

Better Buildings®

AUGUST 21-23, 2018 • CLEVELAND, OHIO

Energy Storage Versus Back-up Generation

Energy Storage Overview

NREL/PR-7A40-71839

Emma Elgqvist

Engineer, NREL Integrated Applications Center

Agenda

- Background
- Batteries 101
- Will storage work at my site?

Long History of Storage and RE at Federal Sites... for Off-Grid Applications

- Federal agencies have a long history of implementing storage systems in conjunction with renewables, primarily at remote sites with high diesel costs
- Off-grid hybrid RE + storage systems lower costs and provide a sustainable alternative to diesel generators
- Recent reductions in li-ion battery costs are making storage systems economically attractive in grid-connected applications

Alcatraz PV-battery-diesel hybrid system:

- Construction completed in 2012
- Two 220 kW diesel engine generators
- 305 kW-DC of solar photovoltaics (PV)
- 1,920 kWh of lead acid batteries

Why Storage Now?

U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, *Revolution Now – Accelerating Clean Energy Deployment*. DOE/EE-1478, September 2016. <u>https://energy.gov/eere/downloads/revolutionnow-2016-update</u>.

Battery Storage 101

PV vs. Batteries

- PV is simple
 - Put it on the roof
 - The sun shines
 - Electricity is produced
 - Your utility bill is lowered
- Batteries are more complicated
 - Don't generate electricity
 - Shifts energy from one time period to another
 - Install one at your site, nothing happens
- Must determine how to operate (dispatch) the battery
 - Cost of energy at the time it's stored must be cheaper than cost of energy when it is used
 - To maximize return on investment, must determine what application battery should serve and when

install one of the 3,632 solar modules on NREL's parking garage. The garage can produce up to 1.15 megawatts Photo by Dennis Schroeder / NREL 21487

NREL and Raytheon, perform system level testing on the Miramar ZnBr Flow Battery Photo by Dennis Schroeder / NREL 32582

Types of Energy Storage

Application

Transmission

Distribution

Behind-the-Meter (BTM)

Technology

Bulk Storage: Pumped hydro, compressed air

Pros: low cost, large capacity **Cons:** long lead-time, very site specific

Distributed Storage: Fly-wheels, batteries (Flow, Lead, Acid, Sodium Beta, Lithium-Ion)

Pros: Siting, short lead time, use case **Cons:** Cost

Lithium-ion batteries made up 98.8% of batteries installed in Q4 2017

Power vs. Energy Capacity

Power	 The maximum instantaneous output of the battery Measured in kW or MW 	
Energy	 How much energy you have available Measured in kWh or MWh 	
Power:Energy Ratio	 Ratio of power vs. energy; need to specify both Typical configurations include 1 MW: 2 MWh, equivalent to a 2 hour battery 	

The purpose of the battery impacts the system size and ratio

Value Streams for Storage

	Service	Description	Grid	Commercial	Residential
Driven by Utility Rate Structure	Demand charge reduction	Use stored energy to reduce demand charges on utility bills		✓	✓
	Energy arbitrage	Buying energy in off-peak hours, consuming during peak hours		✓	✓
Utility/Regional _ Programs	Demand response	Utility programs that pay customers to lower demand during system peaks		~	~
	Capacity markets	Supply spinning, non-spinning reserves (ISO/RTO)	✓	✓	
Not applicable for BTM storage	Frequency regulation	Stabilize frequency on moment-to-moment basis	~	~	
	Voltage support	Insert or absorb reactive power to maintain voltage ranges on distribution or transmission system	~		
	T&D Upgrade Deferral	Deferring the need for transmission or distribution system upgrades, e.g. via system peak shaving	~		
Value varies -	Resiliency / Back-up power	Using battery to sustain a critical load during grid outages	✓	~	✓

Example of Demand Reduction and Energy Arbitrage

Will Storage Work for Your Site?

Incentives

& Policies

Storage Costs

υ

Utility Cost & Consumption

Ancillary Services Markets

Resilience Goals

Current Battery Cost Trends and Estimates

- Wide range of storage costs reported due to rapid cost reduction in a relatively new technology
- Some costs are reported for battery cell-only (not accounting for pack or total installed cost)
- Normalizing to \$/kW or \$/kWh can be misleading when power:energy ratio is not considered

Reported costs from SGIP show range & decline

Incentives for Storage

Federal Investment Tax Credit (ITC) for storage: Lowers the cost of storage when coupled with RE

State incentives for storage: state incentives, like the CA SGIP, can significantly accelerate the deployment of storage

State net metering policies: in states with net metering policies, storage can be less impactful

Federal Tax Incentives for Energy Storage System https://www.nrel.gov/docs/fy18osti/70384.pdf

Electricity Bill Structure

Electricity Bill Component	How It's Billed	How Storage Can Help
Energy Charges	Amount of kWh consumed (can vary by time of use [TOU])	Shift usage from high TOU periods to low TOU period
Demand Charges	Based on highest demand (kW) of the month	Reduce peak demand when dispatched during peak period
Fixed Charges	Fixed cost per month	Storage cannot offset these

Other types of charges include:

- Minimum charge
- Departing load charge
- Standby charge

Demand Response & Ancillary Service Markets

In addition to directly lowering their utility bill through peak shaving and energy arbitrage, battery storage system owners can be compensated through utility or regional programs for providing a service

- Demand Response Programs offered by certain utility providers compensate customers for lowering demand (by discharging battery systems) at certain times
- Capacity Markets regional programs (RTO/ISO) compensate battery systems for delivering energy when dispatched
- Frequency Regulation Markets (regulation-up and regulation-down) compensate battery system owners for responding to automatic control signals

Participation in these programs doesn't always align with utility bill reduction opportunities

Incorporating Storage and RE for Resilience

In some cases, RE + storage can contribute to resilience goals and provide cost savings

K. Anderson et al., "Increasing Resiliency Through Renewable Energy Microgrids". SCTE Journal of Energy Management Vol.2 (2) August 2017 pp.22-38. <u>https://www.nrel.gov/docs/fy17osti/69034.pdf</u>

Thank You!

Emma Elgqvist

emma.elgqvist@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the presentation for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

