
Research Objectives Preliminary Findings

Methodology 

Future Work

Important modeling inputs:

• Modeling period: 2018-2050

• Existing vehicle stock & new sales of different powertrains, including CACC 

capabilities (e.g., AEO projections, ADOPT Scenarios, Shladover & Greenblatt 

white paper scenarios)

• CACC impacts on vehicles’ fuel economy  across speed bins (e.g., based on 

LBNL Aimsun micro-simulation analysis)

• National-level impacts of CACC on VMT across speed bins (e.g., LBNL micro-

simulation) and due to perceived changes in vehicle travel time and induced 

travel demand (e.g., ANL/UIC agent based simulations)

Research Questions

• What is the national-level energy impact 

of adopting connected and automated 

vehicles and technologies (e.g., 

Cooperative Adaptive Cruise Control 

examined here, eco-signal 

implementation, automated mobility 

districts applications)?

• How do different levels of CACC adoption 

affect on-road fuel economy for different 

vehicle powertrains?

• What changes in vehicle miles traveled 

distribution are induced by CACC 

adoption and what is the potentially 

induced change in demand, primarily on 

US freeways and highways?

Source: Stephens et al. (2016).

Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of 

Connected and Automated Vehicles, http://www.nrel.gov/docs/fy17osti/67216.pdf
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Modeling Assumptions & Data Insights

• Insights and data from micro-simulation modeling of CACC vehicle use in a freeway 

stretch in Sacramento CA, conducted by Lawrence Berkeley National Lab (LBNL)

• Induced demand assumptions, using preliminary results of  agent-based modeling 

simulations conducted by Argonne National Lab (ANL)

The methodology proposed accounts for vehicle stock evolution, fuel consumption 

changes due to CACC adoption for different vehicle powertrains, and vehicle 

miles traveled (VMT) distribution changes as well as impacts of induced demand

Data Inputs

External collaborators: Tom Stephens (ANL), Hao Liu, Xiao-Yun 

Lu, Steven Shladover (LBNL), Paul Leiby, Zhenhong Lin (ORNL), 

Ramin Shabanpour, Abolfazl (Kouros) Mohammadian (UIC).

Powertrain Adoption Scenarios
Vehicle sales projected using NREL’s ADOPT model, based on AEO 2017 fuel prices and 

different technology improvement trends over time:
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Plug-in electric vehicle powertrain dominant 
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CACC Adoption
CACC VMT share on highways and freeways, 3 scenarios of CACC adoption:
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National-Level VMT 
Based on conflation of typical daily VMT 

from the Highway Performance 

Monitoring System (HPMS) with typical 

daily speed profiles from TomTom data:

Total VMT (in millions) distributed by road category, environment, and average driving speeds at the 
time of travel (considered indicative of congestion level)

Avg Speed Bins 
(mph)

Freeways & Highways Connectors & 
Arterials Local Roads

Rural Urban Rural Urban Rural Urban
[0-5] 0.000 0.000 0.004 0.020 0.013 0.123

(5-10] 0.006 0.046 0.148 1.123 0.350 3.147
(10-15] 0.019 0.172 1.267 8.469 3.290 17.752
(15-20] 0.040 0.375 3.553 22.210 5.324 34.868
(20-25] 0.092 0.679 7.287 43.720 5.992 33.297
(25-30] 0.183 1.466 13.926 74.978 9.742 38.947
(30-35] 0.339 3.160 23.217 114.512 13.668 48.795
(35-40] 0.466 5.173 30.301 129.852 14.877 47.928
(40-45] 0.668 11.947 36.814 116.873 15.699 30.652
(45-50] 0.951 24.784 45.680 84.444 12.975 12.415
(50-55] 1.863 52.048 58.591 54.800 12.835 4.803
(55-60] 4.956 114.023 95.089 50.712 12.506 1.868
(60-65] 16.907 207.692 67.158 55.630 2.516 0.332
(65-70] 62.286 186.095 62.429 34.555 0.080 0.001
(70-75] 95.927 42.591 8.523 2.249 0.000 0.000
(75-80] 4.802 0.328 0.002 0.000 0.000 0.000

>80 0.000 0.001 0.000 0.000 0.000 0.000
Total Number 
(from HPMS) 189.50 650.58 453.99 794.15 109.87 274.93

• Refine inputs and interactions with other tools

o VMT transferability from ANL/UIC (Chicago → nation)

o Microsimulation data outputs (trajectory data from local CACC 

implementation, automated mobility districts microsimulation, etc.)

• Sensitivity analysis to explore impact of several input parameters on the 

national-level fuel consumption results

• Add additional vehicle and CAV technology scenarios: 

o Explore national-level fuel consumption impacts of eco-signal 

implementation

o Explore national-level fuel consumption impacts of automated mobility 

districts and innovative mobility solutions

• Collaboration with other SMART Mobility pillars

o e.g., Urban Science, Advanced Fueling Infrastructure, etc.

Vehicle Fuel Consumption
Base year FC for all 

powertrains:
TSDC Data FASTSim 

Simulations

Speed Bins & 
Road Type 

Categorization 

Fuel 
Consumption 

Matrix 
• Real world drive 

cycles data, 
representative of 
US travel patterns

• Serve as input to 
FASTSim

• Model that 
estimates fuel 
consumption (FC)

• Link-based fuel 
consumption 
output from real 
world drive cycle 
data (input), for 
different vehicle 
powertrains & 
classes

• Conflation of 
FASTSim FC outputs 
with TomTom data 
-> determine road 
type and 
urban/rural 
environment of 
each link

• Categorization of 
FC by speed and 
road type 

• For each speed 
bin/road 
type/powertrain fit 
best distribution 
(normal) to come 
up with mean and 
std. deviation value 
of FC

• Generate color-
coded FC matrix by  
powertrain 
(base year)

e.g., Fuel consumptions pdf for 

[55-60] mph  speed bin

Source: Shladover and Greenblatt. (forthcoming). Connected and Automated Vehicle Concept Dimensions and Examples. LBNL Report

e.g., Fuel consumptions for conventional 

vehicle (Toyota Camry) – analysis base year

Methodology described in detail in : Chen et al. (2018).

Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach.

Transportation Research Part A: Policy and Practice

FASTSim described in: Brooker, A., Gonder, J., Wang, L., Wood, E., Lopp, S., & Ramroth, L. (2015).

FASTSim: A model to estimate vehicle efficiency, cost and performance (No. 2015-01-0973). SAE Technical Paper.
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Fuel consumption impacts

• CACC reduces FC rates 

in most but not all speed 

bins

• Relative impact greater at 

low speeds, though the 

smaller impacts at high 

speeds apply to more 

VMT

VMT impacts

• Total VMT kept constant 

across CACC scenarios (no 

induced demand effect)

• CACC increases VMT in 

speed bins between 50 mph 

– 70 mph for on-peak and 45 

mph – 65 mph for off-peak 

conditions

Impact of CACC Penetration Levels on VMT and Fuel Consumption
LBNL microsimulation data outputs inform fuel consumption & VMT matrices under CACC adoption 

(note that VMT & FC correspond to the LBNL freeway network and not to the national level analysis) 

Conventional	Vehicle	Penetration	Scenario High	Electric	Vehicle	Penetration	Scenario
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National-Level Fuel Consumption Results

• Potential for gasoline fuel savings from CACC adoption, particularly when 

conventional powertrains dominate
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CACC Penetration Impacts on Conventional Vehicles

• VMT attributed to CACC increase over the years (urban highways example)

• Conventional fuel consumption decreases as CACC % increases (e.g., urban 

highways) 

Speed	Bins	(mph)

Year

2025 2035 2045

[20-25]

[25-30]

[30-35]

[35-40]

[40-45]

[45-50]

[50-55]

[55-60]

[60-65]

[65-70] 2.75

2.64

2.71

2.85

3.08

3.40

3.43

3.29

3.40

3.65

2.81

2.71

2.78

2.93

3.14

3.42

3.47

3.42

3.57

3.81

2.87
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3.00

3.20

3.44

3.52
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3.97

Conventional	Vehicle	FC	Changes
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