

A system dynamics model of early-stage transition dynamics in the bioproducts industry

Rebecca Hanes, Brian Bush, Emily Newes Strategic Energy Analysis Center, National Renewable Energy Laboratory

International Symposium on Sustainable Systems and Technology Buffalo, NY, USA June 27, 2018

NREL/PR-6A20-71774

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Technology Development Process

Adapted from Bürer and Wüstenhagen, Energy Policy, 37 (2009)

- How do developerinvestor interactions and other factors impact low
 TRL stages of bioproduct development?
- (How) Can the likelihood that a bioproduct reaches commercial production, or is sold as IP, be influenced, and by whom?

Technology Readiness Level (TRL): Numeric representation of technology maturity, from 1 (beginning of applied R&D) through 9 (technology fully developed and at operational scale)

Bioproduct Transition Dynamics Project

Objectives

Understand the environment and drivers that impact bioproducts industry growth: investor decisionmaking, bioproduct techno-economics, and end use factors Identify synergies between the **bioproduct** and biofuel industries

Outcomes

Transparent, analytic **system dynamics model** of early-stage industrial transition dynamics in the bioproducts industry

Why System Dynamics Modeling?

While systems are	our thinking processes often
Constantly changing	are static, equilibrium oriented
Tightly coupled/interdependent	draw very narrow boundaries around issues and problems
Rich in feedback	treat drivers of performance as external and independent
Nonlinear	assume linear responses
History dependent	neglect to consider path dependence, accumulations, and delays
Adaptive and evolving	fail to pay sufficient attention to the sources of unintended consequences

Adapted from Sterman, Am J Public Health, 96:3 (2006)

Introduction to System Dynamics

System Dynamics Model

A system of coupled, nonlinear, first-order differential or integral equations

• SD models are based on system structures and capture patterns of behavior

 $births(t + dt) = birth rate \times Population(t)$ $deaths(t + dt) = death rate \times Population(t)$

$$Population = \int_{t_0}^{t} [births(t) - deaths(t)]dt$$

- Flows (*births, deaths*) are the rates of change of stocks
- **Stocks** (*Population*) are the integrals over time of flows
- Feedback loops (A, B) exist among stocks, flows and model parameters
- Feedback loops are either *reinforcing* or *balancing*
- A is reinforcing
- B is balancing

BTD Model Structure

Actors include...

- Bioproduct developers
- Investors
- Bioproduct purchasers
- Government agencies

Model structure was derived from...

- Interviews with bioproduct industry experts
- Research on investor decisionmaking and innovation processes
- Shared learning models
- End use structure research

Investor Decision Making

Research Process

Research management effectiveness controls how much of each dollar spent is available for conversion into TRL gains.

Piloting and Demoing Process

Piloting effectiveness and demoing effectiveness (not shown in diagram) control the rate at which TRL is gained during piloting and demoing.

both analogous to the *research management effectiveness* parameter.

Sample TRL Path and Events

Sensitivity Analysis and Model Verification

- 14.8 million simulations
- Assess sensitivity to investor, developer decision-making parameters and bioproduct (succinic acid) techno-economics

Selling price potential

- Selling price
- Size of green premium

Government policy

- Research cost share
- Capital cost share
- Production incentive

• Developer effectiveness

Research stage

Investor behavior

- Optimism
- Bioproduct strategic value
- Expected government policy continuity

Management effectiveness

- Research stage
- Pilot stage
- Demo stage

Succinic Acid Techno-Economics

The three pathways differ significantly in their cost structure.

N th Plant Parameters		Lignocellulosic		Commodity Sugar		Maleic Anhydride (fossil)		
		Large	Small	Large	Small	Large	Medium	Small
Capacity	Ton product/year	286,300	28,630	283,465	28,627	83,00	41,500	20,750
Capital cost	USD	\$1,253M	\$462M	\$906M	\$401M	\$131M	\$92.8M	\$70.9M
Feedstock cost	USD/ton	\$100		\$263		\$1,500		
Fixed operating cost	USD/year	\$27.0M	\$12.8M	\$21.0M	\$11.4M	\$10.8M	\$8.57M	\$7.29M
Variable operating cost	USD/ton product	\$494	\$815	\$504	\$1,219	\$29		
Process yield	Ton product/ton feed	0.409		0.770		1.179		
Lifetime	Years	30						

Feedstock	Capital Cost	Operating Cost	Feedstock Cost
Lignocellulosic	High	High	Low
Commodity Sugar	Moderate	High	Moderate
Maleic Anhydride (fossil)	Low	Low	High

Results: Highest TRL Reached

- Color indicates TRL at end of model run for each simulation
- Failure to progress to higher TRLs results from inability to raise new investor funds.

Stage Researching Pilot Completed Demonstration Completed Commercial Production

Results: Success Likelihoods

- The *interaction* of grants and policy continuity is more impactful than either alone
- Bioproduct selling price and expected green premium are good predictors of success

Conclusions and Next Steps

The Bioproduct Transition Dynamics model captures the bioproduct technology development process from basic research through commercial production, including interactions between developers and investors.

- BTD workshop will be held July 16, 2018 to solicit guidance on model logic, enhancements and validation
- BTD model development and validation will continue through 2019
- An NREL technical report is planned for release in September 2018, with the potential for additional publications in the future

For further information, contact:

Rebecca Hanes, <u>rebecca.hanes@nrel.gov</u>

Brian Bush, brian.bush@nrel.gov

Emily Newes, emily.newes@nrel.gov