Electricity is integral to our daily lives—and increasingly so.
Yet total growth in electricity demand has slowed

While U.S. population, GDP, and end-use services have all increased and changed in complex ways
• Development of **advanced electric technologies** has driven adoption in key sectors—especially in vehicles, but also for businesses and homes
• Local policies and economic incentives support electrification to **reduce emissions**, **improve air quality**, and **increase energy security**
• Electric utilities are carefully watching to see if electrification has the potential to **increase sales and revenues**
So how do we plan for widespread electrification?
EFS: The Electrification Futures Study

nrel.gov/EFS
NREL-led collaboration, multi-year study

Collaborators from:

- EPRI
- Evolved Energy Research
- Northern Arizona University
- Oak Ridge National Laboratory
- Lawrence Berkeley National Laboratory
- U.S. Department of Energy

Study sponsored by U.S. DOE-EERE Office of Strategic Programs

- Strategic Energy Analysis
- Transportation and Hydrogen Systems
- Buildings and Thermal Systems

+ Technical Review Committee of 19 experts from industry and consultants, labs, government, NGOs
Answering crucial questions about:

Technologies
What electric technologies are available now, and how might they advance?

Consumption
How might electrification impact electricity demand and use patterns?

System Change
How would the electricity system need to transform to meet changes in demand?

Flexibility
What role might demand-side flexibility play to support reliable operations?

Impacts
What are the potential costs, benefits, and impacts of widespread electrification?
Progress to date

- Technology cost and performance (December 2017)
- Demand-side adoption scenarios (June 2018)
- dsgrid model documentation (coming soon)
- Supply-side evolution scenarios (2019)
- Impacts of electrification (2019)
- Electricity system operations (~2020)
- Value of demand-side flexibility (~2020)

Note: Future work scope is tentative
Scope and definitions

- **Electrification**: the shift from any non-electric source of energy to electricity at the point of final consumption
 - Direct electric technologies only
 - Not exploring new sources of demand
 - Isolating electrification from other changes

- **Contiguous U.S. energy system**, including transportation, residential and commercial buildings, industry
 - Sectors cover **74% of primary energy in 2015** (79% of energy-related CO₂)
 - Excludes air, petroleum refining and mining, CHP, outdoor cooking

- **Focus on 2050**, but transition modeled as well
Technology Cost and Performance Data Report (December 2017)

https://www.nrel.gov/docs/fy18osti/70485.pdf
Foundational technology data

- Three technology advancement trajectories (slow, moderate, rapid) for **buildings** and **transportation** technologies
- Literature-based summary of **industrial** electrotechnologies

Key Technologies:
- Light-duty and heavy-duty vehicles, buses (multiple range PHEVs and BEVs)
- Air-source heat pumps (including cold-climate ASHPs)
- Heat pump water heaters
Commercial ASHPs installed cost and efficiency projections

Levelized cost of driving (2020 Moderate)
Looking at the demand side

OBJECTIVES
Characterize changes to end-use sectors under futures with increasing levels of electrification
Quantify how electrification impacts total electricity demand and consumption profiles

APPROACH
Expert judgment adoption projections and consumer choice modeling
Bottom-up stock and energy accounting model (EnergyPATHWAYS)

USES
Provides data for evaluating future electricity supply scenarios
Gives researchers and decision-makers data and context to plan for an electrified energy system
Technology adoption and energy transitions generally follow characteristic **S-curve shape**

- **Invention** → **Innovation** → **Niche Market** → **Pervasive Diffusion** → **Saturation** → **Senescence**
Method in brief:
Electrification follows a similar trend

Example for light-duty vehicles

Sales shares determined from a combination of expert judgment based on current trends & consumer choice models (e.g., NREL ADOPT model for LDVs)

EnergyPATHWAYS model used for stock rollover and detailed energy accounting

Principles: technology-rich assessment, bottom-up accounting, cross-sectoral breadth, national scope with state-level detail
Scenarios

- **Reference**: Least incremental change (~AEO2017)
- **Medium**: Widespread electrification among low-hanging fruit opportunities
- **High**: Transformational electrification
 - *focus of this presentation*
- + end-use technology advancement sensitivities

Scenarios designed for assessment of isolated impacts of electrification
Scenarios are not forecasts or predictions
What we found:

Key takeaways by sector
Transportation sector

• Significant opportunities exist for electric vehicles, in part because electricity currently provides <1% of total transportation energy needs
• Light-duty plug-in electric cars and trucks drive the greatest overall electrification impact in all scenarios
• But electric freight trucks can play a major role, particularly for short-haul applications and in more transformational scenarios
• Transit buses are prime candidates for electrification
Transportation sector details

- 2050 U.S. transportation fleet (High scenario):
 - **240 million** light-duty plug-in electric vehicles
 - **7 million** medium- and heavy-duty plug-in electric trucks
 - **80 thousand** battery electric transit buses
- Together these deliver up to **76%** of miles traveled from electricity in 2050
- 138,000 DCFC stations (447,000 plugs) and 10 million non-residential L2 plugs for light-duty vehicles
Key questions in transportation electrification

• Will battery costs continue to decline, and will battery performance continue to improve?
• How might consumer preference—range anxiety, acceleration, automation—and technology development evolve?
• Will EVSE infrastructure enable or impede electrification?
• How will ownership models—for vehicles and chargers—evolve and impact utility planning? How might utility-controlled charging and vehicle-to-grid services affect energy use and adoption?
Buildings sector

• Electricity already powers a significant share of buildings end-use services
• Electrification opportunities in buildings are most significant for space and water heating
• Air-source heat pumps are the key buildings electrification technologies
• Electric equipment provides up to **61% of space heating**, **52% of water heating**, and **94% of cooking services** in the combined commercial and residential building sectors by 2050 *(High scenario)*

• Would require dramatic change in appliance manufacturing and installations (170 million heat pumps in 2050*)

*Heat pumps include ASHPs and geothermal heat pumps (sales shares of geothermal heat pumps reach 3% by 2050 for commercial space heating in the High scenario)
Key questions in buildings electrification

- Will advancements in **cold-climate** heat pumps be sufficient to enable widespread adoption?
- Will new technologies facilitate electrification in **retrofits** and new buildings?
- How might **challenges** to buildings electrification—cultural acceptance, familiarity, landlord-tenant issues—be overcome?
- How might **value streams** through “smart” and “grid-connected” appliances affect consumer adoption?

Non-uniform adoption of ASHPs in commercial buildings (2012)
Industrial sector

• Industry experienced early electrification and sustained growth, but electricity consumption has been flat since ~1990
• Heterogeneity of industries prevents broad generalizations
• Limited industrial data create challenges for assessing electrification opportunities
• We focus on industrial process heating
Industrial sector details

- Industrial electrification is more muted compared to other sectors

- Most-significant growth for electrotechnologies with **productivity benefits**: improved product quality, higher throughput, reduced scrap and labor costs

- In the **High** scenario, electrotechnologies provide **63% of curing** needs, **32% of drying** services, **56% of other process heating**
Key questions in industrial electrification

• Will **productivity benefits** from electrotechnologies overcome potentially higher costs and other adoption barriers, especially when energy costs comprise a small share of total costs?

• Can cost-effective technologies for **high-temperature** applications be developed?

• How might the interplay between **long equipment lifetimes** and manufacturers’ profit-driven decisions impact the technology transition rate?

 More data and research are needed!
What we found:
Overall power system takeaways
Vehicle electrification dominates incremental growth in annual consumption

2050 U.S. electricity consumption increases
• Medium +932 TWh (20%)
• High +1,782 TWh (38%)
However, electric space heating more significantly changes the timing and magnitude of peak demand.
Electrification in **Medium** scenario is loosely consistent with that from favorable “economic” conditions; **High** is closer to transformational scenarios.
Electricity share of final energy **doubles** from 2016 to 2050 under the High scenario

Note: Sector definitions and scope differ slightly between Historical and Modeled data
Electrification leads to energy savings

- Greater efficiency of electric technologies yields reductions in final energy consumption by up to 21% (High scenario), relative to the Reference
- Technology improvements could lead to even greater savings
- Impacts to primary energy will depend on generation mix

Note: Does not include all activities, e.g., petroleum refining and extraction excluded
Estimated **fuel use** reductions

- Domestic onsite fuel use reductions: **74% gasoline, 35% diesel, 37% natural gas** in 2050 (High scenario)
- Expands opportunities for greater fuel use for power generation, fuel exports
Next steps
Forthcoming EFS reports

- Technology cost and performance (December 2017)
- Demand-side adoption scenarios (June 2018)
- dsgrid model documentation (coming soon)
- Supply-side evolution scenarios (2019)
- Impacts of electrification (2019)
- Electricity system operations (~2020)
- Value of demand-side flexibility (~2020)

Note: Future work scope is tentative
Thank you

trieu.mai@nrel.gov

www.nrel.gov/efs