Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements

Frank Feldmanna,b,⁎, Gizem Nogayc, Philipp Löperc, David L. Youngd, Benjamin G. Leed, Paul Stradinsd, Martin Hermlea, Stefan W. Glunza,b

a Fraunhofer ISE, Heidenhofstr. 2, Freiburg D-79110, Germany
b Laboratory for Photovoltaic Energy Conversion, University Freiburg, Emmy-Noether-Str.2, Freiburg D-79110, Germany
c EPFL, Neuchatel, Switzerland
d NREL, Golden, CO, USA

ABSTRACT

The charge carrier transport mechanism of passivating contacts which feature an ultra-thin oxide layer is investigated by studying temperature-dependent current-voltage characteristics. 4-Terminal dark J-V measurements at low temperatures reveal non-linear J-V characteristics of passivating contacts with a homogeneously grown silicon oxide, which result in an exponential increase in contact resistance towards lower temperature. The attempt to describe the \(R(T)\) characteristic solely by thermionic emission of charge carriers across an energy barrier leads to a significant underestimation of the resistance by several orders of magnitude. However, the data can be described properly with the metal-insulator-semiconductor (MIS) theory if tunneling of charge carriers through the silicon oxide layer is taken into account. Furthermore, temperature-dependent light J-V characteristics of solar cells featuring passivating contacts at the rear revealed a FF drop at \(T < 205\) K, which is near the onset temperature of the exponential increase in contact resistivity.

1. Introduction

Passivating and carrier-selective contacts based on a thin silicon oxide layer and a heavily-doped Si layer (poly-Si or Si-rich SiC\textsubscript{x}) have recently attracted attention for their low recombination current densities < 10 \textmu A/cm2 while maintaining contact resistivities sufficiently low for solar cell contacts [1–10]. Although solar cells with efficiencies above 25% have been realized [11], the underlying physical transport mechanism of these contacts is still not fully understood. In general, it should be noted that although the principal structure of the above-mentioned contacts is similar, the process steps differ quite significantly, especially the thickness of the oxide and the final thermal treatment which makes it difficult to generalize theories about the underlying physical transport mechanisms.

Soon after the advent of the poly-Si emitter for bipolar junction transistors (BJTs) in the 1970s, different models were proposed to explain the current gain enhancement by the poly-Si emitter. An excellent review paper can be found here [12]. Among those, the most famous was the “oxide tunneling” model which described very adequately the reduction of the base current and the increase of the emitter resistance of BJTs with deliberately grown interfacial oxide [13]. For the hole current of n+-poly-Si/c-Si(p) junction it reads:

\[
J_p \approx q \frac{k_B T}{2 \pi m_0^*} \frac{R}{N_{D,i}} n_{s,\text{in}}^2 \exp \left(\frac{q}{k_B T} (V_j - \phi) \right)
\]

(1)

In this expression \(N_{D,i}\) and \(n_{s,\text{in}}^2\) are the donor concentration and the intrinsic carrier concentration at the interface, respectively, \(V_j\) is the internal junction voltage, and \(\phi\) is the surface band bending in the c-Si. The tunneling probability, \(P_t\), is solved with the Wentzel-Kramers-Brillouin (WKB) approximation

\[
P_t \approx \exp \left(- \frac{2}{\hbar} \sqrt{2m_0^* q \Delta \phi} \right)
\]

(2)

According to Eq. (2), the tunneling probability decreases exponentially with the oxide thickness, \(t_{\text{ox}}\), and the height, \(\Delta \phi\), of the energy barrier. As one can readily see Eq. (2) is of the same form as the equation for the direct tunnel current in a metal-oxide-semiconductor (MOS) system, with the heavily-doped poly-Si showing metal-like behavior (degenerate doping). The assumption that tunneling is the dominant transport mechanism was further substantiated by the weak temperature dependence of these devices [12]. However, the model does not describe pnp BJTs well. In essence, the oxide poses a larger

⁎ Corresponding author at: Fraunhofer ISE, Heidenhofstr. 2, Freiburg D-79110, Germany.
E-mail address: frank.feldmann@ise.fraunhofer.de (F. Feldmann).

https://doi.org/10.1016/j.solmat.2018.01.008
Received 23 October 2017; Received in revised form 4 January 2018; Accepted 5 January 2018
Available online 11 January 2018
0927-0248/ © 2018 Elsevier B.V. All rights reserved.
barrier to holes than to electrons which is reflected in the barrier heights $\Delta \phi_h = 1.0\,\text{eV}$ and $\Delta \phi_e = 0.3\,\text{eV}$ determined with this model [12]. However, in the case of a pnp transistor this means that a slight current gain enhancement would come at the expense of a very high emitter resistance which does not reflect the experimental findings [14–16]. In addition, it should be noted that the reported values for $\Delta \phi_h$ and $\Delta \phi_e$ are much lower than the conduction (3.2 eV) and valence (1.0 eV) band offsets between c-Si and bulk SiO$_2$ [17]. Apart from tunneling over the oxide barrier, transport could also be realized through pinholes in the oxide, which are reported to be formed under certain experimental conditions. In view of the approach by Gan and Swanson [18] which capitalizes on deliberately formed pinholes in a certain experimental conditions. In view of the approach by Gan and Swanson [18] which capitalizes on deliberately formed pinholes in a thick oxide ($t_{\text{ox}} \geq 2\,\text{nm}$), a model accounting only for transport through pinholes was recently published [19,20]. Furthermore, a technique not only capable of visualizing pinholes but also capable of quantifying the pinhole density has been published [21]. Yet it is still to be demonstrated that moderate annealing conditions ($T_{\text{anneal}} < 900\,\text{°C}$) lead to a significant pinhole density. In addition, the pinhole model does not explain the J-V characteristics of non-annealed poly-Si/SiO$_x$/c-Si structures, which also yielded significant current gain enhancement factors [22].

In this manuscript, the transport mechanism is studied in detail by means of temperature dependent J-V measurements on test structures and solar cells. We compare three different TOPCon structures where oxide integrity ranges from fully intact to strongly disintegrated and show that their distinct J-V temperature-dependence can be explained with their structural differences. The TOPCon structure features an ultrathin oxide ($t_{\text{ox}} \approx 1.2$–1.4 nm) which should suffice the requirements for an efficient carrier flow via quantum mechanical tunneling [23].

2. Experimental details

2.1. Sample preparation

A range of TOPCon structures with varying oxide integrity and thus electronic quality with respect to surface passivation and contact resistivity was prepared. Both symmetric lifetime samples and unipolar test structures featuring an ohmic rear contact and a circular metal contact on the TOPCon structure at the front (c.f. Fig. 1) were realized on shiny-etched (100)-oriented, 200 μm thick, 1 Ω cm n-type wafers. The TOPCon structures were realized by growing a thin oxide in boiling nitric acid (68%), depositing 15 nm silicon-rich a-SiC$_x$:H(n) by PECVD, thermal annealing, and, finally, hydrogen passivation at 400 °C. Three different annealing conditions were chosen: (i) 800 °C, 60 min; (ii) 900 °C, 10 min; and (iii) 950 °C, 3 min. At $T_{\text{anneal}} = 800\,\text{°C}$ the a-Si$_x$C$_{1-x}$ layer remains amorphous, while it becomes partially crystalline for $T_{\text{anneal}} \approx 900\,\text{°C}$ as evidenced by Raman spectroscopy shown in Ref. [12]. However, in the case of 900 °C and 950 °C, respectively. At 950 °C virtually no surface passivation was obtained which can be ascribed to a complete disintegration of the tunnel oxide. In Fig. 2a TEM micrograph shows that for this annealing condition the oxide is completely “bailed up”, which leads to epitaxial regrowth of the Si layer on the c-Si wafer. Furthermore, diffusion of phosphorus from the SiC$_x$ layer into c-Si is enhanced with temperature and instead of a very shallow diffused c-Si region (depth < 50 nm for $T_{\text{anneal}} = 800\,\text{°C}$) a few 100 nm deep c-Si(n$^+$)-layer was formed which had a sheet resistance of about 850 ± 100 Ω/sq and 194 ± 5 Ω/sq in the case of 900 °C and 950 °C, respectively.

3. Experimental results

3.1. Surface passivation and contact resistivity

The implied V_{oc} and contact resistivity (ρ_c) of the different TOPCon structures are displayed in Table 1. It can be seen that both the highest iV_{oc} and ρ_c were obtained for $T_{\text{anneal}} = 800\,\text{°C}$. With increasing T_{anneal} both iV_{oc} and ρ_c decreased. At 950 °C virtually no surface passivation was obtained which can be ascribed to a complete disintegration of the tunnel oxide. In Fig. 2a TEM micrograph shows that for this annealing condition the oxide is completely “bailed up”, which leads to epitaxial regrowth of the Si layer on the c-Si wafer. Furthermore, diffusion of phosphorus from the SiC$_x$ layer into c-Si is enhanced with temperature and instead of a very shallow diffused c-Si region (depth < 50 nm for $T_{\text{anneal}} = 800\,\text{°C}$) a few 100 nm deep c-Si(n$^+$)-layer was formed which had a sheet resistance of about 850 ± 100 Ω/sq and 194 ± 5 Ω/sq in the case of 900 °C and 950 °C, respectively.

3.2. Dark J-V on test structures

The unipolar test structures featuring TOPCon at the front were measured in a temperature range from 114K to 350 K. Fig. 3a) shows the dark J-V characteristics of the sample structure featuring n-TOPCon annealed at 800 °C. At $T = 114$ K a non-linear J-V characteristic was observed showing a symmetric shape with respect to voltage. With increasing temperature, the current increased and at $T = 243$ K the J-V characteristic exhibited an almost linear shape.

Table 1

<table>
<thead>
<tr>
<th>T_{anneal}</th>
<th>Oxide integrity</th>
<th>iV_{oc} (mV)</th>
<th>ρ_c [mΩ cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 °C High</td>
<td>715.5</td>
<td>3.9 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>900 °C Medium</td>
<td>683.3</td>
<td>1.7 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>950 °C Low, many pinholes</td>
<td>624.7</td>
<td>0.5 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

* Qualitative figure of merit.
were obtained by linear regression in the voltage range from −0.5 V to 0.5 V. Since the sample annealed at 800 °C exhibited non-linear J-V characteristics (c.f. Fig. 2a), the resistances were obtained by linear regression in four different voltage ranges close to zero bias ($V_{\text{min}} = 50, 100, 160, 200 \text{ mV}$) and by calculating the mean value. The error bars describe the uncertainty of the resistances of the 800 °C-sample.

The two samples which were annealed at 900 °C and 950 °C, respectively, exhibit monotonic decreasing resistances with decreasing temperature. The calculated wafer's spreading resistance (dotted line) shows a similar trend with temperature which is governed by the increase in electron mobility in the substrate with decreasing temperature. That both samples annealed at 900 °C and 950 °C yielded resistances lower than R_{base} can be ascribed to the diffused c-Si(n +)-layer underneath TOPCon which mitigates current crowding effects. For instance, numerical simulation of this test structure yielded resistances of 32.6 Ω and 22.0 Ω for $R_{\text{sh}} = 800 \Omega$/sq and 200 Ω/sq, respectively, which match $R_{\text{mean,900 °C}} = 32.1 \Omega$ and $R_{\text{mean,950 °C}} = 24.5 \Omega$ at $T = 298 \text{ K}$ well.

While the temperature dependence of the latter two samples was governed by the temperature dependence of R_{base}, the sample annealed at 800 °C shows quite the opposite behavior: at higher temperatures the resistance decreases as well with temperature but for $T < 250 \text{ K}$ the resistance starts to increase exponentially towards lower temperatures. The latter effect can possibly be attributed to an energy barrier which has to be overcome by thermionic emission. From the J-V characteristics of thermionic emission one obtains R_{TE} which depends exponentially on temperature and barrier height (surface band bending) [26]:

$$R_{\text{TE}} = \frac{k_{\text{B}}}{A^*T^q} \exp \left(\frac{q\phi_s}{k_{\text{B}}T} \right)$$

In order to gain a better understanding of the underlying transport phenomena, more data points were taken in the low temperature range of 120 K–180 K and R_{mean} was extracted as described above. After subtraction of R_{base} the barrier height was obtained from an Arrhenius plot in the temperature range from 120K to 180 K (see inset of Fig. 5). A barrier height of 42.6 meV was measured for the shown sample. On another sample a barrier height of 38.4 meV was obtained. A barrier height of 42.6 meV leads to R_{TE} values of 1.1 mΩ (180 K) to 6.3 mΩ (120 K) according to Eq. (3), which is significantly lower than the actually measured R_{mean}. The ratio $\ln(R_{\text{mean}}/R_{\text{base}})/R_{\text{TE}}$ is shown in Fig. 5. Interestingly, this ratio is constant over temperature and could be explained by tunneling, as tunneling adds a temperature-independent factor to Eq. (3) [27].

$$R_{\text{MIN}} = R_{\text{TE}}/R = R_{\text{TE}} \exp \left(\frac{2t_{\text{ox}} \sqrt{2q} m^* \phi_s}{R} \right)$$

$$J/P_{\text{loc}} = \exp(11.1)$$ was extracted from Fig. 5 and used to calculate
$\phi_s = 42.6$ meV and the result is shown in Fig. 3 with dashed lines. The solid red line was calculated according to Eq. (7) using an additional temperature-dependent series resistance. The dashed lines were calculated according to Eq. (6) using a temperature-independent series resistance. The inset shows the Arrhenius plot from which E was determined from the dark characteristic with decreasing temperature (not shown here).

For $T > 275$ K the FF of both cells increased towards lower temperatures as it is expected from theory. Moreover, the FF(T) characteristics can be well described by [30]

$$\text{FF} = \text{FF}_0 n(1-r_1) = \frac{1}{\text{FF}_0} (1-r_1 - r_2) \exp\left(\frac{qE_b}{kT} \right).$$

(7)

By using Eq. (7) and r_1, r_2, and E_b as fit parameter the measured FF(T) data can be reasonably well described over the entire temperature range. The extracted activation energy takes a value of 34.7 meV which is comparable to ϕ_s determined from the dark J-V measurements on test structures. Thus, the FF of the TOPCon/800 °C cell shows a signature of the exponential R_{meas} increase seen in Fig. 4.

Previously a strong FF drop at low temperatures was reported for standard silicon heterojunction (SHJ) solar cells [31]. This has been attributed to a pronounced transport barrier which hampers the rate of thermionic emission of charge carriers. In contrast, the FF drop observed here for the TOPCon cell annealed at 800 °C is much less pronounced likely due to a significantly smaller energy barrier compared to SHJ solar cells. Furthermore, the TOPCon cell annealed at 900 °C demonstrates that the transport barrier can be effectively reduced to values close to zero. One reason for this effect could be that the SiC$_x$(n) layer is partially crystalline after annealing at 900 °C and, thus, the electrically active carrier density is higher which leads to improved

$$\frac{dV_{\text{oc}}}{dT} = -\frac{nE_b}{kT} - V_{\text{oc}} + \frac{q\Phi}{kT}$$

(5)

with $n = 3$, $m = \frac{E_b(T)}{E_b(0)}$, $n \approx 2.88$, $\gamma = 1$. For $T < 250$ K the temperature coefficient of the V_{oc} changed and the measured V_{oc} deviates from theory [29] which can be attributed to a steeper decrease of the $J_{\text{oc}}(T)$ characteristic with decreasing temperature (not shown here). For $T > 275$ K the FF of both cells increased towards lower temperatures as it is expected from theory.
contact formation. However, the improved FF characteristic came at the expense of increased recombination at the rear contact and resulted in a lower efficiency compared to the TOPCon/800 °C cell in the relevant temperature range.

4. Summary

The charge carrier transport of passivating TOPCon contacts was investigated by means of temperature-dependent J-V measurements on dedicated test structures and solar cells. TOPCon contacts with an intact oxide layer showed an exponential increase of the contact resistance towards lower temperatures. The contact resistance could be properly described with the MIS theory with a temperature-independent resistance contribution due to tunneling. On the other hand, TOPCon contacts with probably partly disrupted tunnel oxides did not show an exponential increase in contact resistance towards low temperatures, and their J-V characteristics were governed by the temperature dependence of the wafer conductivity.

Moreover, the distinctive FF characteristics of the solar cells featuring TOPCon with HNO₃ oxide annealed at 800 °C or 900 °C can be qualitatively explained by the distinctive behavior of their contact resistances. Additionally, this shows that although the principal structure of different contact structures based on a thin silicon oxide layer and a heavily-doped Si layer might look similar, the physical transport mechanism strongly depends on the used processes (i.e. oxide thickness and annealing temperature). For other oxide types (e.g. ozone-based or thermally grown) the transition from an intact to a disintegrated oxide layer can occur at a higher temperature.

In summary, the J-V data support the notion that quantum mechanical tunneling is the dominant transport path for the TOPCon structure with intact oxide. In comparison to the TOPCon contact which was annealed at 900 °C, the TOPCon structure with intact oxide provides a better surface passivation quality and yields an at least 10 mV higher Vₑoc at device level. Hence, the application of the TOPCon contact with HNO₃ oxide (annealed at 800 °C) at the rear of an n-type Si solar cell featuring a selective boron-diffused front emitter yielded an efficiency of 25.3% [11].

Acknowledgement

The authors would like to thank A. Leimenstoll, F. Schätzle, S. Seitz, N. Brändlin, and A. Lösel for sample preparation as well as E. Schäffer for measuring the solar cells. The authors acknowledge B. Steinhauser’s quick support with Quokka simulations. This work was funded by the German Federal Ministry for the Economy and Energy under grant No. 0325292 “ForTeS” and 0325827B “26+”. Part of this work was supported by the European Union’s HORIZON 2020 programme for research, technological development and demonstration under grant agreement no. 727529 (PROJECT DISC).

References