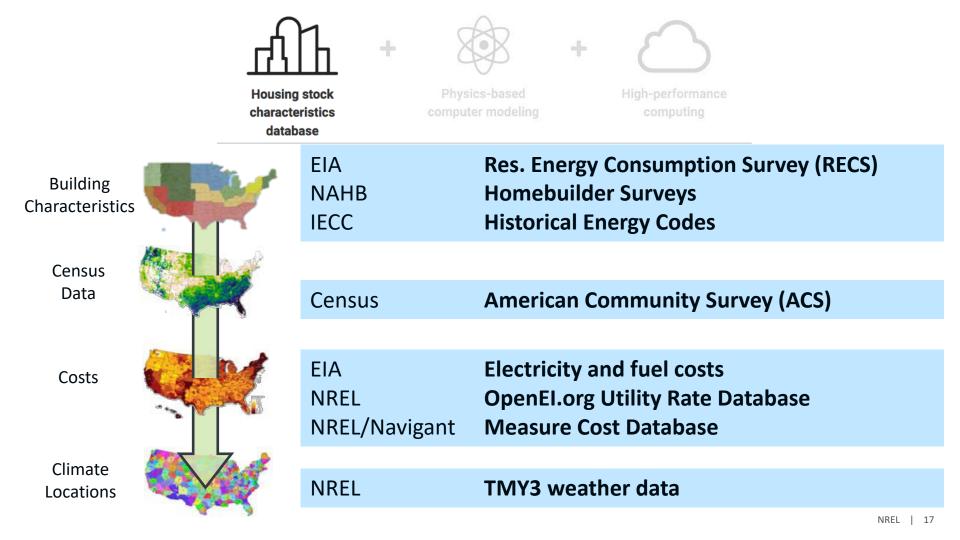

Value of demand-side flexibility (~2020)

dsgrid model architecture

dsgrid model documentation: methods and 2012 U.S. electricity demand Winter (GW) 0 وياري (MS) 500 250 250 250 2106 22109 2107 22/20 2112 212 250 Summer (GW) 250 Summer (GW) 05107 25/20 08/06 08/11 0 -22104 22/05 22/20 12106 22/08 22/09 22/22 Loss Model Ind. Gaps Res. Gaps **Outdoor Lighting** Ind. Sector Res. Sector Municipal Water Com. Gaps Hist. Hourly + DG Trans. Gaps Com. Sector Historical Hourly ___

Hourly data for the contiguous United States (CONUS) for four representative weeks, aggregated by model component

dsgrid model architecture



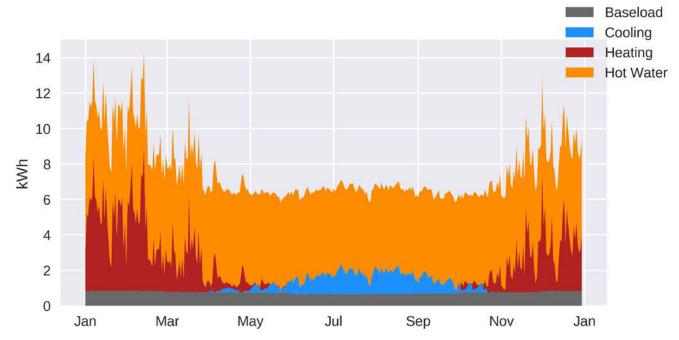
 \bigcirc

Housing stock characteristics database Physics-based computer modeling

High-performance computing

Physics-based computer modeling High-performance

U.S. DOE Tools –

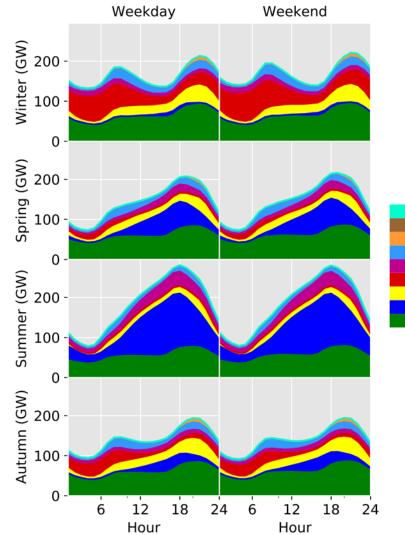


EnergyPlus

Detailed sub-hourly energy simulations

÷

Physics-based computer modeling


High-performance computing

Housing stock characteristics database

350,000 simulations for baseline U.S. single-family housing stock

Residential electricity load shapes by season

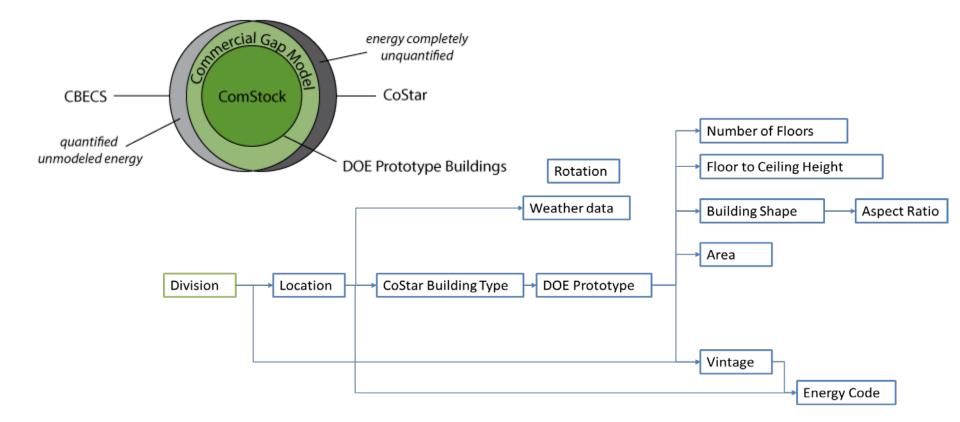
- Interior equipment is the largest end use, comprising 33% to 48% of electricity depending on census division
- Importance of space cooling, interior lighting, and space heating varies more by season and region

Heat Rejection Pumps Exterior Lights Water Systems Fans Space Heating Interior Lights Space Cooling Interior Equipment

Hierarchical conditional probability tables of building parameters

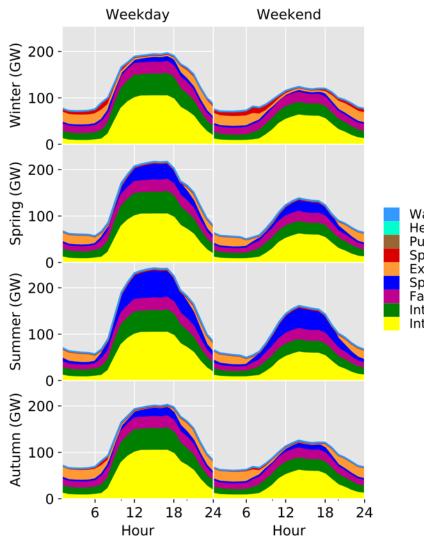
Empirical commercial building data for contiguous U.S.

		U				
Dependency=proto_bldg_type	Option=pre_1920	Option=1920_1945	Option=1946_1959	Option=1960_1969	Option 1970_1979	Option 1900_1909
full_service_restaurant	0.098806613	0.13032097	0.114418722	0.096090955	0.144336141	0.13017542
hospital	0.015405032	0.004327187	0.123804138	0.075188748	0.335311284	0.092153379
large_hotel	0.008542008	0.012454725	0.009387688	0.070104765	0.223395733	0.1591927
medium_office	0.10468834	0.097196516	0.127730666	0.094582263	0.131960126	0.1796334
midrise_apartment	0.002644052	0.081699064	0.103358993	0.213227542	0.11852058	0.13419427
outpatient	0.048023034	0.050479293	0.075820622	0.114023303	0.170487833	0.22238213
primary_school	0.016164851	0.086079351	0.120412847	0.159539927	0.077635691	0.130621529
quick_service_restaurant	0.033023279	0.057357111	0.020960154	0.090178428	0.121910676	0.192090545
retail	0.115802683	0.138762132	0.101692793	0.105342157	0.10079961	0.135504624
secondary_school	0.014309296	0.086260296	0.133977031	0.149113152	0.193802632	0.07527928
small_hotel	0.036411376	0.111089886	0.155910617	0.179224164	0.147104216	0.163988824
small_office	0.038216844	0.061965679	0.074320253	0.113104302	0.128288664	0.20830327
strip_mall	0.035470153	0.016794282	0.101305444	0.103133424	0.204018358	0.19314357
warehouse	0.043741998	0.080944546	0.089784144	0.110645779	0.122267319	0.202403


Dependency=proto_bldg_type	Option=pre_1920	Option=1920_1945	Option=1946_1959	Option=1960_1969	Option=1970_1979	Option=1980_1989
full_service_restaurant	0.098806613	0.13032097	0.114418722	0.096090955	0.144336141	0.1301/5422
hospital	0.015405032	0.004327187	0.123804138	0.075188748	0.335311284	0.092153379
large_hotel	0.008542008	0.012454725	0.009387688	0.070104765	0.223395733	0.15919276
medium_office	0.10468834	0.097196516	0.127730666	0.094582263	0.131960126	0.1796334
midrise_apartment	0.002644052	0.081699064	0.103358993	0.213227542	0.11852058	0.134194279
outpatient	0.048023034	0.050479293	0.075820622	0.114023303	0.170487833	0.222382135
primary_school	0.016164851	0.086079351	0.120412847	0.159539927	0.077635691	0.130621529
quick_service_restaurant	0.033023279	0.057357111	0.020960154	0.090178428	0.121910676	0.192090545
retail	0.115802683	0.138762132	0.101692793	0.105342157	0.10079961	0.135504624
secondary_school	0.014309296	0.086260296	0.133977031	0.149113152	0.193802632	0.075279282
small_hotel	0.036411376	0.111089886	0.155910617	0.179224164	0.147104216	0.163988824
small_office	0.038216844	0.061965679	0.074320253	0.113104302	0.128288664	0.208303279
strip_mall	0.035470153	0.016794282	0.101305444	0.103133424	0.204018358	0.193143574
warehouse	0.043741998	0.080944546	0.089784144	0.110645779	0.122267319	0.2024033

ComStock: commercial building modeling approach **EnergyPlus Building** Simulations (x350,000) Per-county scaling with weighting factor County-level aggregate load profiles with enduse breakdowns

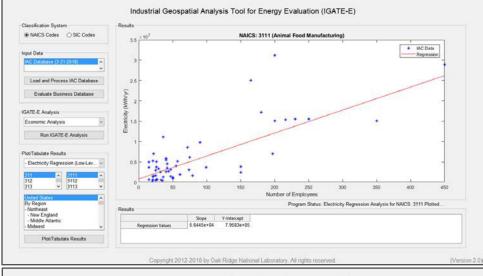
Sample of building

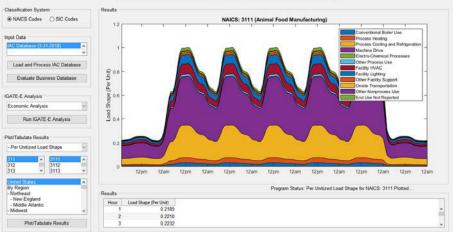

characteristic values (x350,000)

Commercial building data relationships

Commercial electricity load shapes by season

- More prominent role for lighting and fans, compared to residential buildings
- End use proportions vary by building type/subsector:
 - Interior equipment is prominent in offices
 - Interior lighting is prominent in retail buildings

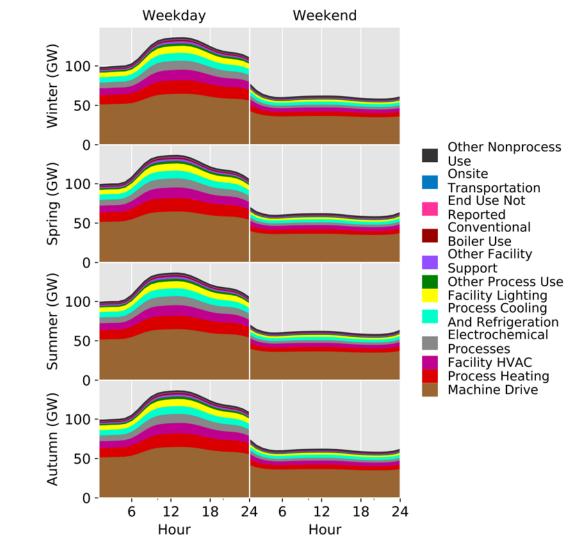



Water Systems Heat Rejection Pumps Space Heating Exterior Lights Space Cooling Fans Interior Equipment Interior Lights

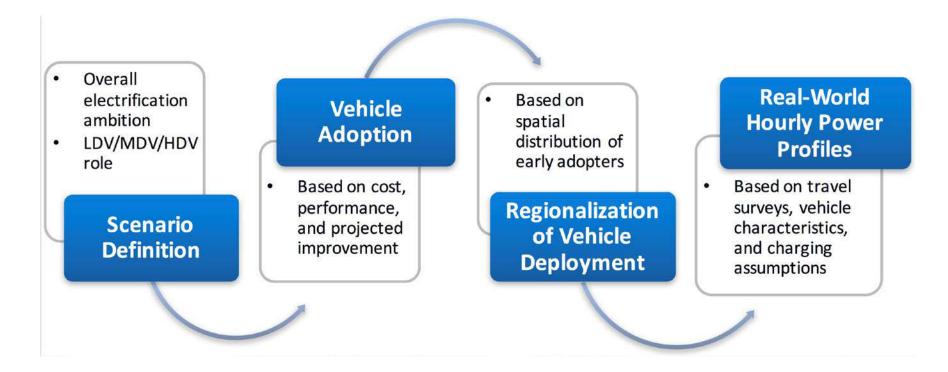
Industrial manufacturing modeling approach

IGATE-E developed by ORNL and EPRI

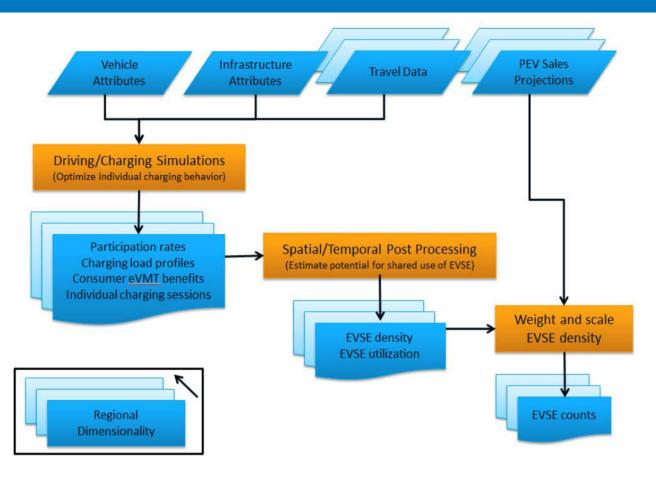
	Methods				Data Sources			,		
Characteristics	Regression Analvsis	Energy Analysis (Initial)	Energy Analysis (Optimized)	Load Factor Analysis	Load Shape Analysis	IAC Database	MNI EZ Select Database	2014 EIA MECS	EPRI Load Shape Library	
Location (State/County/Zip Code)		Х					Х			
Industry Code (NAICS/SIC)	X	Х		Х		Х	Х			By
Energy Consumption (kWh or MMBtu/yr)	х			х		х				By Plant
Electricity Demand (kW/month)				Х		Х				lt
Number of Employees	Х	Х				Х	Х			
Industry Code (NAICS/SIC)			х		х			Х		By
Energy Consumption (kWh or MMBtu/yr)			х					х		By Industry
End-Use Energy Consumption (kWh/yr)					х			х		stry
Load Shapes by End-Use					Х				Х	

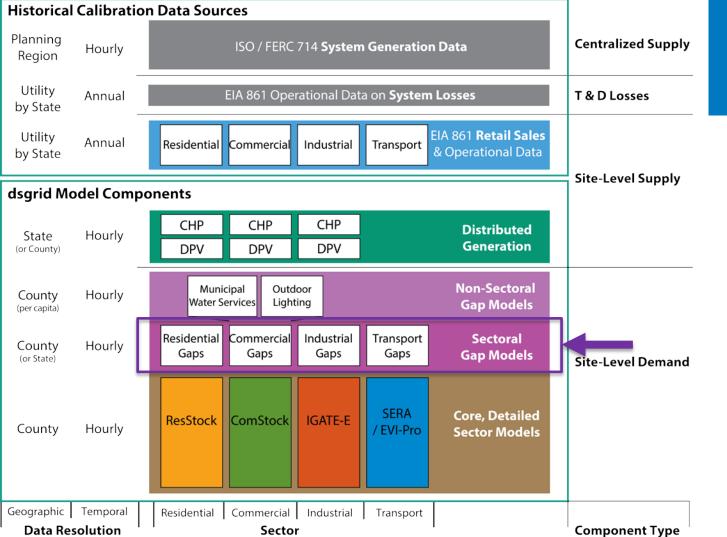


Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)


Copyright 2012-2018 by Oak Ridge National Laboratory. All rights reserved.

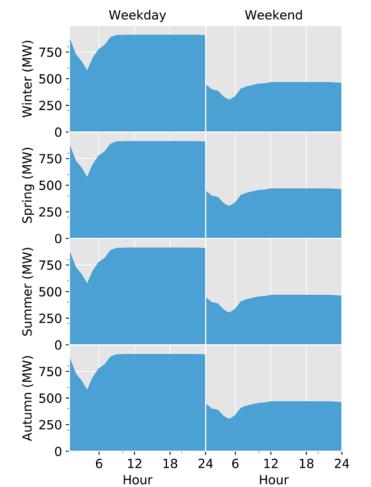
Manufacturing electricity load shapes by season


- Energy modeling is less developed in part because of industry / manufacturing heterogeneity
- IGATE-E/dsgrid models 86 different subsectors
- Electricity use is dominated by machine drive, process heating, and facility HVAC, with considerable subsector variation



Transportation – electric vehicle modeling approach

Transportation – charging profiles from EVI-Pro


dsgrid model architecture

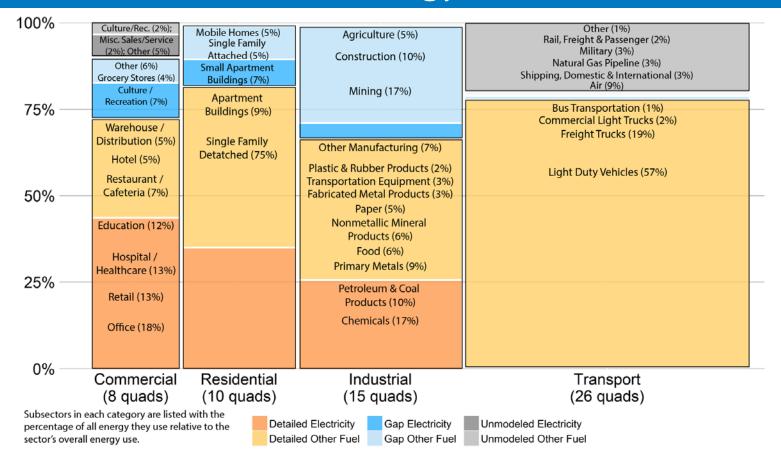
Transportation gap model of electricity used by passenger trains

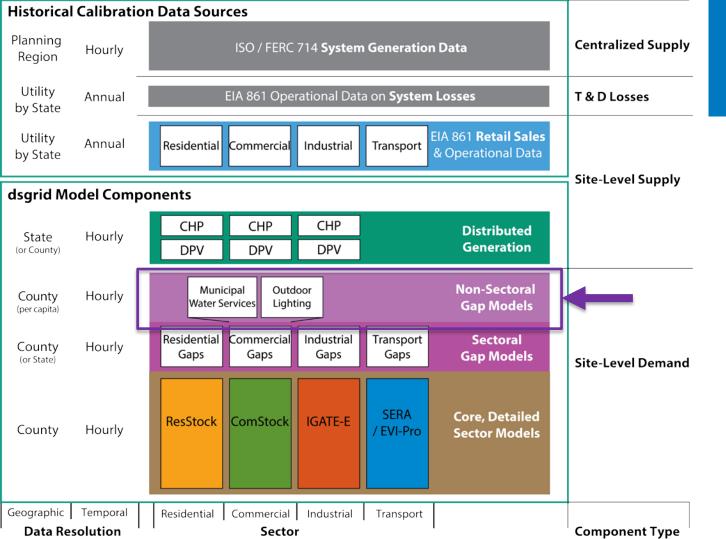
Census Division	Total GWh)	Total (%)
Mid Atlantic	3,304	51.5
South Atlantic	793	12.4
New England	709	11.0
Pacific	706	11.0
East North Central	623	9.7
Mountain	124	1.9
West South Central	114	1.8
West North Central	43	0.7
East South Central	2	0.0
Total	6,417	100.0

Electric vehicles not modeled in the 2012 data set because deployment at that time was small and regionally concentrated

Seasonal, weekday/weekend load shapes for CONUS

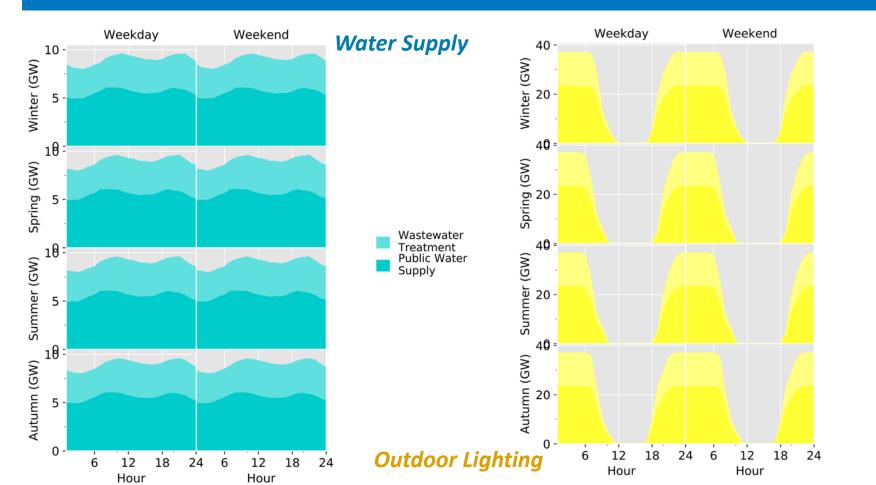
NREL 29

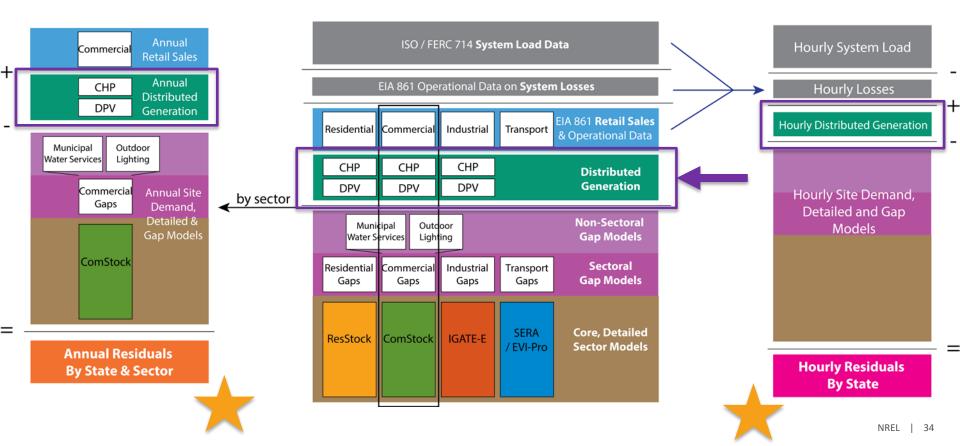

dsgrid models about 80% of 2012 U.S. electricity use in detail


100%	Culture/Recreation (2%); Misc. Sales/Service (2%); Other (6%) Laboratory; Vehicle Sales, Maintenance, Storage; Public Order & Safety (5%) Grocery & Convenience Stores (5%)	Single Family Attached (5%) Small Apartment Buildings (5%) Mobile Homes (7%) Apartment Buildings (9%)	Agriculture (3%) Construction (5%) Mining (7%) Other Manufacturing (6%) Wood Products (2%)	
75%	Culture / Recreation (6%) Warehouse / Distribution (5%) Hotel (5%) Restaurant / Cafeteria (6%)	Single Family Detatched (74%)	Machinery (2%) Computers & Electronics (3%) Nonmetallic Mineral Products (3%) Fabricated Metal Products (4%) Transportation Equipment (4%)	Passeng
50%	Education (11%) Hospital / Healthcare (11%) Retail (15%)		Plastic & Rubber Products (5%) Petroleum & Coal Products (7%) Food (7%) Paper (10%)	Passenger Rail (95%)
25%	Office (20%)		Primary Metals (13%) Chemicals (18%)	
0%	Commercial (1429 TWh)	Residential (1310 TWh)		nsport ΓWh)
	each category are listed with the percentage hev use relative to the sector's electricity use.	Detailed Gap Unmodeled		

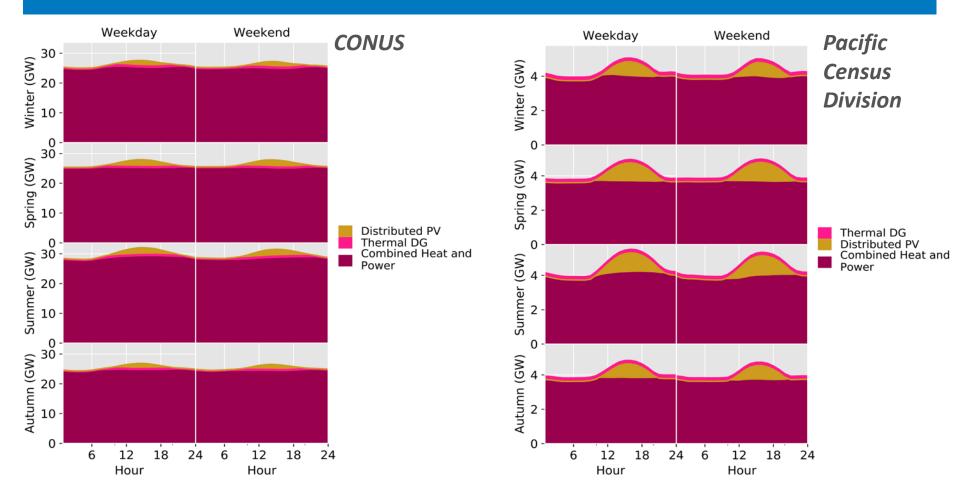
of electricity they use relative to the sector's electricity use.

NREL 30

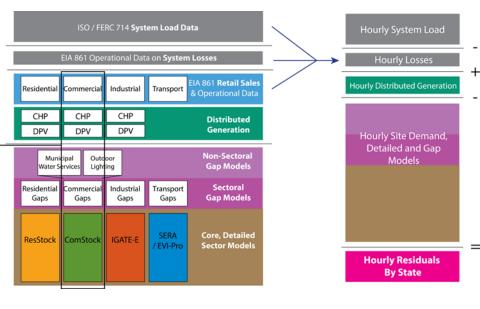

dsgrid models about 76% of 2012 U.S. site energy use in detail

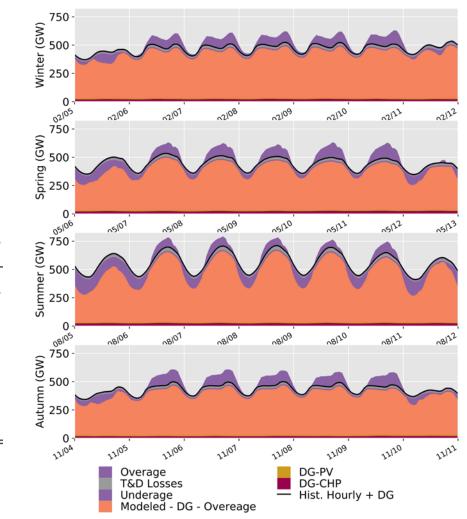

dsgrid model architecture

Municipal services not captured in the sector models

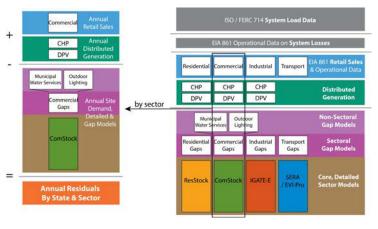


Roadway Parking


Validation against historical data requires distributed generation estimates

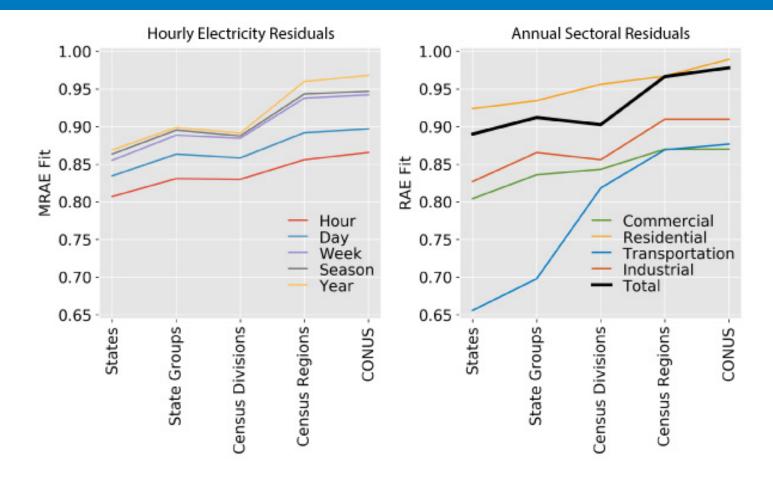


Distributed solar and combined heat and power



Hourly data roughly validates, but also reveals need for additional calibration

Annual sector-level residuals reveal a similar story

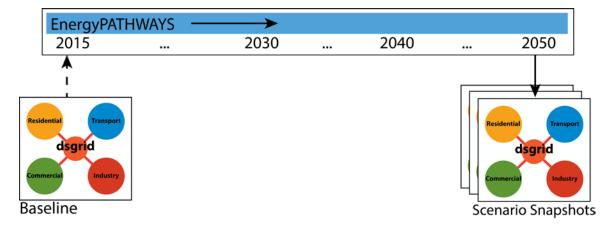


Component Type	Component Name	Residential (TWh)	Commercial (TWh)	Industrial (TWh)	Transport (TWh)	Total (TWh)
Top-down	Hourly load					3,910
Derived	T&D losses					199
Top-down	Annual energy	1,370	1,350	981	7	3,708
dsgrid	Distributed generation	3	31	204	_	237
dsgrid-core	Gap models	218	454	184	6	862
dsgrid-core	Detailed sector models	1,169	1,107	893	_	3,170
Derived	Total site energy ^a	1,372	1,381	1,184	7	3,945
Derived	Annual sector residuals ^b	-15	-180	107	1	-87
Derived	Hourly residuals					-126

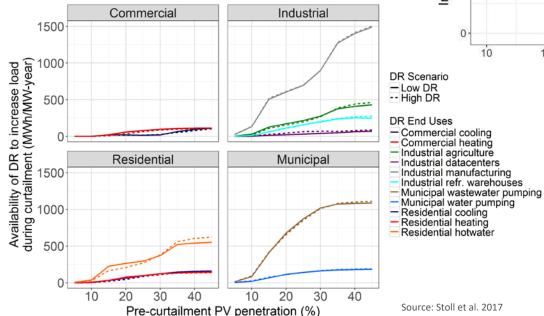
^a Total site energy is the top-down annual energy plus distributed generation. This is all the load we are expecting to model with the bottom-up detailed sector and gap models.

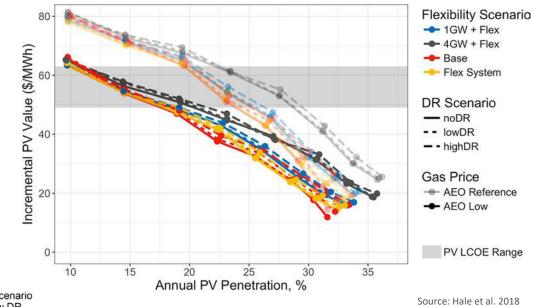
^b The sector level residuals are equal to the total site energy minus the gap and detailed sector model components.

Summary model fit statistics



Next steps


Ongoing and planned work to:


- Create future load data sets (electrification, load modernization)
- Estimate flexibility potential
- Model demand response resource/programs in grid models

Electrification Futures Study plan to develop future load scenario snapshots for production cost modeling

Related work: value of flexibility, including demand response

Ability of flexible resources to preserve the value of solar photovoltaics (PV) at high penetrations depends on time of availability and operational constraints.

NREL

40

dsgrid team

Modeling Leads

NREL Strategic Energy Analysis Center

Elaine Hale – Coordination Lead Ph.D. Chemical Engineering University of Texas, Austin <u>elaine.hale@nrel.gov</u>

NREL Buildings & Thermal Systems Center

NREL Transportation & Hydrogen Systems Center

Matteo Muratori – Transportation Lead Ph.D. Mechanical Engineering The Ohio State University <u>matteo.muratori@nrel.gov</u>

EPRI Electrification for Customer Productivity Program

Eric Wilson – Residential Buildings Lead M.S., Building Systems Engineering University of Colorado, Boulder eric.wilson@nrel.gov

Brandon Johnson – Industry Lead M.S. Electrical Engineering University of Tennessee, Knoxville bjjohnson@epri.com

Ry Horsey – Commercial Buildings Lead B.E., Applied Mathematics Franklin W. Olin College of Engineering henry.horsey@nrel.gov

NREL Strategic Energy Analysis Center

Colin McMillan – Industry NREL POC Ph.D., Natural Resources Conservation & Research University of Michigan, Ann Arbor <u>colin.mcmillan@nrel.gov</u>

Co-authors: Brennan Borlaug, Craig Christensen, Amanda Farthing, Dylan Hettinger, Andrew Parker, Joseph Robertson, Michael Rossol, Gord Stephen, Eric Wood (NREL), Baskar Vairamohan (EPRI)

References

Alkadi, Nasr, Michael Starke, Ookie Ma, Sachin Nimbalkar, Daryl Cox, Kevin Dowling, Brendon Johnson, and Saqib Khan.

2013. "Industrial Geospatial Analysis Tool for Energy Evaluation--IGATE-E." In *Proceedings of the Thirty-Fifth Industrial Energy Technology Conference*. New Orleans, LA.

https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/149152/ESL-IE-13-05-

13.pdf?sequence=1&isAllowed=y.

- Bhandari, Mahabir, Erol Chartan, Elaine Hale, Bruce Hedman, Reid (Rusty) Heffner, Paul Lemar, Sachin Nimbalkar, et al. 2018. "Modeling the Impact of Flexible CHP on California's Future Electric Grid." Technical Report. U.S. Department of Energy. https://www.energy.gov/eere/amo/downloads/modeling-impact-flexible-chp-california-sfuture-electric-grid-january-2018.
- Brooker, A., J. Gonder, S. Lopp, and J. Ward. 2015. "ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model." In *SAE Technical Paper 2015-01-0974*. Detroit, Michigan: SAE International.

http://www.nrel.gov/docs/fy15osti/63608.pdf.

- Bush, B., M. Muratori, C. Hunter, J. Zuboy, and M. Melaina. 2017. "Scenario Evaluation and Regionalization Analysis (SERA) Model: Demand Side and Refueling Infrastructure Build-Out. Supporting Documentation for the H2USA National Scenario Report." Technical Report NREL/TP-5400-70090. Golden, Colorado: National Renewable Energy Laboratory.
- Deru, Michael, Kristin Field, Daniel Studer, Kyle Benne, Brent Griffith, Paul Torcellini, Bing Liu, et al. 2011. "US Department of Energy Commercial Reference Building Models of the National Building Stock."
- Goel, Supriya, M. Rosenberg, R. Athalye, Y. Xie, W. Wang, R. Hart, J. Zhang, and V. Mendon. 2014. "Enhancements to ASHRAE Standard 90.1 Prototype Building Models." Technical Report PNNL-23269. Pacific Northwest National Laboratory.

https://www.energycodes.gov/sites/default/files/documents/PrototypeModelEnhancements_2014.pdf.

References, cont.

Hale, Elaine, Henry Horsey, Brandon Johnson, Matteo Muratori, Eric Wilson, Brennan Borlaug, Craig Christensen, et al. 2018. "The Demand-Side Grid (dsgrid) Model Documentation." Technical Report NREL/TP-6A20-71492.
 Golden, Colorado: National Renewable Energy Laboratory (NREL).

https://www.nrel.gov/docs/fy18osti/71492.pdf.

- Hale, Elaine T., Brady L. Stoll, and Joshua E. Novacheck. 2018. "Integrating Solar into Florida's Power System: Potential Roles for Flexibility." Accepted by Solar Energy.
- Roth, Amir, David Goldwasser, and Andrew Parker. 2016. "There's a Measure for That!" *Energy and Buildings* 117 (April): 321–31. https://doi.org/10.1016/j.enbuild.2015.09.056.
- Stoll, Brady, Elizabeth Buechler, and Elaine Hale. 2017. "The Value of Demand Response in Florida." *The Electricity Journal*, Energy Policy Institute's Seventh Annual Energy Policy Research Conference, 30 (9): 57–64. https://doi.org/10.1016/j.tej.2017.10.004.
- Wilson, Eric, Craig Christensen, Scott Horowitz, and Henry Horsey. 2016. "A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock." *IBPSA-USA Journal* 6 (1).
 Wilson, Eric, Craig Christensen, Scott Horowitz, Joseph Robertson, and Jeff Maguire. 2017. "Electric End-Use Energy Efficiency Potential in the U.S. Single-Family Housing Stock." Technical Report NREL/TP-5500-65667. Golden, Colorado: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy17osti/65667.pdf.
 Wood, Eric, Sesha Raghavan, Clement Rames, Joshua Eichman, and Marc Melaina. 2017. "Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts." National Renewable Energy Lab.(NREL), Golden, CO (United States). https://www.osti.gov/scitech/biblio/1339074.

Thank you

www.nrel.gov

NREL/PR-6A20-72388

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Office of Strategic Programs. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY